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There exists an essential formal difference between the 
classical laws of motion as formulated by Newton and the laws 
of thermodynamics which evolved from empirical observations 
over the next three centuries.  The development of the kinetic 
theory of gases brought this difference into sharp focus, 
particularly with regard to the second law of thermodynamics.  
The seeming conflict between Newton’s laws and the second 
law is but one aspect of a more general discrepancy.  Not only 
is there no law of motion similar to the second law, but there is 
no law of thermodynamics corresponding to Newton’s law of 
force.  Here we show that recognizing the second law as the 
thermodynamic counterpart of the law of inertia and adding a 
“fourth law” as the thermodynamic counterpart of Newton’s 
law of force leads to a simplified set of physical laws which 
applies across both domains. 
 
 
Modern classical (non-quantum) thermodynamics takes two forms, 
a macroscopic form which describes relationships between 
observables such as temperature, pressure and volume, and a 
microscopic form which deals with molecular interactions which 
cannot (with current technology) be directly observed.  The two 
forms are linked by kinetic theory, which attempts to explain the 
macroscopic behavior in terms of the microscopic motion of 
molecules. 



 
The macroscopic laws of thermodynamics were derived primarily 
by induction from empirical observations, and were related to 
practical problems, particularly the engineering of heat engines.  
For isolated systems, it was observed that gases always expand 
from regions of high pressure into regions of low pressure and that 
heat always flows from hot to cold.  Such systems were observed 
to spontaneously evolve to a state of “thermodynamic 
equilibrium”, where the pressure and temperature appeared to be 
uniformly distributed throughout the system.  These and other 
observations of irreversible behavior inspired various macroscopic 
formulations of the second law of thermodynamics1.  
 
Attempts to explain the second law in terms of kinetic theory 
revolved around the Maxwell velocity distribution.  Boltzmann 
attempted to prove by mathematical deduction that an ideal gas for 
which the velocities are distributed in some arbitrary manner will, 
due to the randomizing effect of collisions between molecules and 
the “laws of probability”, always tend toward the Maxwell velocity 
distribution, terminating in a state of “statistical equilibrium”.  
Once this distribution is obtained, any chance deviations from this 
distribution will, by the same mechanism, quickly return to 
equilibrium with a high degree of probability.  This logic led to 
Boltzmann’s probabilistic formulation of the second law2.  
 
While Boltzmann’s attempt to explain the irreversibility of the 
second law in terms of probability theory has been frequently 
criticized over the years, it is seldom pointed out that the problem 
he addressed was not the problem presented by the macroscopic 
second law.  The tendency of pressure and temperature to equalize, 
the mixing of different gases, and most other observable 



thermodynamic phenomena deal with the spatial distribution of 
molecules, not their velocity distribution.  One would expect 
similar phenomena regardless of the shape of the velocity 
distribution, for example, if all of the molecules in a gas were 
moving at the same speed or if the speed distribution were uniform 
within a given range.  In fact, as Boltzmann himself pointed out (in 
a somewhat different context), it is highly unlikely that we would 
ever find a velocity distribution in nature that would deviate 
appreciably from the Maxwell velocity distribution2.  It is equally 
difficult to see how such a distribution could be created or 
maintained in the laboratory.  So it appears that Boltzmann solved 
a problem that doesn’t exist and provided an explanation that is 
largely irrelevant to the practical question of why gases tend 
irreversibly toward spatial uniformity.  A more direct approach 
would therefore seem advisable.   
 
The second law and inertia 
 
Kinetic theory explains pressure in terms of the momentum per 
unit area transferred to the walls of a container, and temperature as 
proportional to the average kinetic energy of the molecules.  These 
observables are therefore directly linked to the motion of 
individual molecules which obey Newton’s laws of motion.  
However, attempts to explain transitional phenomena such as 
diffusion and irreversibility in terms of kinetic theory have been 
less convincing.  Describing the rate of diffusion of one gas into 
another as a function of the density gradient is like describing the 
rate at which water flows downhill in terms of the slope.  While 
both accurately portray what happens, neither provide a causal 
explanation in terms of fundamental physical laws. Similarly, 
describing the approach to thermodynamic equilibrium in terms of 



probability gradients provides no clue as to the physical processes 
involved. 
 
A major conceptual barrier has been the assumption that the 
dynamical laws of motion are reversible with time, which seems to 
eliminate the possibility that irreversibility can be explained in 
terms of the dynamics of individual molecules, as is the case with 
pressure and temperature.  To examine this assumption, we will 
consider the case of an ideal gas composed of identical particles 
which are perfectly spherical and elastic and strictly obey 
Newton’s laws of motion.  Since all motion is by definition 
deterministic, we must reject any line of reasoning that assigns a 
causal role to probability3.  It follows that any application of 
probability theory to classical thermodynamic systems can only 
describe the state of our knowledge of its configuration, and has no 
bearing on the physical processes which drive its evolution4.  
Based on these assumptions, there is no reason not to believe that a 
collection of many of these particles will obey the same laws as a 
collection of just a few.  Furthermore, there is no reason not to 
believe that a system composed of a large number of such particles 
would behave as dictated by the macroscopic versions of the 
second law formulated from empirical observation and consistent 
with everyday experience.  In particular, we would expect that if 
such a gas were released into an empty container it would spread to 
fill the container and eventually settle into a steady state for which 
the gas molecules were more or less evenly distributed throughout 
the available space.  Similarly, if we were to remove a barrier 
separating two different gases in an isolated container, we would 
expect these gases to mix spontaneously, once again approaching a 
state of relative uniformity.  In neither case would we expect the 



process to operate in reverse, spontaneously evacuating the 
container or unmixing the gases. 
 
More specifically, in the first case we can imagine a container 
divided into two chambers, the first containing an ideal gas and the 
second a vacuum.  There is a tiny hole in the barrier between 
chambers which can be opened or closed by a small door.  If we 
open and close the door for just a moment, a small number of gas 
molecules (say two or three) will leak into the empty chamber.  
Since these were in motion prior to escaping through the hole, each 
will continue according to the law of inertia in the same direction 
and speed as it enters the empty chamber.  As the molecules are 
extremely small compared to the volume of the chamber, it will be 
assumed that they do not interact.  Furthermore, we expect the 
escaped molecules to be traveling in different directions, so that 
they will move apart after their emergence from the hole.   At some 
point, each of the molecules will be reflected from the container 
wall and over time will trace a trajectory around the chamber 
independently of the other molecules.  If the shape of the chamber 
is even slightly irregular or the chamber walls are not perfectly 
smooth, we would expect the trajectories of the molecules to 
eventually traverse most of the space enclosed by the chamber.  
For real systems this would almost certainly be the case since the 
atoms making up the walls of the container are roughly the same 
size as the gas molecules, eliminating the possibility of perfectly 
smooth walls3.   
 
For this example it can be seen that molecules of gas have 
“expanded” into the second chamber solely as a consequence of 
the law of inertia.  Inertia is also responsible for the molecules 
being distributed throughout the chamber, both directly and in 



concert with the law of conservation of momentum which governs 
the collisions with the walls.  If we then release a few more 
molecules into the second chamber, we will have more of the 
same.  Interactions (collisions) between molecules will be 
negligible and the molecules will tend to “fill” the chamber due to 
inertia and the reflections off the chamber walls.  Continuing this 
process, the density of molecules in the second chamber will 
increase and collisions between molecules will become more 
common.  Eventually, enough molecules will have leaked into the 
second chamber to bring it into balance with the first chamber, in 
the sense that about as many molecules will move from the second 
chamber to the first when the door is opened as will move from the 
first to the second.  Under these conditions, collisions between 
molecules are likely to be more common than collisions with the 
container walls.  Nevertheless, the motion of the molecules will 
continue to be driven by the law of inertia. 
 
In the case of the mixing of two different gases, we can imagine 
our container divided into two chambers separated by a barrier, 
with one of the gases initially confined to the first chamber and the 
other to the second.  We will assume that for our initial trial, both 
gases are so dilute that the molecular interactions are negligible.  
When we remove the barrier, the molecules headed towards the 
barrier will continue to travel under the influence of inertia and, as 
a result, the gases will mix.  Once again, the mixture will tend 
toward uniformity due to inertia and the effects of irregularities in 
the shape and interior surface of the container.  Repeating the 
experiment with higher densities of molecules will increase the 
frequency of molecular collisions, but the inertial nature of the 
mixing process will not change. 
 



We can see that expansion and mixing in an ideal gas can be 
understood exclusively in terms of Newton’s laws of motion.  The 
irreversibility of these processes is the natural consequence of the 
law of inertia acting in combination with the initial conditions 
imposed by the experimental arrangement.  The evolution of the 
system toward a steady state is apparent whether the system is 
composed of two molecules or a trillion.  In either case, inertia will 
cause the molecules to spread and mix to the extent allowed by the 
container.  This pertains not only to very dilute gases but to those 
at room temperature and normal atmospheric pressure.  Under 
these conditions the mean free path is on the order of 20 times the 
distance between molecules for air and between 10 and 100 for 
most other gases, so inertia remains the primary agent of molecular 
transport and mixing due to the interpenetration of the molecules. 
  
The fourth law of thermodynamics 
 
Where the molecules are non-interacting, it is clear that each will 
be moving in straight-line trajectories between reflections from the 
walls of the container, in accordance with the principle of least 
action.  The action of the system will then be just the sum of the 
action of each of the molecules, so that minimizing the action of 
each of the molecules will also minimize the action of the system 
taken as a whole5.  Following the same logic, the original 
derivations of the action principle by both Lagrange and Hamilton 
were for the general case of systems composed of multiple 
particles6.  If the molecular density is increased so that the 
molecules collide, each molecule will continue to follow its path of 
least action, although its kinetic energy may increase or decrease 
with each collision.  However, since energy is conserved, the total 
kinetic energy of an isolated system will remain constant.   



 
The principle of least action is usually presented for the case of a 
closed system of particles where outside forces are present7.  For 
each of the n molecules of the system, the energy at any point in 
time is 
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where KEi is the kinetic energy due to the motion of the ith 
molecule and PEi is the potential energy due to the forces acting on 
the molecule.  The action Si for the molecule over the time interval 
from t1 to t2 is 
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Substituting for PEi gives  
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This is equivalent to 
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where the angle brackets denote time averages over the interval t1 
to t2

8.  Since the action is additive for a multi-particle system, the 
total action STotal is 
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The total average energy of the system is 
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This is clearly true if the molecules are non-interacting, since the 
energy Ei for each molecule will remain constant over its 
trajectory.  It is also true if the molecules interact, since energy 
conservation dictates that any kinetic energy lost by a molecule as 
the result of a collision will be transferred to the other molecule(s) 
involved.  So the total action of the system can be written as 
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For an isolated system devoid of forces, the total energy of the 
system is equal to the total kinetic energy, so this equation reduces 
to 
 

 
n

iTotal KEttS 12        (8) 

 
This last equation applies to the examples presented above, where 
all of the energy is related to the inertial motion of the molecules.  
According to kinetic theory, the thermal energy of an ideal gas is 
just the sum of the kinetic energies of the molecules, so that 
minimizing the thermal energy is equivalent to minimizing the 
action of the system. 
 



For a closed system in a steady state, ETotal will be constant, and 
the minimum action will again correspond to the minimum kinetic 
energy.  This is the “principle of the least dissipation of energy” as 
developed by Onsager for steady-state systems near 
“equilibrium”9.  Prigogine interpreted this as the “theorem of 
minimum entropy production”, a principle he generalized to cover 
a variety of phenomena, including chemical reactions and the flow 
of current in electrical circuits10.  Jaynes pointed out that minimum 
entropy only applies to isothermal systems, and that Kirchhoff’s 
“principle of minimum heat production” is the more general 
principle which “is surely true for fluxes of any kind of stable 
particles, or of anything else that is conserved (energy, momentum, 
etc.)”11. 
 
The principle of minimum heat production applies to open as well 
as closed systems.  This is consistent with Eq. (7), since STotal can 
be taken to encompass all of the n particles which are part of the 
system at any time during the interval between t1 and t2.  While 
Onsager and Prigogine address this principle only to steady-state 
systems, Eq. (7) does not require that ETotal be constant over time.  
The system defined by the number of particles n can be arbitrarily 
small or large, spanning the range from dynamics to 
thermodynamics. 
 
From the above reasoning, we propose the following formulation 
of the fourth law of thermodynamics: 
 

The flow of energy and matter through a system is such that 
the heat produced by the process is  minimized. 

 



This universal law follows logically from the principle of least 
action, since if the action of each particle in a multi-particle system 
is minimized, the sum of the kinetic energies of all the particles 
must also be a minimum, resulting in the minimum production of 
heat.   
 
If a system is performing work, minimum heat production 
corresponds to maximum thermodynamic efficiency.  The fourth 
law can then be stated as: 
 

The flow of energy and matter through a system is such that 
the thermodynamic efficiency of the process is maximized, 
given the structural constraints on the system. 

 
Classical thermodynamics can therefore be fully described with an 
energy conservation law (the first law) and a least action principle 
(the fourth law).  This formulation is isomorphic to the least action 
version of the dynamical laws and is congruent in the sense that the 
laws of motion transform seamlessly into the laws of 
thermodynamics.  The law of inertia and the second law of 
thermodynamics are merely special cases of these least action 
principles where no unbalanced forces are present. 
  
Universality 
 
The claim that least action constitutes a universal principle has a 
long pedigree.  According to most reports, it was first proposed by 
Maupertuis, who was famously lampooned for this belief by 
Voltaire in Candide.  Another distinguished proponent appears to 
have been Planck7.  The primary philosophical objection to this 
generalization is that the principle of least action is teleological, 



since it seems the particle must look ahead to compare all possible 
paths and then select the path for which the action is minimized5,7.  
The presumption of clairvoyance follows from the integral 
formulations of the principle by Euler, Lagrange and Hamilton, 
which assume that both the initial and final conditions are specified 
and that the objective is to derive the trajectory connecting these 
conditions8.  However, under the classical assumption of locality, 
the particle can only know its current physical state and has no way 
of anticipating where it will be in the future.  It would appear that 
replacing the statistical formulation of the second law with a fourth 
law based on the principle of least action amounts to swapping one 
teleological law for another.  However, Feynman pointed out that 
for the action over a path between two points to be a minimum, it 
must also be a minimum for any segment of the path.  This 
segment can be taken as arbitrarily small, so that for an 
infinitesimal segment the integral principle of least action reduces 
to Newton’s differential law of force5.  This differential law is the 
only perspective available to the particle, and determines where it 
will be in the next instant.  Therefore, while the least action 
formulations are clearly anthropomorphic, they are equivalent to 
the ontologically correct differential form.  The infinitesimal least-
action paths aggregate to the integral least-action path, which can 
then be analyzed from a human perspective.  The locality implicit 
in classical dynamics must also apply to thermodynamics, so 
transcendent formulations of either the second or fourth law can 
only be metaphorical, not ontological. 
 
Conclusion 
 
On logical grounds, one would expect to be able to identify 
specific thermodynamic laws which correspond to the laws of 



motion and vice versa.  But this has clearly not been the case.  
However, applying the same logical criteria to both dynamics and 
thermodynamics leads to a symmetrical set of laws which is both 
consistent and complete.  This is accomplished by first recognizing 
that the second law is a direct consequence of the law of inertia.  
Since the law of inertia cannot, by definition, constitute a law of 
force, a “fourth law” must be added to the laws of 
thermodynamics.  The identification of the second law with the 
law of inertia and the addition of the fourth law result in two 
isomorphic sets of laws, one encompassing the laws of motion and 
the other the laws of thermodynamics.  Each set is composed of the 
law of conservation of energy and a law derived from the principle 
of least action. 
 
We conclude that thermodynamic systems must obey Newton’s 
laws of motion, which takes us back to our original assumption.  In 
coming full circle we have shown that the asymmetrical nature of 
the second law is entirely due to the law of inertia acting within a 
system for which constraints on molecular motion have been 
relaxed.  The process is irreversible unless work is applied from 
outside the system to restore the constraints.  The extant versions 
of the second law represent heuristic models which may be useful 
in appropriate contexts, but should not be interpreted 
ontologically4,11.  Unlike these anthropomorphic formulations, the 
inertial second law is intrinsically passive and cannot be held 
accountable for either hindering or facilitating the evolution of 
complexity or the origin of life.  This role is the proper domain of 
the law of force, which has been missing from the laws of 
thermodynamics.  We therefore propose that Newton’s law of 
force be incorporated into thermodynamics as the fourth law. 
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