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Abstract The relative merits of ‘Boltzmann entropy’ 
and ‘Gibbs entropy‘ are discussed.  It  is found that, for 
describing the irreversible features of Brownian motion, 
the ‘Gibbs entropy’ is the superior concept. In terms of 
this we see that Brownian  motion gives  an excellent 
illustration of the second law of thermodynamics. 

The historical  origins of the ‘Gibbs entropy’ are ex- 
amined, and it is concluded that Ludwig  Boltzmann 
must  be  given a substantial part of the credit  for it. On 
the other hand, the equation S = k log W, which  has 
been attributed posthumously to Boltzmann,  does  less 
than full justice to his  concept of entropy, and  has  led 
to serious misunderstandings in the theory of Brownian 
motion. 

1. Introduction 
The  problem of deriving  the  laws of irreversible 
heat flow from  the  reversible  dynamics of 
molecules is as  old as Newton’s  dynamics  itself.  It is 
certainly  much  older  than  either  Fourier’s  heat 
conduction  equation  or  Carnot’s  statement of the 
second law of thermodynamics  (Brush  1976a). 
However,  the  modern  formulation of the  problem 
dates  from Clausius’s discovery of the  entropy,  and 
subsequent  efforts by Boltzmann  to  express  the 
entropy as  a microscopic  state  function. 

Boltzmann’s  attack  on  this  problem  has  been 
divided  into  three  phases  (Brush  1976b,  Klein 
1973,  Kuhn  1978b). 

The first phase  was  initiated by his article  (Brush, 
1966) of 1872,  where  he  defined a function E (later 
to  be  called H ) :  

E ( t )  = f(u, t)log f(u, t )  d3u I (1.1) 

Nf d3u  being  the  number of molecules  which  have 
velocities in  a rectangular cell of velocity  space 
between U and U +du.  He constructed  the  transport 
equation  for f (the  famous  Boltzmann  equation) 

Rbume On discute  des mCrites relatifs  de ‘l’entropie 
de  Boltzmann’ et de ‘l’entropie de  Gibbs’. I1 apparait 
que ’l’entropie de Gibbs’ est un concept  mieux adapt6 B 
la description des aspects d’irreversibilite lies au mouve- 
ment brownien. Le  mouvement  brownien, dans ce con- 
texte, assure  alors  une  excellente illustration du Second 
Principe. 

Les  origines historiques de  ‘l’entropie de Gibbs’ sont 
examinees, et l’on montre que Boltzmann a jouC un 
r61e important dans l’introduction de ce concept. D’un 
autre &C, 1’Cquation S = k log W, qui a fait l’objet 
d’une attribution posthume i Boltzmann, ne rend que 
trbs imparfaitement justice B sa  vision  de l’entropie, et a 
conduit 9 des malentendus graves dans la  thCorie  du 
mouvement brownien. 

and  deduced  that,  provided f satisfies  a certain 
initial  condition,  the  function E (or H )  decreases 
monotonically  with t. The  initial  condition  has  be- 
come  known as the  Stosszahlansatz  (ter  Haar 
1954).  Boltzmann  claimed  to  have  derived  his 
transport  equation  directly  from  Newtonian 
dynamics, so his  description of the  time  evolution 
may  be  properly  described as deterministic.  Any 
system  satisfying  the initial Stosszahlansatz  must 
necessarily  show  monotonic  behaviour of the H 
function. He proposed  that  the  entropy  was  equal 
to  this  function  multiplied by a negative  constant. 

The  second  phase  was  stimulated by a  criticism 
of Boltzmann’s H theorem  from  his  colleague Lo- 
Schmidt. This criticism has  become  known as the 
Umkehreinwand  (ter  Haar  1954),  and  it  arises  from 
the  observation  that, if, at a some  time, t ,  in the 
evolution of an N molecule  system,  the  velocities of 
all molecules  are  reversed,  then,  between t and 2t, 
the  system  reverses its original  evolution  arriving 
back  at its  initial state.  During  this  time  interval  the 
H function increases monotonically. 

Boltzmann  (1877)  replied  to  this criticism by 
pointing  out  that,  immediately  after a  collision, the 
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two  colliding  molecules  have a degree of correla- 
tion in their  velocities.  After  the  reversal,  this 
correlation is between  molecules  which  are  about 
to  collide.  Such a microscopic  state  does  not satisfy 
the  Stosszahlansatz.  Therefore,  Boltzmann  argued, 
there  must  be  some  reason,  arising  from  the 
dynamics,  for  such a ‘turnabout’  state  to  occur  very 
rarely in actual N molecule  systems.  Such a state, 
though  not  altogether  impossible,  must  be  ex- 
tremely  improbable. He was  able  to  show  that  the 
H function,  and  hence  the  entropy  also,  were  pro- 
portional  to  the  logarithm of a quantity, P, called 
the  ‘permutability’ of the  state.  He  characterised P 
as  the  number of microstates  corresponding  to  the 
distribution f, and  claimed  that  distributions  with 
larger P were  ‘more  probable’  than  those  with 
smaller P. This  led  him  to a conclusion  already 
suggested by Maxwell:  systems  with  finite N (that 
is, all  physically realisable  systems)  evolve  from 
lower  to  higher  values of the  entropy, S, with a 
probability close to  one,  but  not  with  absolute 
certainty.  His new ‘probability’  calculus  enabled 
him  to  estimate  this  divergence  from  unity,  and  he 
found,  even  for  such a small  system as  a cubic 
millimetre of gas, that it  was so small as  to give no 
detectable  divergence  from  the  second  law. 

The  crowning  achievement of this  second  phase 
was  the  statement  that  entropy is proportional  to 
the  logarithm of P. However, in  his ‘Lectures on 
Gas  Theory’  (Boltzmann  1964b),  originally  pub- 
lished in 1896,  he  referred  to P as ‘probability’  and 
changed  its  designation  to W (the first letter of 
‘Wahrscheinlichkeit’).  His  successors,  therefore,  felt 
it appropriate  to  inscribe  the  equation 

S = k log W (1.2) 

on his monument in the  Zentralfriedhof of Vienna. 
Naturally, no single equation  can  do  justice  to 

Boltzmann’s  creative  genius.  In  the  present  article 
we  shall  see  that,  on  the  contrary, a preoccupation 
with  this  equation by Boltzmann’s  immediate  suc- 
cessors  has given rise  to a serious  misunderstanding 
in the  theory of Brownian  motion.  This is some- 
thing of a tragedy.  The  approach of a system of 
Brownian  particles  from  an  arbitrary initial dis- 
tribution  to  its  equilibrium  distribution gives an 
excellent  simple  illustration of irreversible  be- 
haviour  derived  from a dynamical  model.  Many 
details of this  behaviour  were  obtained by 
Boltzmann’s  pupil  Smoluchowski  (1916a),  but  he 
did  not  establish  the  connection  with  Boltzmann’s 
H theorem.  This is because  the  prevailing view, at 
the  time  he  wrote  and  ever  since  (Brush  1976c), 
was  that a Brownian  particle is ‘too small’ to  be 
treated as  a thermodynamic  system. 

We shall  see  that  this view is, in fact,  mistaken. A 
single  Brownian  particle,  like a single  gas  molecule, 
does  not  constitute a thermodynamic  system.  But a 
large  assembly of such  particles,  like a large  assem- 
bly of gas molecules,  does  constitute a ther- 

modynamic  system.  It is possible  to  define  an  en- 
tropy  function  for  this  system,  but  because  the 
bombarding  molecules  constitute a constant- 
temperature  heat  bath, it is the  free  energy,  rather 
than  the  entropy,  which  exhibits  monotonic  be- 
haviour. 

Instead of the  ‘Boltzmann  entropy’  defined in 
equation  (1.2), it will turn  out  that  the  entropy 
function giving this  monotonic  behaviour is more 
akin  to  the  ‘Gibbs  entropy’.  Smoluchowski specific- 
ally rejected  Gibbs’  entropy,  because  he  thought it 
was constant in time.  It is a cruel  irony  that, if he 
had  only  substituted his own  probability  distribu- 
tion  into  the  Gibbs  entropy,  he  would  have  found 
that  it is not  constant,  but, on the  contrary,  displays 
time  evolution in accordance  with  the  second  law. 

I will argue  that  the  failure of Boltzmann’s  suc- 
cessors to  arrive  at  this  simple  result,  and of subse- 
quent  students of Brownian  motion  to  extend it to 
the  results of the  present  article,  arises  from a 
consistent  neglect of Boltzmann’s  third  phase.  This 
began  with his visit to  the  British  Association  meet- 
ing  at  Oxford in 1894, a meeting which he  de- 
scribed as ‘unforgettable’  (Boltzmann  1964a).  The 
central  new  idea  was given the  name of ‘molecular 
disorder‘,  but,  to  emphasise its novelty, I will pre- 
fer, in this  article,  to call it ‘molecular  disordering’. 
The  disordering of a thermodynamic  system  arises 
because of a continual  interaction  with its environ- 
ment,  and  results in  a continual  reimposition of the 
initial  Stosszahlansatz.  For a general  system,  the 
only  known way to  treat  such  an  interaction is with 
the  rather  abstract  tool of the  Gibbsian  canonical 
ensemble,  but  the  system of Brownian  particles is 
perhaps  unique in that  the  ‘environment’ of bom- 
barding  molecules is quite  accurately  described by 
the  stochastic  force  term in the  Langevin  equation. 
This  produces a continual  coarse-graining of the 
distribution,  and is therefore  exactly  what is re- 
quired  in  order  to  produce a non-constant  Gibbs 
entropy  (ter  Haar  1954). 

The  recognition by Boltzmann  (1895)  that no 
thermodynamic  system is closed,  and  that  there is 
always  a residual  interaction  with  the  environment, 
took  him a very  long way indeed  from his deter- 
minist  position of 1872.  In  the final section of this 
article, I will indicate  how  some of the  conclusions 
he  reached in the first two  phases  should  have  been 
modified  in the light of his third  phase. I shall  also 
attempt  to  explain  why  such a task  has  been neg- 
lected by physicists  in the  present  century. 

2. Brownian motion in the strong-damping limit 
We will now  prove  the  assertion,  made in the 
previous  section,  that  an H theorem  results  from 
combining  Smoluchowski’s  theory of Brownian  mo- 
tion  with a Gibbs-type  entropy. 

The  underlying  dynamical  equation  for a particle 
of mass m performing  one-dimensional  motion in a 
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potential  V(x) is the  Langevin  equation  (Chan- Hence F decreases  monotonically  until,  for  large 
drasekhar  1943): t, W satisfies, for all x, the  equation 

mf + mpx + V'(x) = E ( t )  (2.1) 

where  the  stochastic  force, E(t), is a  gaussian 
kT-+V'W=O 

aw 
ax 

(2.12) 

white-noise  with  autocorrelation  that is 

K ( T )  =(E( t )E( t  + T ) )  = 2mpkTS(r).  (2.2)  W = c exp(-V(x)/kT).  (2 .+3) 
If p is sufficiently large,  we  have  the  strong- The  theorem  we  have  just  proved is well  illus- 
damping  limit, in which  the  inertia  term  may  be trated by taking  the  case of an  unrestricted  particle 
neglected, so that  the  Langevin  equation  becomes in a  harmonic  potential,  that is 

X = - [E( t )  - V'(X)]. 
1 

mp 
(2.3)  where 

V(x) = 4m02x2  (2.14) 

X I  =--cc 

Then  the  probability  density,  W(x, t ) ,  satisfies the x* = +m. 

diffusion equation:  This  boundary  value  problem  may  be  solved in 
terms of the  fundamental  solution,  for which the 
initial density is a  delta  function: 

W(x, 0) = S(x - y ) .  (2.15) 

This  equation  was  obtained by Smoluchowski The  solution is then  (Uhlenbeck  and  Ornstein 
(1916a),  who  also  gave  the  boundary  condition  to  1930b) 
be  satisfied  at  a  reflecting  barrier,  namely 

i3W 
1 [x - Y exp( - rt)I2 

W(x, t )  = ___ 
UJ(2Tr)i (2.5) kT-+ V'(X)  W = 0 

ax  (2.16) 

at  x = x1  (say).  Consider  now  such  a  particle  with  where 
reflecting  barriers  at x1 and  x2, so that it  is con- k T  
strained  to  move  only in the  interval  x1 S x S x2. U* = 7 [I - exp(-2yt)l  (2.17) 
We  define  the  entropy as 

mo 
and 

S ( t )  -k W(X, t )bg  W(X, t )  dx.  (2.6) h:: 
Then  the  average  energy is The  general  solution is the  convolution of equation 

~~ 

(2.16)  with  an  arbitrary  initial distribution-. Sup- 
pose,  for  example,  that  the initial distribution is 

(2.7) gaussian: 

and  the  free  energy is 1 (x - Y IZ 
W(x, 0) = ~ 

u0J(27T)2 l e x p ( - x ) .  (2.18) 

F(t)= h:: kT1og W)dx (2'8) Then W(x, t )  is again given by  equation  (2.16),  but 
so the  variance is now 

We now  substitute  for  aW/at  and  integrate  by  parts,  With  this  distribution,  the  entropy is 
making  use of the  boundary  conditions,  to  obtain 

S = $k[log(2nu2) + l] (2.20) 

F =  -mp 1 h:'$ and  the  energy is 
ax U = ~ m o 2 [ a Z + y 2  exp(-2yt)].  (2.21) 

Since  the  integrand is everywhere  non-negative,  we  From  equations  (2.19)  and  (2.20), it follows  that 
have  proved  that  the  entropy  may  either  decrease  or  increase  mono- 

tonically,  depending  on  whether U: is greater  or 
FS 0. (2.11)  less  than  kT/mwZ.  But  the  rate of change of the 
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free  energy is 

(2.22) 

which  is non-positive  for all values of y and uo. 

3. Brownian motion in phase space 
The  entropy in equation  (2.6) is of gibbsian type 
because,  unlike  equation  (1.2), it is defined  over  the 
ensemble of possible  positions.  It is therefore  not  a 
function of x, the  particle's  instantaneous  posi- 
tion.  This  was precisely Smoluchowski's  reason 
(Smoluchowski  1916b)  for  preferring  'the  custom- 
ary  Boltzmann  entropy'  to  'the  Gibbs  entropy,  and 
one  purpose of the  present  article is to  show  that 
his  choice was an  incorrect  one. 

But,  generally  speaking,  Gibb's  entropy is taken 
to  be  an  integral  over  phase  space,  that is over N 
position  and N momentum  variables.  For  the  case 
of Brownian  particles  this  integral  readily  reduces 
to  one,  over  single  position  and  momentum  vari- 
ables,  since  the  motion of the  separate  particles is 
assumed  to  be  independent. 

We  should,  therefore,  be  treating  a  probability 
density  which is a  function of position  and 
velocity-for present  purposes  we  need  not  disting- 
uish between  linear  velocity  and  momentum.  It is, 
of course,  a  limitation of Brownian  motion in the 
strong-damping  approximation  that  the velocity is 
not  defined,  which is why  the  equilibrium  distribu- 
tion  (equation  (2.13)) is a  function  only of the 
potential  and  not of the  kinetic  energy. 

Subsequent  to  the  pioneering  work of Einstein 
and  Smoluchowski,  the  theory of Brownian  motion 
was  extended  to  phase  space by Uhlenbeck  and 
Ornstein  (1930a)  and by Kramers  (1940a). If we 
retain  the  inertia  term in equation  (2.1),  then  the 
probability  density,  W(x, U, t ) ,  satisfies the  equation 

Kramers  showed  that,  for  suitably  large  values of 
0, the  time-scales  for  establishing  the  Boltzmann 
distribution in position  and velocity have  two 
different  orders of magnitude.  For  example, if we 
take  the  harmonic  potential 

V = $mo2x2  (3.2) 

then  the  fundamental  solution of equation  (3.1), 
obtained  from  an initial density 

W(x. U, 0) = 6(x - y )  S(U - v )  (3.3) 
is 

Here (Z, U )  are  the  position  and  velocity which the 
particle  would  have in the  absence of the  stochastic 
force,  and  (Wang  and  Uhlenbeck  1945b) 

A - 2 0 k T  (F '  exp(w1t') - F2 exP(P2r'))' &, 
m FI-PZ 

(3.5) 

A = A B - H ~  (3.8) 

F 2 + p p + W z = 0 .  (3.9) 

where p i ,  p2 are  the  roots of 

For 0 >>W, the  two  time scales are y" are 0" for 
the  position  and velocity respectively,  where y is 
defined by equation  (2.17).  Indeed,  for  values of t 
large  compared  with 0" we find that 

I = y exp(-yt) i i = O  (3.10) 

and kT A = -  
m 

H=O.  

It follows that,  after  an initial time of order P", 
the  phase  space  density is the  simple  product of 
Maxwell's  velocity  density  and  Smoluchowski's 
position  density. 

We now  show  that  this  two-stage  approach  to  the 
Boltzmann  distribution,  like  the  single-stage  ap- 
proach of the  previous  section, is in conformity 
with  the  second  law of thermodynamics.  Indeed, 
since  the proof is independent of the  magnitude of 
0, we  shall  generalise  the  result of the  previous 
section to  Brownian  motions in which the  strong- 
damping  approximation  does  not  necessarily  apply. 

S = -k[;dx/-: duW(x, U, t )  log  W(x, U, t )  (3.12) 

U =  [:dxl-: duW(x, U, t)[imu2+ V(x)].  (3.13) 

We  define  entropy  and  energy as follows: 

Then 

F = 1 / ~ ( ~ m u 2 + V + k T l o g W ) d x d u .  a t  (3.14) 

Let us now  rewrite  equation  (3.1)  as 

~ ( x ,  u,  t)=-exp(--(x-z)z+ 1 A 
2 ~ A 2  2A 

E + d i v  J = 0 
at 

(3.15) 
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where J is a current  vector in phase  space, k T  
m o  

B = y+ a exp(2p1 t )  + b exp(2pzt) 

J =  
m - 2h  exp(pl + p J t  (3.23) 

- h ( p l  +p2)  exp(pl + (3.24) 

H = apl exp(2plt)+ bp2 exp  (2p2t) 

Then,  using  the  divergence  theorem 
where a, b and h are  constants  related  to  the initial 

dx du  covariances.  The  following  relations  may  now  be 
verified: 

- I J ( i m u ’ + V + k T l o g   W ) - n d S .  (3.17) A + w Z B = 2 @  (7 --A ) (3.25) 

F= s s J .  grad(;mu~+ V +  kT log 

The  integrand of the first term  may  be  written as 

-*(uW+-- kTdW)’ + k T  ( U - - - -  a W   V ’ d W )  . (3.18) 
W m a u  ax m au  

Hence,  using  the  divergence  theorem  again 

m au 

+ n - [ k T J ’ - ( i m u 2 + V + k T l o g   W ) J ] d S  J 
(3.19) 

where 

J ‘ =  ( m  u , - v ‘ w ) .  

For  any  but  the  most  pathological  distributions,  we 
may  safely  assume  that  the  surface  integrals  over 
U =*m are  zero  throughout  the  motion. The surface 
terms  therefore  reduce  to  I(xJ - I(xl),  where 

I (x)  = uW(kT-imu’-  V-  kTlog  W)  du. L 
(3.20) 

There  has  been  virtually no discussion  in the 
literature of the  boundary  conditions,  at  xt  and  xz, 
which  are  appropriate in this  case.  Wang  and 
Uhlenbeck  (1945a) ‘felt sure’  that  the  condition 

W(x, U ,  t )  = W(x, - U ,  t) (3.21) 

must  be satisfied for x =x1  and x = .x2. We  post- 
pone  discussion of this  condition  until  the  end of 
this  section,  and  assume,  for  the  moment,  that it  is 
satisfied.  In  that  case  I(x,)  and I ( x J  are  both  zero. 
Hence,  from  equation  (3.19),  we  see  that F is again 
non-positive,  which  establishes  the  monotonic 
property of F. 

Again  this  result is  well illustrated by the  unre- 
stricted  harmonic  oscillator. If the  initial  distribu- 
tion is gaussian,  the  calculation  leading  to  equations 
(3.5),  (3.6)  and  (3.7) is easily generalised  to give 

A=-+ap:exp(2pIt)+bpL:exp(2pzt) 
k T  
m 

(3.26) 

With  the  density given by  equation  (3.4),  the 
energy  and  entropy  are 

U = f r n ( i i ’ + A ) + ~ m w ’ ( ~ ’ + B )  (3.27) 

S = k[log(2.1rA1”) + l]. (3.28) 
It follows that 

F =  -@mii’+$m(A + w 2 B ) -  kTAI2A. (3.29) 

Substituting  from  equations  (3.25)  and  (3.26),  we 
obtain 

fi=-@mii2+2@kT-@mA-”- 
@kZT2B 

mA . (3.30) 

It  becomes  evident  that  this is negative  definite, if 
we use  the  identity 

m2A2  2mA2 
k T  k T  

A ~ + B A - - = x ’ A x  (3.31) 

where 

and A is the  positive  definite  covariance  matrix 

(3.32) 

So the  monotonic  character of F is clearly  dis- 
played. O n  the  other  hand, S, far  from  being 
monotonic,  can  be  made  to  have  either a maximum 
or a minimum,  for  some  finite  value of t, by  suitable 
choice of the initial covariance  matrix. 

Returning  now  to  the  boundary  condition  (3.21), 
it may  be  derived  from  the  assumption  that all 
collisions of the  Brownian  particle  at a reflecting 
wall are  elastic.  For  from  this it follows that 

Lim  W(xl, U ,  t’) = Lim  W(xl, - U ,  t ’ )  (3.33) 
1 ” f t  1’“- 
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Lim  W(x2, U, t’) = Lim  W(xz, -U, t’) (3.34) 
1“1+ 1”1- 

for U <O. Since  we  have  already  assumed W to  be a 
differentiable,  and  hence  continuous,  function of 
x and t, equation  (3.21)  now follows. 

It is, of course,  desirable  to  extend  the  results of 
this  section  to  Brownian  motions  with  inelastic wall 
collisions, but  that  would  be a vast  extension 
beyond  the  scope of the  present  article.  True,  the 
strong-damping  model of the  previous  section  has a 
boundary  condition (2.5) which expresses  nothing 
more  than  particle  conservation,  but  that is at  the 
cost of ignoring  the particle’s  velocity altogether. 
As noted  in  another  context  (Boyer  1969,  Marshall 
1981),  Brownian  motions of this  more  general  kind 
will not  even  have  the  Boltzmann  equilibrium  dis- 
tribution. 

4. Brownian motion in the weak-damping limit 
If 0 is small  compared  to  the  natural  frequencies of 
the  undamped  system, it  is again  possible  to  deduce 
a one-dimensional diffusion equation  (Kramers 
1940b,  Marshall  1980). The appropriate  variable is 
now  the  action, 

Then  the  probability  density, W((, t), satisfies the 
equation 

where 

(4.3) 

and H is the  energy 

H =+mu2+ V(x). (4.4) 

(Note  that, in this  case, collisions at all reflecting 
walls must  be  elastic in order  that ( be well 
defined.)  For  boundary  values of (, there is only 
one  boundary  condition  (Feller  1952)  which gives  a 
norm-preserving  solution  for W, namely 

(4.5) 

(at ( = and say). Now  we  define  the  energy 
and  entropy as 

Then,  following  the  usual  partial  integration  proce- 
dure, 

g = -81:’ 
Provided  the  potential,  V(x), is such as to  guaran- 
tee a closed  orbit in phase  space, El and & are 
non-negative,  and  also m ( ( )  is positive  for all ( 
between  and t2. Hence F decreases  monotoni- 
cally to a limiting  value  for which 

(4.9) 

that is 
W = C exp(-H/kT). (4.10) 

I do  not  know of any  general  method  for solving 
equation  (4.2)  with  boundary  conditions  (4.5).  For 
a general  potential  the  functional  relationship  be- 
tween w and ( in  equation  (4.3)  may  be  quite 
complicated.  However a family of potentials with 
the  relation 

( = CH“+’ = 0, t2 = =) (4.11) 

has  been  treated  by  the  same  method  used by 
Uhlenbeck  and  Ornstein  (1930b)  (Marshall  1982). 
A tedious,  but  straightforward  calculation  on  the 
solutions of this family again  shows  that, while F 
decreases  monotonically, S may  reach  its  equilib- 
rium  value  from  either  direction,  depending  on  the 
initial  value of to. Note  that  the  above family 
includes  at  least  three  simple  potentials. 

(i) The  harmonic  oscillator,  with  V(x) = 
fmw’x’, has 

so 
a =o .  

(ii) The free  particle  between  reflecting walls, 
with 

V(x) = 
0 ( O < x < a )  
m (otherwise) 

has 

so 
(y = -; 

(iii) The  gravitating  particle  with a reflecting 
base,  with 

has 
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so 

5. Irreversibility and the growth of entropy 
The  main  thrust of Ludwig  Boltzmann’s scientific 
work  was  devoted  to  finding  a  microscopic  (or 
‘atomist’)  explanation of thermodynamic  irreversi- 
bility. The  tools  which  he  fashioned  for  this  task 
were,  above  all,  the  transport  equation,  which  bears 
his  name,  and  the H theorem.  During  his  lifetime, 
these  constituted  what his colleagues  would  have 
considered  ‘the  method of Boltzmann’  (Kuhn 
1978a),  and  we  can  safely  assume  that  a  monument 
erected in 1906,  the  year of his  death,  would  have 
carried  an  inscription  something  like  equation (1.1). 

The  formula, S = k log W, was chosen  as 
Boltzmann‘s  epitaph  at  a  time  (1933)  when  the 
classical mechanics on which his transport  equation 
was based  had  been  triumphantly  superseded  by 
the new quantum  mechanics.  It  may well have 
seemed  natural  then  to  draw  attention  to  that  as- 
pect of his work which anticipated  the  new 
mechanics.  Uhlenbeck  (1927)  has  even  suggested 
that  Boltzmann  had  a  ‘premonition’(!) of the  dis- 
crete division of phase  space  into cells of finite 
volume in quantum  mechanics. 

It  does  not  seem  to  me  fruitful  to  speculate on 
what  attitude  Boltzmann  would  have  taken  to  the 
new  mechanics.  Rather, we should  ask  what light 
the  posthumous  formula  throws on the  central 
problem of irreversibility. 

As we saw in $1, the  recognition  that  entropy is 
related  to  probability  came  to  Boltzmann  as  a 
result of his attempt  to  deal  with  Loschmidt’s  Um- 
kehreinwand. By his  division of phase  space  into 
cells he was able  to  derive  a  relation  between  the 
quantity  used in his H theorem  and  another  quan- 
tity  called,  at  that  time,  the  ‘permutability‘ of the 
state.  This  quantity was subsequently  termed  (by 
Boltzmann)  either  ‘relative  probability,  or  just 
‘probability’  and (by Planck)  ‘thermodynamic  prob- 
ability’.  In his ‘Popular  Writings’  (Boltzmann 
1974),  he was especially  fond of the  formulation 
that  dynamical  systems  evolve  with  time  from  states 
of lower  towards  states of higher  probability. 

In  this  article  we  have  seen, by a  study of 
perhaps  the  simplest of all irreversible  microscopic 
systems,  that  such  a  formulation is incorrect. Of 
course, it is frequently  stated  that  only  large 
dynamical  systems  go  from  lower  to  higher  proba- 
bility, and  that  a  Brownian  particle is ‘too small’ to 
be  regarded  as  a  thermodynamic  system  (Brush 
1976~).   Indeed,  Einstein’s  famous  inversion of the 
‘Boltzmann’  equation  to  obtain 

W = exp(S/k) (5.1) 
is nowadays  considered  to  be  the  foundation of the 
theory of fluctuations  and  Brownian  motion  was 
historically  the first test of that  theory. 

On another  occasion,  however,  Einstein  emphas- 
ised the  essentially irreversible aspect of Brownian 
motion. In a  letter  to  Besso  (Einstein  and Besso 
1979)  he  distinguished  between  a cinC film of a 
single  Brownian  particle  and  a cinC film of a  cloud 
of such  particles.  In  the  latter,  the  tendency  to 
diffusion is quite  evident.  In  $2, 03 and 04 we 
showed  how, by a  correct  definition of the  entropy, 
it is possible  to  see  Brownian  motion  as  a  vindica- 
tion,  rather  than  a  violation, of the  second law of 
thermodynamics.  Also  the  correct  time-variation of 
the  entropy is a  clear  consequence of the  stochastic 
force in the  Langevin  equation. 

I would  say  that, while there  may  be  some  hints 
in Boltzmann’s  earlier  writings  that all ther- 
modynamic  systems,  even  ‘isolated’  ones,  have 
some  interaction  with  their  environment, it  was not 
until  his  ‘Nature’  article  that  such  interactions  were 
recognised as the basis of thermodynamic  irreversi- 
bility. In $8 of his  ‘Lectures on Gas  Theory’,  he 
recognised  how  much  the  new  concept of ‘molecu- 
lar  disordering’  owed  to  the  British  kinetic  theorists 
whom  he  met  at  the  British  Association  meeting in 
1894. 

What  neither  Boltzmann  nor  his  successors  seem 
to  have  recognised is that  such  a view of the  origin 
of irreversibility is radically  different  from  that 
which he  had  when  he first proved his H theorem. 
A  continuous  process of molecular  disordering is 
very  different  from  an initial Stosszahlansatz  fol- 
lowed by a  deterministic  time  evolution. 
Boltzmann’s  1877  statement  that,  under  such  a 
time  evolution,  the  permutability  (or  ‘probability’) 
increases  monotonically,  has  never  been given a 
satisfactory  proof. 

I  submit  that if, in 1877,  Boltzmann  had  under- 
stood  molecular  disordering  the way he  did in 
1895,  he  would  have given a  very  different,  and  far 
better,  reply  to  Loschmidt’s criticism. Instead of 
trying  to  show  that  a  state of the  gas in which all 
molecules  have  their velocities reversed is improba- 
ble,  he  would  have  pointed  out  that, in order  for 
the  system to go  back  to its  initial state, all the 
fields expressing  the system’s interaction  with its 
environment  would  also  have  to  be  reversed. In 
modern  parlance, it is the  statistical  independence 
of these fields from  the  particles’  degrees of free- 
dom which causes  the  dynamical  system  to  lose its 
memory. So the  time-reversal  would  be no more 
than  a  momentary  hiccough of the  system.  It  would 
resume its entropy-increasing  evolution  im- 
mediately  after  the  reversal. 

Only  one  short  formal  step is required  for  such  a 
new  analysis, namely  the  replacement of f by W in 
formula (1.1). At  the  same  time it is necessary  to 
insist that W is a  true  probability  density,  that is 
that  its  integral  over  the  state  space is one.  This 
means  abandoning  the  ill-understood  notions of 
‘relative  probability’  and  ‘thermodynamic  probabil- 
ity’. Above all it means  abandoning S = k log W. 
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Historians  may  argue  about  the  degree of explicit- 
ness with which Ludwig  Boltzmann  made  some of 
these  steps.  What  can  safely  be  said is that  he  gave 
us all the  clues  we  needed  to  make  them. He 
therefore, effectively, achieved his foremost  scien- 
tific aim of deriving  thermodynamic  irreversibility 
from a microscopic  model. I submit  that  that is 
more of an  achievement  than  having a premonition 
of quantum  mechanics. 
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