interface while maintaining a certain uniform difference of temperatures with equality of pressure on the two sides.

If no selective influence, such as that of the ideal " demon," guides individual molecules, the average result of their free motions and collisions must be to equalize the distribution of energy among them in the gross; and after a sufficiently long time, from the supposed initial arrangement, the difference of energy in any two equal volumes, each containing a very great number of molecules, must bear a very small proportion to the whole amount in either; or, more strictly speaking, the probability of the difference of energy exceeding any stated finite proportion of the whole energy in either is very small. Suppose now the temperature to have become thus very approximately equalized at a certain time from the beginning, and let the motion of every particle become instantaneously reversed. Each molecule will retrace its former path, and at the end of a second interval of time, equal to the former, every molecule will be in the same position, and moving with the same velocity, as at the beginning; so that the given initial unequal distribution of temperature will again be found, with only the difference that each particle is moving in the direction reverse to that of its initial motion. This difference will not prevent an instantaneous subsequent commencement of equalization, which, with entirely different paths for the individual molecules, will go on in the average according to the same law as that which took place immediately after the system was first left to itself.

By merely looking on crowds of molecules, and reckoning their energy in the gross, we could not discover that in the very special case we have just considered the progress was towards a succession of states, in which the distribution of energy deviates more and more from uniformity up to a certain time. The number of molecules being finite, it is clear that small finite deviations from absolute precision in the reversal we have supposed would not obviate the resulting disequalization of the distribution of energy. But the greater the number of molecules, the shorter will be the time during which the disequalizing will continue; and it is only

