
Equilibrium is the fundamental concept of thermodynamics, 
denoting a stationary state toward which an isolated system 
evolves.  The concept has its origins in classical 
thermodynamics and was adapted to statistical 
thermodynamics by Ludwig Boltzmann, who equated 
equilibrium to the most probable macrostate, where a 
macrostate is defined as a particular set of microstates.  The 
equilibrium macrostate was described by Boltzmann [1877] 
as an attractor, since “The system of particles always 
changes from an improbable to a probable [macro]state.” 
 
However, this assertion is contradicted by his model, for 
which the probability of the current macrostate is not 
conditioned on the prior macrostate(s) and the macrostate 
probability is not a function of time.  This means that, 
according to his model, the probability of being in a particular 
macrostate at any given time is the same as its probability at 
any other time. 
 
While Boltzmann applied this rationale to the velocity/energy 
distributions of an ideal gas, subsequent authors of 
textbooks on statistical mechanics extrapolated his 
reasoning to the spatial distribution of molecules.  A common 
example postulates an isolated box of an ideal gas 
composed of N identical distinguishable molecules, where 
the probability of finding n molecules in the right (or left) half 
of the box is given by the binomial distribution.  In this case, 
the most probable macrostate is the uniform distribution of 
molecules, where N/2 molecules are in each half of the box. 
 



The above is based on the implicit assumption that N is 
even.  If N is odd, there are two most probable macrostates 
instead of one.  So for a single most probable macrostate to 
exist, N must be even.   
 
Boltzmann designated Z as the number of microstates in a 
particular macrostate, which he called the “relative 
probability”.  Z was later changed to W by Planck, which has 
been the common usage ever since.  Since the microstates 
are presumed to be equally probable, the relative probability 
of the most probable macrostate (for even values of N) is 
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Since the total number of microstates for the binomial 
distribution is WTot = 2N, the true probability of the most 
probable macrostate is PMP = WMP / WTot or 
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Boltzmann claimed that PMP approaches one for large values 
of N, a contention that has been faithfully replicated in all 
subsequent textbooks.   
 
To test this claim, we can calculate the number of 
microstates included in the next most probable macrostate, 
which is given as 
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This represents the displacement of a single molecule from 
one half of the box to the other half.  The ratio of the most 
probable macrostate to the next most probable macrostate is 
therefore  
 

 

 
Since R approaches one as N increases, it is clear that PMP 
cannot simultaneously do the same.  This ratio is not 
mentioned in any of the textbooks or papers that I have 
reviewed over the last 20+ years. 
 
To verify this conclusion, we can investigate the progression 
of probabilities for small values of N.   
 
For N = 2, PMP = 1/2.   
 
For N = 4, PMP = 3/8. 
 
For N = 6, PMP = 5/16, etc. 
 



It can be seen that PMP decreases monotonically with N, so 
that instead of approaching one, as Boltzmann claims, it 
approaches zero.   
 
This was first noticed by John Arbuthnott in 1710 while 
investigating the sex ratio of births.  It’s first mention in the 
context of statistical mechanics was in a paper by Ernst 
Zermelo from 1896.   Boltzmann’s reply encapsulates their 
disagreement. 
 

Whereas Zermelo says that the number of [micro]states 
that finally lead to the Maxwellian state is small 
compared to all possible [micro]states, I assert on the 
contrary that by far the largest number of [micro]states 
are “Maxwellian” and that the number that deviate from 
the Maxwellian state is vanishingly small. 
 

Neither Zermelo nor Boltzmann provided mathematical 
justification for their claims, but the formula for the probability 
of the most probable macrostate can easily be approximated 
by applying Stirling’s formula to the above equation, yielding 
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for large N.  So for N = 100, PMP ≈ .0798, confirming both 
Arbuthnott’s observation and Zermelo’s assertion. 
 
For the general case of the multinomial distribution, where M 
is the number of individual states or cells, the total number of 



microstates is WTot = M N and the probability of the most 
probable macrostate is given by 
 

ெ

ெ

ெିଵ
 

 
For instance, if we divide our box of gas into 4 cells of equal 
size, M = 4.  For N = 100, PMP ≈ .0010, so PMP converges to 
zero much faster than for M = 2. 
 
While the above only applies to the spatial distribution of 
molecules, examination of the energy distribution yields 
similar results.  There are a variety of ways that the 
decreasing value of PMP with increasing N an be deduced.  
However, a review of a number of statistical thermodynamics 
textbooks finds that none of these alternatives have been 
explored.  The orthodox interpretation is that WMP /WTot  1 
for large N, whereas in fact WMP /WTot  0.  Boltzmann’s 
misconception has been faithfully passed down through 
generations of physicists over the past century and a half, a 
classic example of what Daniel Kahneman calls “theory 
blindness”, whereby a widely accepted theory dissuades 
subsequent researchers from considering alternatives. 
 
In summary, Boltzmann’s definition of equilibrium is 
untenable since it simultaneously implies that being in his 
definition of equilibrium is virtually impossible.  This implies 
that the entropy should incorporate all possible microstates, 
not just those encompassed by the most probable 
macrostate.  The irrelevance of macrostates renders 



meaningless the concept of progression through a sequence 
of macrostates of increasing probability.  In addition, any 
such illusion of progression would be due entirely to 
regression toward the mean, a statistical artifact of no 
relevance to the direction of time. 
 
 
Addendum 
 
It has been suggested that the equilibrium state, while 
centered on the most probable macrostate, also includes 
“nearby” macrostates, so that for large N, the probability of 
being in equilibrium approaches unity.  However, this is 
inconsistent with Boltzmann’s definition of the entropy at 
equilibrium, given by Seq = k ln Wmp, where Wmp is the 
number of microstates included in the single most probable 
macrostate.  Boltzmann is unequivocal on this point and 
nowhere in his writings does he suggest that nearby 
macrostates be included. 
 
Conversely, if the probability of being in equilibrium were to 
increase with N, as Boltzmann believed, the number of 
microstates included in the most probable macrostate would 
necessarily approach the total number of microstates in the 
system.  The entropy would then approach Seq = k ln 2N and 
the most probable macrostate would therefore be irrelevant 
to the concept of equilibrium. 
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