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2/12/10 
 
Dr. Laurendeau, 
 
Since my letter of 10/27/09, I have given more thought to your rationale in section 3.4 of 
Statistical Thermodynamics.  You’re surely aware that in the context of your analysis, the 
most probable distribution is given by  
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as illustrated by your example showing that Wmp = Wd{3,3} = 20 (p. 36).  However, if 
you attempted to compare W and Wmp directly you may have encountered the same 
computational difficulty as I did upon applying the short form of the Stirling 
approximation.  You attempt to circumvent this problem by observing that Wmp is 
bounded by W and Wavg.  (I’ve modified the notation here due to the limitations of my 
word processor.)  Then you reason that if W and Wavg converge, W and Wmp must also.  
However, it is clear from the unnumbered equations in the middle of page 36 that W and 
Wavg do not converge since the ratio Wavg/W = 1/(N + 1), which approaches zero with 
increasing N.  (The fact that the ratio of the logarithms approaches 1 is clearly irrelevant.  
Logarithms are usually added/subtracted, as illustrated by the first paragraph on page 41.)  
 
While the above error undercuts the rationale for your derivation in section 3.6, Eq. 
(3.20) can be justified instead by adopting Boltzmann’s assertion that an isolated system 
will spontaneously evolve to its most probable macrostate Wmp.  However, a return to the 
beginning of chapter 3 reveals a deeper problem, which is framed at the end of the first 
paragraph, when you declare that “by invoking the assumption of independent particles, 
our upcoming statistical analysis can be based rather straightforwardly on probability 
theory describing independent events”.  You then proceed to present the “two basic 
postulates of statistical thermodynamics” (ergodicity and equiprobability), followed by 
the two system constraints (conservation of mass and energy).  On page 34, you state that 
“if each system quantum state is equally likely, then every microstate must also be 
equally likely.”  Of course, the converse is also true. 
 
However, one can easily see that the quantum energy states can only be equiprobable 
under the very special circumstance where only one energy state is available with an 
energy ε equal to the average particle energy E/N.  If we postulate another available 
energy state either greater than or less than the average energy, then the equiprobability 
assumption implies the existence of a microstate where all of the particles are in that 
energy state.  However, such a microstate would clearly violate energy conservation and 
therefore would not be possible.  But eliminating that microstate would also eliminate the 
corresponding occasions of particles being in that energy state, reducing the overall 
probability of a particle being in that energy state. 
 
A similar situation is illustrated by your Example 3.1.  Since you have correctly 
eliminated all macrostates that violate energy conservation, it is clear from this example 
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that under the assumption that the allowable microstates are equally probable, the 
probabilities of being in energy levels ε0, ε1 and ε3 are .3, .4, and .3 respectively.  
Including the degenerate states gives probabilities of .3, .2, .2, .1, .1 and .1, reading from 
bottom to top.  Of course, if the energy states are not equally probable, then the 
microstates cannot be either and the combinatorial microstate counts can no longer 
represent macrostate probabilities. 
 
Contrary to the treatment of Example 3.1, the example of section 3.4 ignores the energy 
conservation constraint.  Why is this?  It would seem logically consistent to apply the 
constraint to this case as well.  If we apply the conventions of Example 3.1 and assume M 
= 2 energy levels of ε0 = 0 and ε1 = 1, we will have 7 possible scenarios with system 
energies 0 through 7.  Each of these corresponds with one of the 7 macrostates, so that if 
we select, for instance, E = 4, the corresponding macrostate will be {2, 4}.  The other 
macrostates will be eliminated, as in Example 3.1, since they violate energy conservation.   
Therefore, the only value of E for which equiprobability of energy states holds is E = 3, 
corresponding to the macrostate {3, 3}.  Furthermore, if we follow the procedure dictated 
by your postulates and constraints, the formulas for Wm, and W given in section 3.4 are 
meaningless, just as they are for Example 3.1.  Instead of Wm = 7, we get Wm = 1, and 
instead of W = 64, we get various values between 1 and 20, depending on the system 
energy E.  However, we can now be sure that Wmp = W, since there is only one allowable 
macrostate for each selected value of E. 
 
Statistical mechanics has been assembled on the edifice of combinatorial analysis, as 
described in chapter 2.  The core assumption of combinatorial analysis is that of 
equiprobability, meaning that the individual particle states are treated as “mutually 
exclusive, equally likely points in sample space” (p. 7).  However, even the most cursory 
a priori analysis shows that points in energy (or velocity, momentum, etc.) space cannot 
be equally probable, which means that the related microstates are also not equally 
probable and macrostate “probabilities” derived from combinatorial analysis are 
meaningless.  This is of course not a problem if one is considering the spatial distribution 
of molecules in an ideal gas or the distribution of particles within a single energy level, 
since these distributions are not constrained by energy conservation.  However, the 
primary goal of chapter 3 is to derive a distribution specifying different probabilities for 
each energy level, which inherently contradicts the core premise of equiprobability. 
 
The root cause of this contradiction lies with the “assumption of independent particles”.  
This assumption is clearly false if the system is constrained by conservation of energy 
since the increase in the energy of any particular particle must necessarily be offset by an 
equal decrease in energy of the rest of the system.  In fact, this applies to any pair of 
interacting particles.  For instance, if we take the form of the interaction to be a classical 
collision between two particles, the sum of the kinetic energies of the particles before the 
collision must be the same as the sum after the collision, which means that the energy of 
one particle is strictly conditioned on the energy of the other.  More formally, if we take 
proposition A to be “particle 1 has energy ε0” and proposition B to be “particle 2 has 
energy ε1”, then according to the logic of probability theory 
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P(A, B) = P(A)P(B|A).        (2) 
 
Independence requires that 
 
P(A, B) = P(A)P(B),         (3) 
 
which is only true if 
 
P(B|A) = P(B).         (4) 
 
But for a two-particle system with total energy εT = ε0 + ε1, we know that if A is true, then 
B must be true also, so that P(B|A) = 1.  However, the assumption of equiprobability 
dictates that  the unconditional probability P(B) = ½ (assuming that ε0 and ε1 are the only 
possible energy states), rendering the equality of eq. (4) false.  So the fundamental 
premise of statistical thermodynamics is in direct contradiction to the principle of 
conservation of energy. 
 
While the Boltzmann method for deriving the energy distribution gets the desired answer, 
it would be nice if we could avoid the above contradiction.  One approach is to recognize 
that Boltzmann’s “relative probability” is just the multinomial coefficient of the 
multinomial distribution, as discussed in your Chapter 2.  The complete expression for 
the probability of a classical macrostate is given by Pm =  WB Pμ where WB is equivalent to 
the WMB from your Eq. (4.7) with no degeneracy.  WB and Pμ are then 
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and 
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Pμ corresponds to the microstate probability, which Boltzmann assumes to be constant 
with variations in {Ni}.  It is clear from eq. (6) that that this can only be true if Pi = 1/M 
for all i.  However, we know this cannot be the case, and are in fact trying to derive a 
contrary result.  Conservation of energy must hold for all microstates; maximizing the 
dispersion of energy within a microstate corresponds to minimizing Pμ subject to the 
energy conservation constraint.  (This is isomorphic to minimizing the denominator of 
WB in the Boltzmann derivation.) 
  
Taking the logarithm of eq. (6) gives ln Pμ = Σ Ni ln Pi = N Σ Pi ln Pi, which when fed 
into the Lagrange method yields 
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Setting β = -1/kT and eα = 1/Z gives 
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The values of {Pi} are the probabilities which correspond the maximum allowable 
dispersion of energy.  This derivation avoids the complications of combinatorial 
mathematics and therefore has no need of the Stirling approximation. 
 
From the above we see that for the macrostate probability Pm = WB Pμ to be stationary, 
WB must be maximized while Pμ is minimized.  This suggests a minimax approach with a 
saddle point solution which satisfies the equation dPm = WB dPμ + Pμ dWB = 0.  Taking Pμ 
as constant corresponds to the Boltzmann assumption of equal microstate probabilities, so 
that dPμ = 0.  The above equation reduces to Pμ dWB = 0, which is then solved subject to 
the energy conservation constraint to obtain the optimal energy distribution.  This 
distribution can be described in terms of either {Ni} or {Pi} by assuming that the 
probabilities can be inferred from the optimal frequency distribution of the particles so 
that Pi = Ni /N for all i.  The alternative Pμ approach is to assume WB is constant, so that 
dWB = 0.  This yields WB dPμ = 0 to be solved subject to the energy conservation 
constraint.  While both approaches yield the same solution, minimizing Pμ allows for a 
more logically consistent rationale. 
 
The derivation from Pμ is reminiscent of Einstein’s approach in his famous photoelectric 
paper [Concerning an Heuristic Point of View Toward the Emission and Transformation 
of Light, 1905].  In section 5 he asks “How large is the probability that at a randomly 
chosen instant of time all n movable points in the given volume v0 will be found by 
chance in the volume v?”  His answer is W = (v/v0)n, which can be relabeled with notation 
similar to yours as W = (V/V0)N.  Assuming that the particles are distributed uniformly 
over the volume V0 regardless of energy, each particle will on average occupy a volume 
Vp = V0/N.  Therefore, the particles with energy εi will occupy a volume Vi = Vp Ni = V0Ni 
/N.  The probability of a particle being in energy state i is then Pi = Ni /N = Vi /V0, so that 
the probability of a given distribution of energy  over M energy states is 
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The above approaches all rely on the Lagrange method, which requires a rationale for 
maximization/minimization.  Boltzmann’s “laws of probability” are insufficient for this 
purpose, since the extent of our knowledge regarding the state of the system can have no 
physical effect on the motion of the particles.  Your commendable attempt to avoid this 
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difficulty by pursuing a different rationale also falls short, so we are left with no credible 
justification for applying the Lagrange method. 
 
Once again, Einstein hints (perhaps inadvertently, in footnote 6 referenced from the 
above section 5) at how we might derive the energy distribution while avoiding the need 
for the Lagrange method as well as the logical difficulties presented by the combinatorial 
approach.  This approach involves the following steps for deriving the distribution of the 
energy states over the volume of an ideal gas. 
 
pV = NkT   for an ideal gas at equilibrium.    (S1) 
 
dU = -p dV   for an adiabatic system with internal energy U.  (S2) 
 
dU = -NkT dV/V from combining (S1) and (S2).    (S3) 
 
dV/V = -dU/NkT rearranged.       (S4) 
 
ln |V| + C = -U/NkT integrated.       (S5) 
 
V = exp[-U/NkT + C] = A exp[-U/NkT]      (S6) 
 
Ui = Ni εi  where εi is the energy of the ith energy state and U = Σ Ui (S7) 
 
Vi = A exp[-εi /kT] where Vi is the volume containing the Ni particles  (S8) 
 
Assuming that at equilibrium the particles are distributed uniformly over the volume V =  
Σ Vi results in 
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which normalizes to eq. (8) by setting Z = V/A.  The assumption implicit in classical gas 
theory is that the particles are uniformly distributed over physical space, which is also a 
assumed for the derivations involving Pμ.  The a priori assumption of equiprobability 
over physical space is more plausible than Boltzmann’s a priori assumption of 
equiprobability over energy states and avoids the associated logical contradiction.   
 
All of the above derivations assume that a stationary equilibrium is spontaneously 
approached, but all are devoid of any physically causal explanation of why this occurs.   
As Einstein points out (in the last sentence of the aforementioned section 5) “It is 
noteworthy that in the derivation of this equation [for entropy]… no assumption had to be 
made as to a law of motion of the molecules.”  This observation applies to the above 
derivations as well.  However, the physical cause of the tendency of systems to evolve 
toward equilibrium cannot be established without  specifying the underlying dynamical 
mechanism(s) which lead to this behavior.  
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As you can see, I have found your book quite stimulating.  My comments are intended to 
be constructive and I would appreciate any response you may have.       
 
Best regards, 
 
Bill Dreiss  


