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PREFACE

My reasons for expanding the Adams Prize Essay for 1923-1924 into the

present book are set forth in the introductory chapter. Now that the book

is finished it will be found I hope to be developed on a plan not too dis-

creditable for 1926, but hardly one which would be adopted to-day. This

is a fault hard to avoid, and I still hope that a systematic exposition of

Statistical Mechanics, such as this book attempts to give, even if its tone

is antiquated, may be of some value to students. I have therefore been at

some pains to provide a reliable index of subjects. I hope that any matter

which is treated in the book can be traced via the index with no more

searching than is reasonable.

There remains only the pleasant task of thanking those who have helped

me. The task is a heavy one, for without a number of collaborators the

book could never have been finished. The greatest assistance has been

given me by Prof. J. E. Lennard-Jones who has contributed Chapter x

on a subject of which he is a master, and has also read many chapters in

manuscript and proof. I could not have otherwise achieved a Chapter x
of this completeness. Dr D. R. Hartree undertook for me the whole of

the laborious calculations on which Chapter xvi is based, and provided

similar material elsewhere in the book. Mr J. A. Gaunt wrote for me the

greater part of the more elaborate discussion and development of Debye
and Hiickel's theory of strong electrolytes, and has read the whole book in

proof. Mr W. H. McCrea has in the same way provided for me most of

the material for the analysis of the specific heats of gases. To him also

and to Dr L. H. Thomas I am grateful for reading proofs. I am deeply

conscious that such merit as the book may have is largely due to the

original work of these collaborators, started with the object of helping me.

The contributions that I have gratefully taken from Mr H. D. Ursell and

Dr D. M. Dennison stand in the same category. I have also benefited by
Dr P. A. M. Dirac's criticisms of the last chapter, and Prof. J. E. Little-

wood's mathematical assistance. Besides these primary helpers I have

been generously given valuable information on various subjects by

Dr S. Dushman, Prof. 0. W. Richardson, Prof. A. Fowler, Prof. N. Bjerrum

and Mr A. Egerton, to whom I offer my best thanks.

Of my obligations to Prof. C. G. Darwin I can make no adequate

acknowledgment. The whole book is the outcome of my collaboration

with him in which the revised method of approaching statistical theory

was worked out.

Finally I must express my gratitude to the Cambridge University Press

for their unfaiHng helpfulness and patience with a somewhat ruthless

proof corrector.

R. H. F.

September 1928



TABLE OF THE VALUES IN C.G.S., CENTIGRADE AND ELECTROSTATIC

UNITS OF THE COMMONER PHYSICAL CONSTANTS USED
IN THIS MONOGRAPH

Charge on the electron, — e ... ... e = 4-774 x 10-^"

Planck's Constant, /i /^ = 6-547 x lO-^'

Boltzmann's Constant, A; A; = 1-372 x 10-i«

Loschmidt's Number ... ... ... 6-062 x 10^^

[molecules per gram-molecule]

Avogadro's Number 2-705 x 10^^

[molecules per cc. in a perfect gas at 0° C. and 1 atmosphere]

Mass of an atom of atomic weight 1 ... 1-650 x 10"^^

Mass of H-atom 1-662x10-24

[atomic weight 1-0077]

Mass of electron 8-98 x lO-^s

Mechanical Equivalent of Heat, J ... J = 4-184 x 10^

Gas Constant, i? (in Calories) ... ... i2 = 1-988

Velocity of light, c c = 2-999 x lO^o

Electron-volt or volt 1-591x10-12

These values are mainly taken from Milhkan, Phil. Mag. vol. xxxiv,

p. 1 (1917). They should not be regarded as all necessarily correct or even

self-consistent to the last figure.



CHAPTER I

INTRODUCTION

§ I'l. In attempting to study the physical state of matter at high

temperatm-es on the hnes suggested by the notice for the Adams Prize

Essay for 1923-1924, it was at once apparent that the problem demanded
all the available resources of present-day statistical mechanics. These have

been somewhat increased in recent years, and the whole aspect of the

kinetic theory of matter, at least in full statistical equilibrium, has been

steadily altered by the development of the Quantum Theory. As a result

there is no recent systematic exposition of the equihbrium theory of

statistical mechanics*, envisaging throughout both classical and quantized

systems, to which one may appeal in the further apphcations that it is

proposed to make here. Prof. Darwin and I have been fortunate enough

in recent years to have developed a method (new in this connection) which

enables a systematic exposition to be undertaken with, we would submit,

a sufficient degree of elegance. It has, at the same time, been possible to

apply the results to a problem more immediately related to that proposed

—that is to a theoretical study of the state of matter in stellar reversing

layers and in the interior of gaseous stars.

These were of course the main problems with a view to which the essay

was first written, but, for the reasons just given, it was thought best not

to concentrate entirely on applications in the essay itself but to begin

instead with the systematic survey of the equilibrium theory which was

then needed and perhaps is still not superfluous. The essay, accordingly,

from the first took the form of a monograph on the Equihbrium Theory of

Statistical Mechanics. Originally the apphcations of the theory were mainly

astrophysical, but it has been a simple matter to expand their scope. My
object was to include all types of apphcation of the equihbrium theory,

so that, however inadequately, the monograph should cover the whole

field. In the end, however, I have made no attempt to apply the theory to

surfaces, or to liquids beyond the theory of dilute solutions ; my knowledge

of these branches of the theory is still too meagre to justify an exposition

of them.

The standard results of the equilibrium theory have long been classical.

They are here derived from the fundamental hypotheses in the systematic

* More accurately, no such exposition existed in 1924. There are now at least two which should

be mentioned: Herzfeld, "Kinetische Theorie der Warme" (Muller-Pouilkts Lehrbuch der Physik,

vol. ni, part 2), and Smekal, "Allgemeine Grundlagen der Quantenstatistik und Quantentheorie

"

(Encyclopddie mathematischen Wissenschaften, vol. V, part 3, No. 28).

F I



2 Statistical Mechanics [l-l

way mentioned above. The presentation here has been revised and to some
extent remodelled, and now forms, I hope, a connected accomit of the

greater part of the equihbrium theory of statistical mechanics, so far as

this has yet been developed. In general, the theory and its simpler practical

apphcations have been developed concmrently to avoid too continuous a

sequence of unapplied theorems. The more comphcated apphcations form

the subject-matter of the later chapters.

At every stage the theory is developed for classical and quantized

systems indiscriminately. It is therefore necessary from the start to be

absolutely clear what is to be regarded, for the purposes of the theory, as

the present logical position of the quantum theory. Though the quantum
theory had its origin in Planck's statistical discussion of the laws of tem-

perature radiation and in the breakdown of the theorem of equipartition,

it should be regarded as a purely "atomic" theory—that is, a theory

applying directly to individual atoms and other connected systems, but

not primarily connected with the statistical behaviour of large collections

of such systems. It is founded on the theory of spectra, and its laws must

primarily be sought for by the study of the properties of individual atoms

and molecules, and the interactions of pairs of such, or rather in those

phenomena which can most certainly be referred back to such individual

systems and interactions. Among these phenomena spectra stand first.

The laws so derived for individual atoms, just as the laws for classical

systems, are then at our disposal to use in discussing the statistical be-

haviour of large collections of such atoms and systems. If we can make
use of them thus, the derived laws of temperature radiation and specific

heats are then available for comparison with experiments on radiation or

material systems in bulk. We thus ascertain whether the laws of atomic

systems and the general hypotheses of statistical mechanics are adequate

to account for such molar properties as we are able to compute. This com-

plete divorce of the quantum theory from its historical setting seems to

me to be essential to a grasp of its present logical position and to a properly

proportioned view of the theory of statistical mechanics.

The theory has been written out at a difficult moment. So much was

completed before the changes required by the new mechanics were estab-

hshed that these changes have not been incorporated in the body of the

work but are discussed instead in the last chapter. This has the additional

justification that it is only in exceptional cases that the primary changes

are practically significant in comparisons with experiment in spite of their

theoretical importance. Secondary consequences of the new mechanics

appear in modifications of the weights and energies of the stationary states.

These are often important or indeed essential in applications and have been

incorporated, at least as alternatives, throughout. In the body of the

monograph, then, it is assumed that the reader is fully acquainted with
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the classical quantum theory of atomic systems as formulated by Bohr*,

which is really independent of all statistical results, but this is corrected

by inserting the results of the newer theory when necessary. The bearing

and development of the quantum theory on the, statistical side are treated

in detail.

In these developments we have dehberately used a non-historical deduc-

tive method. So far as possible the theory has been presented as a finished

structure, with some attempt at logical completeness, not visibly con-

structed to fit the facts. Results have been deduced at each stage from the

general theory, and checked by comparison with experiment.

Conforming to this method, the distribution laws for classical systems

are derived by a Umiting process from the similar laws for quantized

systems. It is not difficult, I beheve, to justify this somewhat unusual

procedure, in which the laws for Planck's oscillator are fundamental, and
the rest of the theory, quantized and classical, a generahzation from this

starting point. In the first place it is undesirable in a systematic exposition

to regard both classical and quantized systems as fundamental. If we are

so to regard one only it must be the latter, for we cannot derive the laws

of quantized systems from those of classical systems. Secondly, it may at

least be claimed that there is a gam in elegance and physical reality, for

classical systems are the exception rather than the rule in atomic physics.

This is not to say (of course) that we do not use classical mechanics, so

far as we can, to derive the quantum mechanics of atomic systems by a

process of generahzation. But once the laws of quantum mechanics have

thus been guessed, as they largely must be before we can discuss the theorems

of statistical mechanics, quantized systems naturally come first. An
apparent exception is the guessing process in the prehminary discussion

of "weight". The conception of weight is certainly more important in

statistical discussions than in atomic problems, but in the latest versions

of the quantum theory the weights have already taken their place as atomic

constants determined by the laws of atomic mechanics.

§ 1-2. The generality of statistical theorems. The equihbrium theory

of statistical mechanics, as presented here or in any similar manner, is

strictly a theory of the distribution of energy, and occasionally also of

momenta, and derives these and other distribution laws by general argu-

ments, making no reference whatever to the particular mechanisms of

interaction which bring about the equihbrium between the individual

systems. If the fundamental hypotheses of the theory are accepted, there

seems no escape from this conclusion. Thus, for example, Maxwell's law

* Bohr, Proc. Camb. Phil. Soc. Suppl 1924, or Zeit. fur Phijs. vol. xui, p. 117 (1923). Alterna-

tively, see Van Vleck, "Quantum principles and line spectra," Nat. Res. Council Bull. (1926), or

Bom, Vorlesungen iiber Atommechanik (1925).

N



4 Statistical Mechanics [1*2

for the distribution of velocity among the molecules of a gas in statistical

equihbrium must be true whatever be the laws of collisions between these and

any other types of molecule in the gas. The theorems of statistical mechanics

thus appear to have something of the same generality as the laws of

thermodynamics. They have necessarily less than the full generahty of the

latter, for they contemplate and refer to a particular molecular structure

;

granted this limitation, however, it seems that they must be granted also

the universal character of thermodynamical theorems, with its advantages

and disadvantages. It is impossible to argue that the fact that a particular

mechanism leads to a state of complete equilibrium in agreement with

experimental facts is any evidence for the particular mechanism discussed.

It is merely evidence that the laws of this mechanism have been correctly

and consistently written down ! Any other mechanism would give the

same result.*

Particular mechanisms of interaction first become relevant in the study

of non-equilibrium states, such as states of steady flow. Finally, of course,

it is these mechanisms of interaction, for example between atoms and

radiation or atoms and atoms in colhsion, that are of supreme interest; it

must be regretfully admitted that the study of complete statistical equi-

librium cannot by itself provide any information as to any particular

process. It does, however, provide a rigid form to which all possible

mechanisms whatever must conform; that is to say, any possible mechanism,

left to act by itself, must set up and preserve the laws of statistical equi-

librium. This idea, which is well known in the classical theory of radiation,

has recently proved of great importance in general statistical mechanics,

following a line of thought opened up by Klein and Rosselandf . It appears

in general that a particular process can never be supposed to be able to

act alone, unaccompanied by a corresponding reverse process ; only the two

together form a possible single mechanism. The next step forward from

the purely equihbrium theory of statistical mechanics is obviously a sys-

tematic survey of possible mechanisms, worldng out the laws that they

must observe in order to fit into the equihbrium theory and preserve, as

they must, its distribution laws. We attempt to sketch such a survey in

the concluding chapters of this monograph.

§ 1'3. Scope of the monograph. The scope of the monograph may now
be more exactly indicated. At the close of this chapter we specify the

* This is perhaps an overstatement. In the theory of imperfect gases, for example, we assume

a mutual potential energy for each pair of particles and derive an equation of state depending

on that potential energy. If the laws of classical mechanics are obeyed by the encounter then the

potential energy suffices to determine all its details as a mechanism for the exchange of energy

and momentum. But these details are not relevant to the study of the equilibrium state itself

and might conceivably be different without affecting it.

t Klein and Rosseland, Zeit. fur Phys. vol. iv, p. 46 (1921).

Bill
Highlight



1*3] Introduction 5

fundamental assumptions on which the theorems of statistical mechanics
are to be based. These are in general those commonly accepted, previous

to the recent speculations of Einstein*, and no serious critical discussion

is attempted; but it is desirable to put on record the precise assumptions

made in the theory that is to follow. In Chapters n-iv we develop the

equilibrium theory for all the types of matter commonly treated in this

way—such as perfect gases, crystals, and any general body obeying classical

laws. We include also a similar treatment of radiation, but exclude all

cases in which dissociation or evaporation occur. Chapter iii contains

appHcations to the specific heats of gases, and the latter part of Chapter iv

apphcations to the properties of simple crystals. The theory is generahzed

in Chapter v to include all types of dissociation and evaporation, and in

Chapter vi the connection between the equilibrium theory of statistical

mechanics and the laws of thermodjniamics is considered in detail. We
point out the close analogies between them which allow of the proper

interpretation of certain functions of the state of the bodies we discuss as

the temperature and entropy of thermodynamics. This chapter concludes

with criticisms of the commoner ways of introducing entropy into statistical

mechanics, which, it is claimed, are either obscure or misleading, and
certainly unnecessary.

Chapter vii returns to apphcations, now in the region of very low

temperatures. Its subject is Nernst's heat theorem and the chemical

constants—entropy at the absolute zero. It is possible to obtain a clearer

understanding of this theorem and of the chemical constants from the

standpoint of statistical mechanics than in any other way. A comparison

with experiment is also desirable at this stage of the theory, and can be

most conveniently obtained in this field. The present state of the theory

leaves Nernst's heat theorem and the chemical constants at a most
interesting stage. Definite discrepancies between observation and those

forms of Nernst's theorem which make the more comprehensive assertions

appear to be estabhshed and to fit in a most suggestive way into the general

equihbrium theory. In Chapter viii we extend the general theory to include,

so far as is possible, imperfect gases, allomng also for the possibility of

electrostatic charges, and in Chapter ix apply the theory to a discussion

of theoretical and semi-empirical equations of state. Chapter x, which

has been contributed hy Dr Lennard-Jones, gives a general numerical

survey of intermolecular forces so far as these can be derived by analysis

of the equations of state of imperfect gasesf and from the properties of

aUied crystals. It is interesting to find that one and the same law of force

will account satisfactorily for so wide a range of properties.

Chapter xi attempts to cover the whole field of thermionic phenomena,

* Einstein, Berl. Berichte, p. 261 (1924), pp. 3, 18 (1925). See also Chapter xxi.

t Evidence from viscosity is also used.

Bill
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6 Statistical Mechanics [1*3

so far as these can be related to states of equilibrium. The most important

part is the theoretical formula for the vapour density of free electrons in

equiUbrium with a hot metal, including the effect of the space charge. This

is of primary importance for further applications, because it involves the

chemical constant of the electron and experiment confirms the theoretical

value. Chapter xii deals with the magnetic and dielectric phenomena of

matter in bulk, the most important apphcation being to the paramagnetism

of gases. Chapter xiii attempts to carry the theory on to describe the

properties of liquids, but nothing is achieved beyond a development of the

theory of dilute solutions including the theory of strong electrolytes.

Chapters ix-xiii inclusive and the greater part of Chapter viii are additions

to the scope of the original essay.

Chapters xiv-xvi deal with apphcations of the theory at high tempera-

tures to the insides and outsides of stars, the apphcations proposed by the

examiners for the Adams Prize. In Chapter xiv the equilibrium theory

of a gas of highly ionized atoms is developed as far as the methods available

permit, including the effects of the sizes of the ions and their electrostatic

fields. For many purposes approximate forms are necessary which may
be expected to be quahtatively valid over wide ranges of conditions. These

are provided. These approximations are mainly required for Chapter xvi,

which makes a start on the study of the properties of stellar material in

the interior of a star. It would be out of place to carry these calculations

to great detail or to trace their repercussions on Eddington's work in this

monograph. In general they confirm the values of the physical constants

of stellar matter which he uses, particularly for the larger stars, while

suggesting that certain modifications in his calculations may be required.

These may prove interesting. Chapter xv, meanwhile, has dealt with such

problems of the atmosphere of a star as can be treated by means of the

formulae of the equihbrium state—the more important are the theory of

the rise and decay of absorption lines with the rising temperature of the

reversing layer and the theory of the rate of escape of molecules from an

atmosphere. A summary is given of some of Milne's beautiful work on

the calcium chromosphere, but here our connection with the equihbrium

theory is getting very weak. The outward flux of radiation, which is an

entirely trivial perturbation of complete equihbrium in the stellar interior,

is now becoming the controlhng feature.

The next group of three chapters, xvii-xix, contains detailed studies

of the laws to which actual mechanisms of interaction must conform in

order to preserve the equilibrium laws. The laws of material collision pro-

cesses between free atoms and molecules and free atoms and sohd surfaces

are discussed in Chapter xvn and appUed in Chapter xviii to the kinetics

of homogeneous gas reactions. The laws of radiative processes are discussed

n Chapter xix. Modifications to these chapters required by the new
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mechanics are noted as usual in Chapter xxi. Chapter xx contains for

completeness an account of the formal calculus of fluctuations, and the

last, Chapter xxi, as we have said, some account of the changes of form

in the whole of the foregoing required by the new mechanics.

It will be seen that the content of this monograph is not strictly confined

to equilibrium states of matter. We have ventured outside into regions

dealing with steady rates of change (states of flow), but only where the

application of the laws of the equihbrium state is immediate. When the

changes are such, or the accuracy required is so great that the equihbrium

laws can no longer be used \vithout modification, as in the grand theory

of transport phenomena in gases, we must be silent. Nor can we do justice

here to the phenomena of very high vacua. But where the direct apphcation

of the equihbrium laws themselves is relevant or sufficient, as in the study

of unit mechanisms or in thermionics, we have endeavoured to press the

theory forward.

§ 1'4. The fuyidamental assumptions of statistical mechanics. It has been

pointed out above that it is not the purpose of this monograph to attempt

a critical discussion of the fundamental basis of statistical mechanics. But

it is desirable, by way of introduction, to consider shortly the usual bases,

and to specify as clearly as possible the one selected, indicating shortly

the reasons for its choice.

There are two distinct starting points from which we may build up

with equal success a theoretical model to represent the material systems

of our more or less direct experience—the Gibbsian ensemble and the

general conservative dynamical system. Of these the Gibbsian ensemble

has perhaps the advantage in logical precision, in that the whole of the

necessary assumptions can be explicitly introduced in the initial formula-

tion of the "canonical" ensemble. For this reason it should perhaps be

preferred, and is preferred by some theoretical physicists. But to others

something more than success and logical rigour appears to be necessary for

the acceptance of a model which is to account to our aesthetic satisfaction

for the properties of matter. A certain "sanity", or physical reality, may
be demanded in the initial postulates and in the details of the model, par-

ticularly in so far as they are to reproduce the weU-known properties of

matter. To these others the Gibbsian ensemble appears to be weak from

this aspect, and they are led—in spite of logical and analytical incomplete-

ness—to prefer the conservative dynamical system of many degrees of

freedom as the more satisfactory model from which to derive (or attempt

to derive) the properties of matter. This is the model, generahzed to include

quantized systems, which will be used in this monograph.

We have of course to deal in general with dynamical systems which

are coUections of large numbers of similar atoms, molecules, or electrons.
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It is convenient to introduce a consistent nomenclature for the whole

collection and its constituent parts. We call the collection which composes

the complete dynamical system an assembly. We call its constituent atoms

etc., or any part of it which for the greater part of time has practically an

independent existence, a system. The model we propose to use will then be

called an assembly of systems. The motions and interactions of these systems

are controlled by the laws of dynamics modified by the quantum theory,

and the assembly as a whole is conservative.

The first object of statistical mechanics is to determine all the "normal"

properties* of such an assembly and correlate them with the properties of

matter in bulk as we know it, when the assembly is in complete equihbrium.

This section, which may be called the equilibrium, theory, will form the

main subject of this monograph. We may define the "normal" properties

of the equihbrium theory in the manner of Jeans, or perhaps more
naturally as all those properties which the assembly possesses on a time

average. In order for this to have practical significance they must be pro-

perties true for times of the order of those in which the ordinary observations

of physics and chemistry can be made.

We have naturally no means of deriving such time averages with full

logical rigour short of a sufficiently detailed solution of the general dynamical

equations of the assembly. Equally naturally we lack this information

even in the classical case. It remains necessary to assume the general form

that the solution will take—the best known such assumption is that of

Maxwell, the assumption of quasi-continuity of path. It is extremely

probable that this assumption is always untrue ; it is, moreover, insufficient

and at the same time unnecessarily restrictive for the purpose in hand.

But some similar assumption must be made in its place. Its object is to

entitle us to assert that the required time average properties may be

correctly calculated as if they were averages over the whole phase spacef

of the assembly subject to the condition that the assembly has the proper

energy, and perhaps momenta, and provided that the different elements

of the phase space are "weighted" in the proper way. Even then it is

necessary, by an extra assumption or investigation (but no such has yet

been given), to identify the "long-time average" so calculated with the

"short-time averages" which are of physical significance. It is only thus

that the "normal" properties, in the sense of Jeans, become physically

significant.

The usual arguments by which our choice of weights is guided for a

classical asseml)ly are developed in rather more detail in the following

section.

This assignment of the "weight" of each element of the phase space

* Jeans, Dynamical Theory of Gases, ed. 3, p. 74 sqq.

t See§ 1-5.

Bill
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1*4] Introduction 9

of the assembly is fundamental to the whole problem. Once these weights

are agreed on, and it is further agreed as above that the "normal" pro-

perties of the assembly are the properties of the assembly averaged on

this basis over the whole phase space (subject to the energy and other

similar conditions), the rest of the derivation of these properties requires

merely straightforward mathematics, which can be carried through with

rigour. It is therefore desirable to look closely into this critical step. The

assignment of the weights is frequently spoken of in this connection as an

assignment of a 'priori probabihties. If this is taken at its face value the

behaviour of the systems in our assembly must be according to the laws of

chance, and cannot be controlled by dynamical (or any other determinate)

laws in ordinary space and time. This is a possible hypothesis, but in

the end hardly a satisfjdng one. To avoid an appearance of definitely

accepting this hypothesis we use the neutral word "weight" instead of the

commoner ''a priori probability", although in effect (though not in origin)

they become sjmonymous terms. For the purpose of the ensuing calcula-

tions we require to know or assume the relative times (out of a long interval)

during which the representative point of the assembly remains in two given

elements of the phase space. It is these which determine the relative

weights. It is customary to assume, and we assume here, that in dealing

with classical systems these times are proportional to the extensions of the

corresponding elements of the phase space, and therefore also that the

weight to be assigned to any element in calculating normal properties is

proportional to the element's extension. This is consistent with, though

by no means a deduction from, Liouville's theorem.

It is usual to proceed from this basis by the calculation of values

of maximum frequency of occurrence (most probable values) rather than

average values. The results are, of course, identical—the mathematical

machinery is not. Average values are, as naturally as, if not more naturally

than, most probable values, taken to be the normal properties of the

assembly. They have besides an overwhelming advantage in ease and

rigour of mathematical presentation ; in particular the usual indiscriminate

use of Stirling's theorem for large factorials can be entirely avoided.

Most of this is an old story; on the proposed basis all the ordinary

equiUbrium distribution laws of assemblies of classical systems can be

derived by averaging over the phase space included between the energy

surfaces E and E + dE and letting dE ->0. In any general discussion, how-

ever, we must treat not only classical but quantized systems, in which only

discrete values of the energy are permissible. For reasons already specified

we formulate everything from the quantum point of view and include the

classical case by a Umiting process.

No attempt has been made in these paragraphs to minimize the logical

incompleteness of this development of statistical theory from the chosen
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10 Statistical Mechanics [1*4

starting point. It will be only too painfully apparent, and is of course the

same for all variants of this development. I confess to a beUef that it is

unavoidable and may continue so for a long time. It can only be said that

the assumptions made have a certain inherent plausibility and are justified

by their success, and that, in spite of these lacunae, this starting point is

physically preferable to the Gibbsian ensemble.

One further step can be made, which, while it does not fill the logical

gaps indicated above, yet goes a long way towards giving us confidence

in our conclusions and warranting the belief that the average properties

we calculate are really normal properties of the assembly, which it will

always to our senses possess. This step is the calculation of fluctuations.

Just as we calculate the average value of any quantity P, say, and find it

s P, so we can calculate the average value of (P — P)^, or (P — P)'^. If

we do this, we find that in all cases (P — P)^ < P. It follows that the

average deviation of P from its average, and therefore normal, value P is

of the order ^/P, and if P itself is large the deviation is insignificant. We
can interpret this by saying that out of any time interval only an insig-

nificant fraction in general can be spent in states in which P differs

effectively from its normal value P. This very greatly consolidates the

whole theory.

§ 1-5. Conservative dynamical systems. It will be convenient at this

stage to enumerate briefiy the chief properties of conservative systems,

which suggest the hypotheses of statistical mechanics. The state of the

assembly, which is the conservative system here in question, is fully

defined by specifying the necessary N Hamiltonian coordinates q and

N conjugated momenta ^. It can be conveniently represented geometrically

by a point in space of 2iV dimensions, whose rectangular cartesian co-

ordinates are the iV^'s and iV^g's. This space is called the phase space of the

assembly and the point its representative point. The equations of motion

of the assembly are

^^^'Ws'^'^dp,
(^-l,-^)> (1)

where H is the Hamiltonian function. It is usually only necessary to con-

sider assembhes in the formulation of which the time does not occur

exphcitly, so that H is the total energy E expressed as a function of the

_p's and g's. Through every point of the phase space passes a definite

trajectory of the assembly satisfying (1), and confined of course to the

surface H = E, constant, and perhaps to other surfaces defined by constant

momenta as well.

We have mentioned above that no logical justification has ever been

attempted for the assumption that the average values concerned in

observations are equivalent to the long-time average properties of the
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1-5] Introduction 11

assembly. Attempts, however, to justify identifying these long-time

averages with averages over the phase space, though far from successful,

have led to interesting investigations, which throw hght on the proper

choice of the weight for each element of phase space in this process of

averaging. As the first of these we may cite Liouville's theorem.

Let T be the density of a "fine dust" of representative points in any

element of phase space. Then Liouville's theorem states that DrjDt = 0,

where DjDt is the mobile operator of hydrodynamics (generaUzed), giving

the rate of variation of t for a given group of points as we follow them along

their trajectories. Consider a fixed volume element in the phase space bounded

by Pi, Pi + dPi, '• Qn^ 9n + dq^^ of extension dO. (= dp^ ... dq^). The

representative points crossing the face p^ , of area dS, have a component

velocity pg normal to that face, and so the rate of increase in rdD. due to

motion across this face is , jci\
{rp.dS)^^.

There is a similar rate of loss

due to motion across the opposite face, and so a net rate of increase for

this pair of faces

~ d^g
^'^^'^ ^^'^^ ^ ~

dps
^""^'^ ^^'

Summing for all the 2iV pairs of faces, it follows that

St ^ f
a , . , 9 / • x) ^ /ox

Dr {d ^f. d . d
Hence ^

This is Liouville's theorem. If we consider it in terms of an element of

phase space moving with the dust of representative points, it states that

the extension of any such element is constant throughout the motion. This

is of course easily proved directly. The rate of increase of volume is

N
s {isVs + Kqs)dS,

S 1

where dS is any element of the bounding surface and {Ig
, K) the direction

cosines of its "normal". But this is equal to

a 1 \0Ps oqg

by Green's theorem, and so vanishes.

The content of Liouville's theorem relevant to the basis of statistical

mechanics is that the density of a group of representative points remains
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constant along their trajectories. If at any time they are distributed

with uniform density in the phase space, they will for ever have uniform

density. There can therefore be no eventual crowding together of the points

into favoured regions of the phase space. If "normal" properties are to

be determined by averaging over the phase space, they must be properties

true of almost all the phase space, and not properties of special regions,

unless various regions are selectively weighted in this averaging. Again,

the theorem suggests that no such selective weighting can be legitimate,

for there is no natural crowding into one region rather than another, and

therefore no excuse for selective weighting. In short, it suggests that the

only reasonable choice of weight is the one actually made in statistical

mechanics, namely a weight proportional to the extension of the region.

We can perhaps make this choice of weight clearer by a rather different

presentation (of essentially the same argument). To each element of phase

space dQ. we can certainly assign a time t^ during which the representative

point will lie in dO. out of a total interval T, and can thereby define

a function of position in the phase space

Tf bi...g^) = {^Lt^|}. (4)

It seems reasonable to assert that this limit exists. It represents the
" probabihty ", defined as a limiting frequency ratio, that the representative

point hes in dQ. at any specified epoch t, and is from its definition indepen-

dent of t. This fits in with our physical preconception that such "prob-

abilities" cannot depend on the epoch of observation.

The function W might be expected to depend on the particular tra-

jectory chosen. No doubt it does so depend for any dynamical system,

but it clearly cannot do so in any way which would make any difference

to observable quantities, or consistency would vanish from physics. We
therefore assume that there is some W, a definite one-valued function of

position in the phase space, such that for any trajectory, or at least on
the average for all trajectories,

KWdQ. {K constant)

represents the frequency ratio with which the representative point lies in

dO. for an arbitrary choice of epoch t. On this basis the frequency ratio

with which the assembly has the property P is

I Wd^/l Wda, (5)

where Q^ is that part of the whole phase space Q in which P holds. Normal
properties of the assembly are those for which (5) is effectively unity.

That such a W really exists is largely a pious hope, but granted its

existence its form can be fixed, and we can show that for any Hamiltonian
assembly W may be taken to be independent of the coordinates and there-
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1*5] Introduction 13

fore may be put equal to unity. For since KW dO, is the frequency ratio

for the falhng of the representative point in dQ., the total number in <ZQ

out of a "fine dust" of representative points will be effectively K'W d£i.

This is the t of Liouville's theorem, and by repeating his argument we find

that

This is the general partial differential equation which any possible W must
satisfy. Obviously a solution is W = 1.

The form of (6) shows that W is a last multiplier* of the system of

differential equations (1) which specify the trajectory, and it can be
shown that the actual choice of last multipher satisfying (6) can make no
difference in statistical calculations. For if M and N are two last multi-

pliers and a function/ is defined by/ = N/M, then/ = a is a uniform mtegral
of the equations of motion (e.g. the energy integral itself), and N/M will

be constant throughout the whole of the phase space to which our calcula-

tions extend. The function/ can therefore be absorbed into K and ignored

in all calculations. Since >F = 1 is one solution of (6) and the simplest,

we may legitimately take
KdQ. {K constant)

to be the weight to be attached to the element dO. in all statistical calcula-

tions. Since in any contact transformation the extension of any element

of phase space remains unaltered,f the constant K is genuinely invariant

and independent of the system of coordinates, provided only that they are

Hamiltonian.|

* See, for example, Forsyth, Differential Equations, ed. 3, § 174.

t See, for example, Boltzmann, La iheorie des Gaz, vol. ii, p. 64. This invariance under a contact

transformation is the most general assertion we have made about di2. It includes its constancy

during the motion, since the motion of any Hamiltonian system may be regarded as a succession

of infinitesimal contact transformations. This alternative proof of Liouville's theorem is that used

by Boltzmann, loc. cit.

X Some further discussion will be given in § 21-3, by way of introduction to the modifications

imposed by the new mechanics.



CHAPTER II

THE RULES FOR WEIGHTS, AND THE THEOREMS OF STATISTICAL

MECHANICS FOR ASSEMBLIES OF PERMANENT SYSTEMS

§ 2-1. We shall establish in this chapter all the usual theorems of

statistical mechanics for assemblies of permanent (non-combining and

non-dissociating) systems, quantized or classical, which are in the highest

possible degree independent of one another. These are, of course, the

assemblies most amenable to exact treatment, about which most is known.

They naturally include perfect gases and crystals, but it is convenient to

postpone the actual calculations for crystals (and temperature radiation)

to Chapter iv, though they are fully covered by the methods here developed.

The highest degree of independence is attained when it is sufficiently

accurate to assume throughout the calculations that the energy of the

assembly is the sum of the energies of the individual systems and contains

no part depending on the coordinates of more than one such system. On
this assumption, universally if sometimes tacitly made, some comment is

needed. Such an assembly is, of course, an ideal limit to which an actual

assembly may approximate but can never attain. For it is essential to the

whole idea of an assembly that it should form a connected dynamical

system with a single energy integral but not a number of separate ones.

If, indeed, the energy were really entirely independent of such cross

terms, which represent the interactions of the systems, the systems would

never interact and the assembly would not be connected. We have there-

fore to assume that some such interactions do occiu", but in this limiting

case so rarely that their contribution to the total energy of the assembly

may be neglected. They still suffice to preserve connection and ensure that

only a single energy integral exists. This is an example, of course, of the

general assertion miderlying the whole theory that, while there must exist

mechanisms of interaction, their mere existence is sufficient, their nature

being irrelevant to the laws of equiUbrium.

§ 2-2. The classical theory of weight. We have agreed to attach a weight

Kdpi ... dq^, (7)

where K is an absolute constant, to the element of phase space or cell

dpi ... dq^. This means that the average value Q of any quantity Q is to

be calculated by the equation

Q \
djp^ ... dq^ = Qdpi ... dq^f, (8)

J n J a

the region Q. of integration being the whole relevant phase space. If our
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assembly consists of N similar systems each of s degrees of freedom, then

the cell is
/ j ? x /^ j x

and the weight K{dp^...dq,\ {dpi ... dq,)^. (9)

The N systems are by hypothesis exactly similar, so that the weight
remains the same for any interchange of systems. We can thus attach

the required weight to a cell of the assembly by attaching a weight

K'{dp,...dq,) (10)

to a cell of the phase space in which the state of a single system can be
represented. We may set up a convention by which we attach weights in

this way to cells of systems. But it must always be remembered that such
weights have a meaning only when re-combined by multiplication over all

systems in the assembly. It is strictly only for the cells of the assembly itself

that we have attached any meaning to weight. But for convenience and
clarity it is legitimate to think of these as decomposed into cells for each
system and to attach conventional weights to these—posterior re-multi-

pUcation being tacitly assumed.

The conventional weight which we attach to the cell of a system cannot
be interpreted as proportional to the time which the representative point

of the system Ues in this cell, as can the weight attached to a cell of the

assembly. Interpreted so it is definitely wrong. For if the weight for the

cell of the assembly is given by (9), and if for simphcity we suppose that

the energy function contains only square terms, then the average time
spent by a selected system in a selected cell can be shown by integration

*°^^
K"e-'^^i{dp,...dq,)„

where E^ is the energy of the system in {dp-^ ... dqg)^, and K" and j are

constants. The conventional weight appHed in this sense is wrong. We
could if desired take this accurate value instead of the conventional weight

,

and on re-combining for the cell of the assembly we should obtain

ZV^-2^1 {dp, ... dq,\ {dp,... dq,U,

or K {dp, ... dq,), {dp, ... dq,)^

as before, since I^E, = E, a, constant. The factors e~^^^i are thus irrelevant.

This digression should make clearer the extremely conventional meaning
of the weight attached to a system's cell.

It may be agreed then that the weight K' {dp, . . . dq^), shall be attached

to the system's cell, where K' is an invariant, the same for all similar

systems. It is not yet clear, however, how K' varies from system to system.

If in the course of the motion of the assembly one system A can change

into another B then obviously K/ ^ K^'. (The number of degrees of

freedom of a classical system cannot change.) Again if, for example,

system A can dissociate into systems B and C then KJ = K^'Kq. There
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are a series of similar relations. Such relations as these are necessary and

sufficient to preserve the equahty of weights for equal cells of the assembly,

since by Liouville's theorem, apphed to the practically independent system

or pair of systems, the cells of these systems must have invariant extensions

so long as they remain independent. If, however, two kinds of systems exist

which can never change into one another, then no relation can be estab-

Ushed or needs to exist between the assigned weight factorsK^ and K^'. We
shall see later that this independence has a physical significance and is in

accord with classical thermodynamics.

More comphcated cases arise if the weights are taken to include as

factors the so-called symmetry numbers*. This is the most convenient

course, but it is not necessary here to do more than mention how these

arise in the simplest case. Consider an assembly in which both atoms A
and molecules AA exist and dissociate and re-combine. As above, the

weights to be assigned to the phase space of atoms and molecules will

naturally be connected by the relation K^J = Kj"^. It is necessary, how-

ever, when dissociation and re-combination are going on, to consider also

all possible ways of forming the molecules AA out of the atoms A, all of

which correspond to possible phases of the assembly. This is best done

by calculating the permutations of all the atoms to form specified numbers

of free atoms and molecules. If this is done in the most straightforward

way it will be found that the arrangements AA^ and A'A in a single mole-

cule are counted as distinct. But during the free motion of this molecule

the exchange of AA' into A'A can take place by a simple rotation. | The
separate cells of the assembly corresponding to AA' and A'A, other

coordinates being unaltered, are therefore counted twice over by the later

permutation of the atoms. The number of repetitions due to this permuta-

tion is called the symmetry number of the molecule and denoted by a.

The repetitions may be ehminated by dividing all the weights of the cells of

these molecules by u. It is sometimes convenient to suppose that these

divisors are absorbed in the weights instead of leaving them to be intro-

duced at a later stage. In the simple case we should then take

and in general K'raoi = H {^'atom}/o-.

The divergences from the formulae of the last paragraph here introduced

are convenient in practice and of course purely formal. Weights which

are modified by the symmetry numbers in this way may be called prepared

weights when it is desired to distinguish them,

* Ehrenfest and Trkal, Proc. Sect Sci. Amsterdam, vol. xxiii, p. 169 (1920). A full discussion

is undertaken in Chapter v.

•f
The new mechanics requires that such exchanges of similar atoms in a molecule (or electrons

in an atom) can and do always take place by internal motions, not only by rotations like a rigid

body. See Chapter xxi.
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§ 2-3. The weights of quantized systems. We are certain from non-

statistical evidence that individual systems exist which do not obey the

laws of classical dynamics and electrodynamics, but obey instead a set of

laws not yet fully formulated which are commonly called the laws of the

quantum theory*. It remains to discuss here how our fundamental assump-

tions, especially the rules for assigning weight, must be modified so that

we may be able to include assemblies containing quantized systems in the

general equilibrium theory of statistical mechanics.

Let us start by considering the simple case of an ideal linear harmonic

oscillator. If it were a classical system, its element of phase space dfclq

would have a weight K'dpdq, where K' is constant. If its mass is m and
its frequency v, its Hamiltonian function is

H-^p'+{27Tv)^1q^^a„ (11)
w^tVT><

and ^pdq = c){2mai — (277v)^ m^q^}^ dq,

2mai '"^'^

= «iM (12)

where o denotes integration round one complete cycle of values of p, q.

Thus the standard rule of the older quantum theory

opdq = nh (A)

is equivalent here,! as of course it must be, to % = nhv.

Consider further the geometrical meaning of o pdq. It is the area en-

closed by the curve
1 771— p2 + (2^^)2 - g2 ^ a, = nhv (13)

in the phase plane [p, q) of the oscillator, which represents the orbit of

the oscillator, and by (A) has the area nh. Thus while the classical theory

permits any such orbit, the quantum theory selects an enumerable sequence

of discrete orbits which in fact cut up the phase plane into equal areas h.

An essential part of the postulates of the quantum theory of atomic systems

is a correspondence in detail between classical and quantized systems,

* Bohr or Born or Van Vleck, loc. cit. ante.

f These and similar arguments are unaffected by modifications made by the new mechanics

which give here ai = (w + ^) hv, for the arguments are concerned with asymptotic forms for large

n and these are unaffected.
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by which the two become indistinguishable in the Hmit for large quantum

numbers. Symbolically

Lt (Quantized system) = Classical system.

It is convenient to refer to this as the limiting principle^. By this principle

it is easy to see that for large ?i, when the permitted orbits are close

together and still separate off areas h, the weight belonging to an area h

of the classical phase plane must be attached to each single orbit. More

strictly, if Wn is the weight of the nth orbit,

Lt m^ = K'h.

There is no reason to expect different weights for different orbits, and in

fact, as we shall see later, another hne of argument shows in analogous

cases that tu^ is independent of n. It follows that ro„ = K'h. This was the

original assumption made by Planck from which he derived the correct law

of temperature radiation.

The generahzation rrj„ = Kli for the linear harmonic oscillator is thus

(as we shall see) amply justified by success and is the first step in the

necessary rational generahzation of the classical rules for weights.

We shall find that it is immaterial what value we attach to any one

weight, provided all relative weights are unaltered. We shall therefore

make the simplest possible convention and assume that the weight of any

permitted state of a (quantized) simple linear harmonic oscillator is 1. We
must therefore put K' = l/h and so assign a weight

dpdq/h

to any cell of a classical system of one degree of freedom. A shght additional

advantage of this convention is that the weights are (as they should be)

all pure numbers. It follows at once that the weight of any cell of a classical

system of s degrees of freedom is

j^Jdp^...dq,), (14)

subject to the possible presence of the indeterminable factors aheady

mentioned.

Further progress depends on finding some connection between the

weights of other quantized systems and those of a simple hnear harmonic

oscillator. This is provided by the theory of adiabatic invariants'\ . The

general form of the quantum conditions may be written

J^{a^,a^, ...) = nrh {r = \, ... s),

where the a' s determine the values of any external parameters. Though

the proof is not complete, it is beheved that if, while the motion is in

* The content of this principle is quite distinct from that of the wider Correspondence Principle

which has arisen from it. This latter is to be regarded strictly as a postulate of the quantum

theory without reference to the classical limit. The limiting principle persists in the new mechanics,

which replaces the Correspondence Principle by precise dynamical relations.

f Bohr or Born, loc. cit. ante. The theory was begun by Ehrenfest.
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progress, the values of the a's are changed sufficiently slowly over any
range in which the degree of periodicity of the system, and so the number
of quantum conditions, does not alter permanently, then the /'s remain
constant throughout the change.* Indeed, if the quantum conditions are

to have any physical reahty this property of permanence is essential.

Now the invariant quantum conditions determine the extension of the

elements into which the phase space is cut up by the permissible orbits.

For, for any non-degenerate system,

\dpi^ ... dqs = IdJi ... diVg,

where the J's are constant along any orbit and the i^'s (angle variables)

all range from to 1. Hence the extension enclosed by a single orbit is

Jj^J^ ... Jg- In the general case this extension is Ti^^g ... nji^. If the J's

are precluded from taking the value zero there would then be w^^ia ... rig

orbits, with each of which in the limit may be associated an extension h\

As, however, the J's may sometimes be zero the actual number of orbits

lies between n^n2 ... n^ and (n^ + 1) {n^ + 1) ... {rig + I)."}*

Moreover, since the J's are invariants for adiabatic changes, the cells

into which the orbits dissect the phase space are also invariant. It follows

that we must attach the same weight to any two orbits or to orbits of any
two systems which can be transformed into one another adiabatically

without passing through a degenerate system, or, in short, that the weights

also are adiabatic invariants. In particular, since any non-harmonic hnear

oscillator can be adiabatically transformed into a harmonic one, the weight

of any possible state of any hnear oscillator must be luiity. Further, in

conformity with (14) and the Umiting principle, it is natural to suppose

that the weight of any possible state of any non-degenerate system of any

number of degrees of freedom is also unity.

The theory of adiabatic invariants takes us yet a stage further. For

BohrJ has shown that for systems of more than one degree of freedom

one may expect to be able to connect by an adiabatic change two different

stationary states of the same system with different values of the quantum
numbers. He has given as an example an actual process which apphes to a

Keplerian elHpse. It follows that in such cases the weights of the different

stationary states are necessarily equal. And although such transformations

are not always possible, in particular for systems of one degree of freedom, it

* Burgers, Com. Phys. Lab. Leiden, Nos. 145-156, Suppl. 41 c, d, e, or Proc. Sect, Sci. Amster-

dam, vol. XXV, pp. 849, 918 (1916), and p. 1055 (1917); Dirac, Proc. Roif. Soc. A, vol. cvii, p. 725

(1925).

t Or in the new mechanics there is the possibility that some of the J's may take half odd integer

values and some integer values. It is also possible that some of the J's may take both positive

and negative values giving an extra factor 2 in the number of possible orbits for each such J,

but at the same time an extra factor 2 in the extension of the phase space, so that the argument

is unaffected.

t Bohr, Danske Vid. Selsk. Skrifter IV vol. xi, p. 24 (1918).

2-2
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is hardly possible to avoid concluding that the weights must always be equal.

The weight unity which we have assigned is then the natural value to take.

It will appear at a later stage* that the adiabatic invariance of the

weights is a necessary premise for the second law of thermodynamics for

such assemblies. This is, of course, a still more cogent reason for this in-

variance than the above analysis.

The foregoing arguments break down if the systems are degenerate,

and so possess fewer adiabatic invariants than their number of degrees of

freedom. In such cases we start by considering a non-degenerate system

which has the given system as a limit under adiabatic transformation.

A definite number of different states of the non-degenerate system will

coalesce to form each state of the degenerate system. It is clear that

the only reasonable generalization will be to take the weight of any state

of the degenerate system as equal to the number of separate states of the

non-degenerate system which have this state as their limit. This generaliza-

tion seems to prove successful, but no proof exists that the weight so defined

is unique, and no general rule for enumerating the coalescing states. Each
case has to be treated separately.

A simple example will illustrate the working of this rule for calculating

degenerate weights. Consider a two-dimensional harmonic oscillator. If

the two fundamental frequencies are equal then

J = (b p^dx + (b fydy = nh

is the only quantum condition. If, however, the frequencies are independent

the system is non-degenerate and

Jy = o Pydy = n^h.

When the two frequencies tend to equality we get the former case as the

limit and obviously nj^ + n.^^ n. The total number of states which coalesce

to form the degenerate state isn + 1. This must, by the rule, be the weight

of the degenerate state. It is easily verified by direct calculation that this

weight agrees with the limiting principle. For the whole phase space

(x, y, Px, py) enclosed by the orbits for which E = nhv is

dxdydp^dpy,

extended over the region for which

1 ty)

^iVx" + Vy') + {^^v? I {x'^ + y') < E.

* See also Bohr, Proc. Camb. Phil. Soc. Supplement, p. 17 (1924).
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This is a familiar Dirichlet's integral, whose value is

TT^E^ 4m _E^
r(3)m(277v)2~2i^*

The region enclosed between the orbits for which E = nhv and E = {n-{- \)hv

is therefore ^^ ^^^ ^ ^^2 _ ^^^ _ j^^ ^^ ^ ^^^

in agreement with the limiting principle.

In the same way the total number of states which coalesce to form the

degenerate state J = nh of a three-dimensional isotropic oscillator is

I {n + 1) {n -{- 2), which is taken by the rule to be the weight of the

degenerate state. It may again be verified by direct calculation of

•(6) r

dxdydz dp^ dpy dp^

over the region for which
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(v) They are significant only when combined by multiplication over the

whole assembly.

We are now in a position to undertake the study of the equihbrium

properties of the general assembly on the basis laid down in this chapter.

It is to be remembered that the idea of temperature—particularly absolute

temperature—and the laws of thermodynamics are initially entirely foreign

to statistical mechanics. They must be introduced by analogy as we
proceed.

§ 2-4. A simple case. An assembly of two sets of simple harmonic linear

oscillators. For simphcity of exposition we consider first this special case

which -^dll serve to bring out all the distinctive features of the problem

and the method. Let us suppose that the assembly consists of two large

sets of hnear harmonic oscillators A and B, obe^dng the laws of the quantum
theory. They will each have a series of stationary states of weight unity in

which their energies take the values nhv-i^ or ne, and nhv2 or n-q. We may
emphasize once again that in assigmng individual stationary states and

energies to the systems separatelywe tacitly assume that they are practically

independent systems, each pursuing its own motion undisturbed for the

greater part of time. This is essential to the energ}^ specification and there-

fore essential to the treatment of assembhes composed of large numbers

of practically independent systems. At the same time we must assume that

exchanges of energy between the oscillators are possible and do occasionally

take place, otherwise the systems will not form a connected assembly and

obviously cannot possess unique equihbrium distribution laws. In the

present very special case we may think of the exchanges of energy as

effected by a few free atoms in an enclosure containing the oscillators—so

few in number compared with the oscillators that we may ignore their

energy altogether. (Later on we shall be able to include the energy of any

number of such atoms or molecules in our discussion, as well as the energy

of temperature radiation. The latter can then also be regarded as an agent

of energy exchange.)

For the purposes of the proposed proof we must suppose that e and iq

are commensurable and shall therefore suppose that they are integers with

no common factor. This amounts to making a special choice of the unit

of energy. The removal of this restriction by a hmiting process vaW. be

considered at a later stage.

We ^\dll suppose that the total numbers of oscillators of types A and B
are M and N.

It is our object to determine the distribution laws of this assembly,

that is, the equihbrium or average distribution of the oscillators among the

various states of which they are capable. This is its only normal property

of importance. A specification of this distribution—equihbrium or not^

—
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is frequently referred to as a specification of the statistical state of the

assembly. This conveys correctly the idea that it is only the macroscopic
state of the assembly that really interests us and not the microscopic state.

If, for example, 47 systems A have the energy 5e, it makes no difference

statistically which of the M systems these 47 may be.

A possible statistical state of the assembly can be specified by any set

of positive integers* {a^, b^) subject to the conditions

S^a^ = If, S,6s = iV, S^ra^e + i:,56,7y = ^ (15)

It is understood that a,, denotes the number of systems of type A in the

rth. state of energy re and bg the number of type B in the sth state of

energy siq. The conditions (15) express the facts that there are MA'^ and
iV£'s in all and that the total energy is E, Now more than one cell of the

phase space of the assembly corresponds to this statistical state. In fact,

since the systems of each set are identical, the number of cells must be the

number of distributions of MA'& into sets a^, a^, ..., and simultaneously

NB's, into sets b^, bj, ..., that is

Ml N\
ao!«i!...6o!6i!...'

^^^^

We call each such distribution a complexion. To any complexion, which
corresponds to a cell of the phase space, we must attach the proper weight,

which here is i « i „ i h i h il^o X l"! X ... X Po X Pi X ... = 1.

When the complexions have all been multiphed by the proper weight

they are called iveighted complexions—a distinction which is of course

unnecessary in this example. The number of weighted complexions repre-

senting this statistical state is therefore given by (16) and the total number
of weighted complexions C by the equation

if N ^

summed for all a, 6 > subject to (15).

The equihbrium distribution laws for the assembly are to be obtained

by averaging over the phase space—that is, over all complexions. We can

therefore find at once an expression for the average value a^ of a^., or of

any similar quantity, for we have

-_ a,M\ N\
^'''-^''''a,la,l...b,lb,l...-

(^^^

The most important such quantity is ^, the average energy of the

systems A. This is given by

* I.e. positive or zero. We shall make this convention throughout.



24 Assemhlies of Permanent Systems [2*4

Both these summations are of course over the same range of values

as (17).

A rapid and powerful method of evaluating these sums is essential to

the elegance of this development, and is provided by expressing these

summations as contour integrals and evaluating the integrals by the

method of steepest descents.

Now the general term of

expanded in powers of z is

^ ;

Z^rr^'^r (2,a, = Jf ), (20)

and similarly of (1 + ^'i + z^'' + .,.)^,

5-^||-.V*, (2,6, = AT).

By multiplying these series together it follows that the coefficient of z^ in

(1 + 2^ + 2^^ + .-Y (1 + 2^ + Z'^^ + ...Y

M\ N\

summed for all positive values of the a's and 6's subject to S^a^ = ^^
Sjis = N and also Sj-rm^ + 'ZgSiqbs = E, in short the conditions (15).

Thus C is the coefficient of z^ in

(1 - 2^)-^^ (1 - 2")-^. (21)

Similarly, observing the extra factor in (19), we find at once that CEj^ is

the coefficient of z^ m
(l-2^)-^2y (1+2^+ 22-+ ...)^, (22)

for operation with z d/dz introduces in the terms (20) just the required

extra factor T,j.r€a,r. The expression (22) can be put in the alternative.forms

|2|^(i-2r^|(i-2r^ (23)

(1 - 2-)-^^ (1 - 2^)-^ j- Mz -log (1 - 2^ (24)

It thus appears that the required sums are the coefficients in certain

simple power series, and, as we shall see, this conclusion is capable of

immediate extension to general quantized systems. Now the most con-

venient expressions for such coefficients are complex integrals taken round

a contour enclosing the origm 2=0. Thus we find

277^.1^2^+1(1-2^)^(1-2^)^' ^ '

- 1 r ^2
-^^|iog(i-^-)

^^^ " 27Ti]y^+'^ (1 - 2')^^^ (1 - Z^)^ '
^^^^
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The contour y may of course be any contour lying within the circle of

convergence of these power series (radius unity) and circulating once

counter-clockwise round 2 = 0.

We can determine a similar formula for Oa^ . We have

-- a^M ! N !

_ {M-l)\ N\

summed over all positive a, b subject to

S^«^ = M — 1, Hgbg = N, H^r^ar + TisSribs ^ E — re.

This reduces at once to

Ca=~i-^ ^"
(21)

' 27ri!yZ^+^ (1 - 2^)^^-i
(1 - z^)""' ^ '

These integrals are exact and hold for all values of M, N and E. They
are, however, only physically significant when M, N and E are very large,

since all assemblies that we can observe contain a very great number of

systems. We therefore require primarily the asymptotic values of these

integrals when M, N and E tend to infinity in fixed ratios. This means,

physically, that we require the limiting properties of the assembly when
its size tends to infinity without alteration of its iiitensive properties (con-

stitution, etc.). The properties of the finite assembly will be shown to

deviate only trivially from these limiting properties. These asymptotic

values can be rigorously established here and in the general case by the

method of steepest descents. It will tend to clarity first to sketch tliis

method and the results, and to compare the results with those of other

developments.

Consider the integrand on the positive real axis. It tends to infinity

as 2 -> and 2 -> 1, and somewhere between, at z = ^, there is a unique

fninimum. For y take the circle of radius ^ and centre the origin. Then
for values of z on y, 2; = O-e*'' say, z = 0-, a = is, when 31, N and E are

large, a strong maximum of the modulus of the integrand. Owing also to

the fact that the differential coefficient of the integrand vanishes at a =
the complex terms there are trivial and the whole effective contribution

to the integral comes from very near this point. This remains true so long

as there are no equal maxima elsewhere, which cannot occur when e and

7) have no common factor. It remains true, moreover, when there are extra

d
factors such as — Mz j-log (1 — 2*), and in effect such extra factors may

be taken outside the sign of integration if in them we replace 2 by ^^.
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The result is that ^ is the unique positive fractional root of

^^{z-^ (1 - ^r^^^ (1 - z^r^} = 0, (28)

By comparing (25) and (26) we find

i:=-if^^iog(i-n

-^r <-)

Similarly, ^^ = _Zl_ , (31)

which satisfies the essential equation E = E^ + E^- These equations

determine the partition of energy among the two sets of oscillators in a

large assembly.

It is already suggested by these formulae that S- is a function of the

state of the assembly with the properties of temperature, and it turns out

later that ^ may be taken to represent the temperature on a special scale.

It bears the relation (^ _ .i^^^.^ ,oo\

to the absolute temperature T, where k is Boltzmann's constant. If we
use this result in advance then

^— Me
^^ = e^/kT _ I

' (^^)

which is the famihar result due to Planck. In the same way, by comparing

(25) and (27), we find

0^= M^^'il - ^'),

= Jfe-W^r ( 1 - e-^/^^)

.

(34)

This result, in the more usual form

^ p-re/kT

tr^' '^^'

is also classical and due to Planck.*

Logically the relation (32) must be deduced from the second law of

thermodynamics, by which alone the absolute temperature scale can be

defined. But we may anticipate this, if it is preferred, by asserting that

in the limit in which v -> and so e -* the mean energy of a simple hnear

oscillator must be kT. This assertion then defines T on the basis of the

* In the new mechanics with energies {n + ^) e instead of we there are purely formal alterations,

which may be entirely obliterated by a change of the energy zero. Since the zero of energy must

always be fixed by a convention, we may say that no change is made in these formulae. This is

easily verified directly.
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theorem of equipartition of energy for classical systems which we have not

yet proved (see § 2- 7). It then follows from (30) that

which is (32).

We give the mathematical theorems in the next section, and shall there

see that the full proof of (33)-(35) avoids all the apparatus of factorials

approximated to by Stirling's theorem which disfigure the usual proofs.

This apparatus is both cumbersome and, at least superficially, lacldng in

rigour, for Stirhng's theorem is often there appHed to ! and 1 !.

§ 2-5. Application of the method of steepest descents. We base the proof

of the foregoing results on the follomng

:

Theorem 2-5. //

(i)
(f)

{z) is a regular analytic function of z expressible in the form

cf>{z) = Z-'^o{f,{z)Y^{f,{z)Y2...,

where the as are positive constants, integral after multiplication by E, and the

f (z) are pioiver series in z ivhich start with non-zero constant terms and have

real positive integral coefficients and radii of convergence unity

;

(ii) Not all the indices in all the f {z) contain a cornmon factor other than

unity

;

(iii) F {z) is a regidar analytic function with no singularity in the unit

circle except perhaps a pole at 2=0;

(iv) y is a contour circulating once counter-clockwise round 2=0;
then

^.f F{z) [</, {z)f- = [ilW ^F (^) + o {1/E)}, (36)

where 0- is the unique positive fractional root of

dcf> (Z)

dz
= 0. (37)

We have aimed not at maximum generahty, only at a theorem suffi-

cient for the purpose in hand. Foi example, the coefficients of the / (z)

need not be integers. It is sufficient to suppose that/ (2) ^ co as 2 -> 1.

Nor need the radius of convergence be unity for the purpose of the proof.

But both these conditions are always satisfied by quantized systems.

Consider the function (/>' (z) for real positive 2. The equation

<k' (^) ^ ~ ^0
I

"1//
I

^2/2'
I

(38)
</>(«) z /i /a

determines
(f>' (2). Consider the behaviour oi y = zf//fT^. This function y

Bill
Highlight
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by (i) takes the value for ; = and steadily increases to — x a;? 2 increases

to 1. For if /i (z) = —CJ«::" we have

The nnnierator of cy is ZZ (;! — n')- uj^uj^.z"^"', which is always positive.

Therefore either y -^ x or y -* A, a finite limit, as : — 1. But the latter

is impossible as it implies that /j (z) is bounded as c ^ 1 , which is contrary

to hypothesis. Thus the expression

A A
is zero for 2=0 and steadily increases to — x as 2 -^ 1. It therefore takes

the value c^ once and once only, for 2=0^ say, which is then the unique

root of (37). It foUows also that 6' (^) > 0.

The method of steepest descents proceeds by making the contour v

pass through the col, 6' (2) = 0. in such a direction that the value of the

integrand falls ofi along 7 from a maximum value at the col at the greatest

possible rate. This is here achieved (since 6 (2) is real for positive real 2)

by taking for 7 the circle ' z
' = ^. On this circle (or any other) the maxi-

mum modulus of the integrand must occur for positive real z on account

of (ii). It is easy to show rigorously that when E is large aU parts of the

contour except that in the immediate neighbourhood of 2 = 8^ make con-

tributions exponentially small compared to this critical region. If vre put

z = d€", then when c is small

[^ (z)Y = [<i {^)Y exp {- \Ec'-^6' mS m - KEa^ - O {Ea*)},

where K is some function of ^. When E is large we may suppose that

E^a ranges effectively from — x to — x, while c and all terms such as

Ec^ remain small. Thus

^. \ F {z\ \6 {zVf ^ = ^ [6 ^^^Y
2srt.

X j

""
{F (&) - icF' (&) - O {a^) -f KEa^ - O (Ec^)} e"*^^^ "(^)*(^) da,

. —

«

the error in taking the range of integration with respect to a infinite instead

of some small nxmiber such as J:E~^ being exponentially small. Odd terms

in c vanish on integration and

E^6' {»)Jif> (a)J

i ~c2e-*«"**^*"^>/*<*i da=0 {E~^,

I
~*rc*€-i*»^*"W^) da=0 (£"-).

. —X

Hence the theorem.

-1.

—

X

^-IB^^^-^y^O^da = ' r.^,,,TL,i /oJ^ (39)
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The theorem, applies at c»ce to the agseml]^ d rwo sets of linear

oscillators with

6 - :-^ 1 - ->-J^ ^ 1 - c:j
-^ ^ (Jf E, S E constant).

All our conclusions hold \rith, in particular.

Since we always suppcxse that the assembly is very large {E large) we shall

in all formulae omit the factor [1 — (1 -B)] which is always pi>?sent, and
preserve only the limiting asymptotic form, which gives us all our results.

We must be careful, however, not to overlook its presence in any fomirJs

in which the leading terms cancel.

The expression E^6' {^)6 (») can be simplified. Since ^' (d^) = it

is equal to

=
^^i-

.--....(41)

if E is regarded as a function of ^ determined by the relation ^29). that is.

This relation (41) is vahd generally.

Finally, it is of some importance to observe that the condition (ii) in

the theorem of this section is inessential. If it fails the only difference is

that all integrals such as C and CEj^ are S times as great as before, where

^ is the common factor in the indices of the/(r). and no physical result is

altered. This is. of course, only true because the fimction Z' (c) is c»lways

composed of a selection of terms from the series in <i> (z). From each

of the 3 equal maxima of 6 {z) on the circle c = ^ we always get a

dominant contribution which is real, positive and equal to the contribution

from the main maximiun on the positive real axis.

§ 2-6. Generalization to an assiembly of any quantized systems and to any
number of types of system. Simple examples. Nothing in the preceding

work depends essentially on the fact that we are discussing simple harmonic

linear oscillators. Suppose instead we have two sets of quantized systems

^4 and B. Systems A are J/ in niunber: their sequence of stationary states

has energies €q, ej, .... e^ weights w^, r^, ..., nj^ and a statistical

distribution specified by a^^. a^, .... a^^ Systems B are -N' in number;

their sequence of stationary states has energies »^, »?i> ^?s« •••? weights

Po, pi, •••/>? and a statistical distribution specified by 6<,, fcj, ..., ft..

We assume for the present that all the e"s and 7j's are expressible as integral
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multiples of one basic unit of energy (and for simplicity not all expressible

in the form a + r^, ^ > 1). Then in this case the total number of weighted

complexions representing this statistical state of the assembly is

^ ~ ^''' a,\a,\...bo\Wl...
' ^*^^

summed for all positive a, b subject to

S^a^ = M, S,6, = N, S^e^a,, + 1:^^56, = E (43)

We have here to form the functions

f (z) = TUqZ'o + WiZ^i + ^22^2 + ...
, (44)

g (z) - po2'« + Pi^"' + ^2^'^ + ••• , (45)

which from their special properties in the development of the theory we

call partition functions. They are equivalent to the functions introduced

by Planck under the name Zustandsumme, and are the transcription into

the quantum theory of Gibbs' phase integrals.

Just as in § 2*4 it follows from the multinomial theorem that C is the

coefficient of z^ in [/ {z)Y^ [g (2)]^. It follows at once that

G -= 2^-/^^i [f{^)r[9 {z)r, (46)

and, similarly, that

C5; =
i^. f ii '^rZ-r [/ (Z)]"-'- ISim" (48)
'LdTTi J y Z

Theorem 2-5 apphes to these integrals with </> = z'^ [f {z)f^l^[g {z)YI^, pro-

vided that the partition functions converge for
|

2
|
< 1. If the sequence

of energies can be expressed as here supposed and does not terminate the

series must converge for
|
2

|
< 1. For if the system is of s degrees of

freedom and non-degenerate, the tu's are all unity and the radius of con-

vergence must be miity. If the system then degenerates until it has only

u (< s) independent frequencies, the new partition function can be formed

from the old by the grouping together of sets of terms whose energies are

no longer distinct. This cannot alter the radius of convergence. We find,

therefore, that ^ is determined as the unique root of

^= Jf^^ log/ (^)-f^^^ logs' (^), (49)

and 1: =ilf^^ log/ (^), (50)

7^.= MWr^'r/f{^). (51)

There are similar formulae for systems B.
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Obviously the restriction to two types of system is trivial. With any
number of types of system the arguments are unaltered. We find for the

total number of weighted complexions

C=~\^,^.Ur{z)r^. (52)

There is a unique -8- determined by

^=2.Jf,^^log/.(^), (53)

and i:=if,^~log/. (^), (54)

[aX = if, (tu,).^(^;V/, (^). (55)

The partition function / {z) is presumed to refer to the whole motion

of a quantized system. It should be observed that, in the important special

case in which the motion sphts up into two or more parts entirely indepen-

dent of one another, the partition function/ [z) must factorize into functions

of the same type, which refer separately to the independent motions.

A particular case of this is the translatory motion and the internal motions

and rotations of a free molecule. The translatory is of course classical, but

partition functions can still be constructed as will be shown in § 2-7.

We may properly comment at this stage on the properties of the

parameter ^ which, while mathematical in origin, is obviously fundamental

in describing the state of the assembly, and should be identifiable by
analogy with some physical property of the assembly. We have already

stated in advance that 0- measures the temperature. We can now see

reason to justify this identification, though not of course the particular

relation between ^ and T. For ^ is a parameter helping to define the state

of our assembly which must have the same value for all sets of systems in the

. assembly. This is the precise property which distingmshes the temperature

from other parameters and justifies the identification.*

It is natural at this stage to consider a few examples of special systems

and construct their partition functions.

§ 2-61. Two- and three-dimensional isotropic harmonic oscillators. These

are degenerate systems with only one fundamental frequency. The two-

dimensional oscillator has (we have seen) w^ ^ n -\- 1, e„ = nhv = ne, and

therefore
y (^) _ 1 ^ 22^ + 3z'-^ + ...,

= (1 - z^)-2. (56)

The three-dimensional oscillator also has e„ = 7ie and vjn equal to the

* See, for example, Bom, Phys. Zeit. vol. xxii, pp. 218, 249, 282 (1921).
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number of partitions of n into three positive or zero integers. Thus

cj„ = 1 (w + 1) {n + 2),

J{z)=l-\- 33^+ 6^2^+ ... + l{n+l){n+ 2) 2«^ + ...,

= (1-2^)-^ (57)

These are simple examples of the rules for assigning weights. Thus in these

which fit in exactly with the expected requirements of two and three times

the mean energy of a linear harmonic oscillator respectively.

This could be generahzed to show that a harmonic oscillator of s degrees

of freedom has a partition function

f{z)^{\-zr^ (59)

and a mean energy s times that of a linear harmonic oscillator. In fact,

for most purposes it is precisely equivalent to <s independent simple

harmonic linear oscillators.

§ 2-62. Rotations of a rigid solid of revolution {diatomic molecule) without

axial spin. This provides a rather more complicated example in weight

counting and has important applications to the specific heats of gases. It

is a degenerate system of one independent frequency.*

Let A be the transverse moment of inertia of the molecule, and 6,
(f)

the usual spherical polar coordinates. Then

pe = Ad, p^ = A sin^
(f),

""-ui^'^ + ^e !>*') '«•"

The Hamilton-Jacobi partial differential equation is

2A{[dd) +

which has the general solution

S ^ a2<j>+ \{2Aaj_ - a^Vsin^ e)^dd. (61)

The equation of the orbit is

dS ^ , f Uodd

2A{[dd) '^sin^e[d(f>) \
~ "^'

Otto J SI

or

da^ ^^ ^ Jsin'^e {2Aa^- a^^jsm^ 6)^'

, , a, cot 6 ,„-,= </) - cos-i ^—
J, (62)

{2Aa,-a,')i

a^ cot e - {2Aa^ - a^^)^ cos (<^ - ^^). (63)

* We give these classical calculations with a detail foreign to our general practice, since they

are not readily accessible in a correct form elsewhere.
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The actual orbit is of course uniform rotation in a plane whose normal is

defined by the angles A, a. Thus the orbit is

cos A cos d + sin A sin d cos (cf)
— a) = 0. (64)

By comparison of (63) with (64) it follows that

.= . + ft, tanA= (Mf'i^i^)*, cosA = ± -^ (65)

Except when A = hrr, cos A = 0, ag = 0, (/> increases or decreases steadily

from to 27T according as ag > or a^ < 0, and 6 goes from ^tt — A to

^TT + A and back during one period.

The single actual quantum condition is

J = O'P^dcf) + (^PqcIO = nh, (66)

or nh = 277
I

a^
I

+ {2Aa^)^L [l --^^) dd.
'

' J V sm^ dj

The substitution cos 6 = sin A cos u evaluates the integral and we find

nh = 277
I
aa

I

+ {2Aa^)i 277 (1 -
|
cos A |).

Using (65) this reduces to* ^2^2
«'=8^- («')

To determine the weights we may suppose that the system is so disturbed

that the periods in 6 and are no longer equal—for example, by a slow

procession of the orbital plane. There are then two quantum conditions in

place of (66), which reduce to

n,i,h = 277
I

Kg
I

, rieli = (2^ai)^ 277 (1 —
|
cos A |).-

We then find eventually that

cosA = ±^^,= ±-^^, «,==(!^i+^^
{2Aa^)^ ne+ n4,' ^ Stt^A

The separate states that coalesce to form the degenerate state of quantum
number n are all those for which ne + n^, = n. There are 2n of these for

which cos A =f 0, and cos A = gives a single possible state in which the

orbit passes through the pole. There are thus 2n + I states in all,

ta„ = 2n + 1, and

f{z)= l + 3z^+ ... + {2n+ l)z-'-+ -'{'== Sa) (^^^

We have assumed that all the states are possible ones and that none of

* This result can be obtained more simply from the general relation w = clEjdJ. For the action

variable J for a rigid rotator \&J=Au). Hence dEldJ=J/A,E =J^/2A =n^h^l8TT^A, as in the text.

There is, however, no such short cut to the counting of the weights. The modifications made
by the new mechanics are noted at the end of this section.
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them, for example those for which n^ = 0, must be ruled out for some

cause not here specified.*

The contribution of molecular rotations to the energy of the assembly

will therefore be ,

where / (S-) is given by (68). The contribution to its specific heat, Orot, is

Crot =~^ = Mk (log »)2 (» ~y log/ (») (69)

and M refers to one gram-molecule so that Mk = R, the gas constant,

then J2

Crot = Ro^ ^2 log {2„ {2n + 1) e-^. (70)

Practical apphcations of this formula are made in §§ 3-3, 3-4. The modifica-

tion made by the new mechanics is to replace n^e by ^ (?i + 1) e so that

the partition function becomesf

oo

/(^) = i: (2?i+ 1)^" («+!)% (71)
n =

= S (2n+ 1) e-"("+i)^ (72)
?i=0

§ 2-63. Rotations of a rigid solid of revolution with axial spin. We have

here a degenerate system of three degrees of freedom and two frequencies.

Let A and C be the transverse and axial moments of inertia, and 6,
(f)

and ifj the usual Eulerian coordinates. The angles 9 and ^ must be taken

to fix a definite direction in space independent of any directions of rota-

tion since the two ends of the sohd may be different. Then

pe = Ad, p^ = A sin^ 6
(f)
+ G cos 6 {ijj + ^ cos 6), p^ = G {ijj -{- (j> cos 6),

rr _ Po\ {P4> - n COS dY P^^ _ .„ox

^-2Z+ 2^sin2^ +20-"^ ^^^^

The Hamilton-Jacobi partial differential equation has the solution

.S = a^c/. + Oa'A +/^ 1(2^ «i -^) sin^ 6 - {a,- a, cos d)j . ...(74)

* Such exceptions were of course a common and unsatisfactory feature of the old quantum

theory. They are no longer necessary in the new.

t Schrodinger, Ann. der Phys. vol. lxxix, p. 520 (1926).



2-63] The Sjmming Top

The 6,
(f)
equation of the orbit is

dS ^ . [ dd a^ — a^ cos 6

35

dao
A = </>

-
sin

(2Aa^
Ai

C
sin^ 6 — {a.^ — a^ cos 6)'

,(75)

.(77)

The actual motion in 9 and
(f>

is of course a uniform

rotation of the axis OP (Fig. 1) at a fixed angular

distance e about the invariable line 01 of coordinates A

and CT. The invariable line 01 is the axis of constant

resultant angular momentum of the system. The direc-

tion of 01 is unrestricted, but e < ^tt. The actual {6, (/>)-

equation of the orbit must therefore be

cos 6 cos A + sin 6 sin A cos {cf>
— a) = cos e (76)

Let a be the resultant angular momentum about 01. Then

a2 = P4,
= a cos A (0 < A < tt),

\

a^ = p^ — a cos e,

J
/a^ sin^ e a^^

'=1^2^-^— + -^

We have already discussed the case of zero axial spin, which will therefore

be omitted here, and we have < cos e < 1, cos e = being excluded.

Since p^ can obviously be of either sign, so can a, but we confine ourselves

at first to a > 0.

We may start by verifying that (75) gives (76) mth ct = ^g by using

(77) to ehminate a^, a^ and a^ and making the substitution

cos 6 = cos A cos e + sin A sin e cos u. (78)

The motion in can be estabhshed similarly. The integral derived from 8
can be evaluated by the substitution (78) and the analogous formula in v.

The sign of ip, however, is constant throughout the motion and depends

on that of a. Greater detail is unnecessary here.

Case I. The axis OP rounds the pole OZ if e > A or e > tt — A. The

motion in (/> is then a rotation through '2tt in one or other direction and the

quantum conditions are

opedd + <^Pi,dcf) = ff>pedd + 27ra
|
cos A

|
= %7i,

<^p,i,dip = 27ra cos e = n^ih.

J

The integral ^pedO can be rationahzed by the substitution (78) and has

the general value

C^ped9== 27Ta {1 — ^1 cos A — cos e
|

— | |
cos A + cos e \}, (79)

3-2
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which in this case reduces to 27ra (1 —
|
cos A |). Therefore the quantum

conditions are

a = -^ , a cos e == «3 = -^ (0 < n^ < Wj)

.

(80)

The energy of the rotation is then

li^ \n-^ (\ 1 \

""1 "
Stt^ U + lo-zj^4- (^1)

In order to determine the weight, we must, as before, remove the degeneracy

by supposing the periods in and (/> to become shghtly unequal. Then the

first quantum condition is replaced by two,

a (1 — cos A ) = -—- , a cos A = -^

,

SO that cos A = zb — = ± —

.

The value n^ = i^ not here permissible, since then A = ^tt and the

condition e > A is not fulfilled. There are therefore 2% states, and this

number is the contribution to the weight.

Case II. The axis OP does not round the pole OZ if e < A and e < tt — A.

The motion in ^ is then an oscillation, and since p(i, is constant cpp^c?^ = 0.

The quantum conditions now become

wpedd + <^p4,d(j) ^ 27ra (1 — cos e) = neh,

Op^difj = 27ra cos e ^ n^h {n^
=f= 0),

,(82)

and the energy a, = |^ |

^^^ + ^^^V (^-]-)^ (83)

There can only be one state of this type.

We can now write down the contribution to the partition function

made by all states for which n,i,^0 and a > 0. It is

E (2^1+1)^°''"^^ ^^ ^j"n_
(g^^

ni = 1 n^ = 1

In the doubly degenerate case, in which C = ^, this reduces still further to

2 Wi(2wi+ 1)^^'''^.
(85)

111 = 1

To these expressions we have to add the contributions from (i) the states

for which a < 0, ?i^ ^ 0, and (ii) the states without axial spin for which
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n^ = 0. Adding the former just doubles (84) and (85) and the latter adds

(68). Thus the complete partition functions are

h^ (ni^ /I IN 1 /l2^2
°° »H s~2 \~T + n ~ 1 "'AY 00 5—:rj

/(^)= 2 S 2(2wi+ 1)^^" ^^ ^^ ^^ ' + S {2n^+ 1)^^""^,
ni = 1 M^ = 1 ni =

/(o-) = i: i: (2^1+1)0-^'''^ "* w ^/ .,
^gg^

= S 2 (27ii+l)^ ' ^ ^ ', (86)
7ii = 1 \n^\^ni

/(^) = S(27ii+ 1)2^^"'^.
(87)

Wi =

In the latter case the formula for the rotational specific heat is

Crot = Ro^ ^2 log {2 (2wi + 1)2 e-V-}, (88)

with the same o- as (70). This formula also is applied in § 3-6.

A still more general model can be discussed—namely, a rigid body
with three unequal moments of inertia containing an internal spinning

gyroscope representing electronic moment of momentum,* which we shall

not refer to further here.

The formula replacing (86), according to the new mechanics, isf

The values of n^ and n^ must be either integral, ti^ = 0, 1 , . .
.

, or half odd-

integers, % = |, f , .... It reduces, when A = C, to

^2

/(^) = S(27ii+ 1)2^^"^
, (90)

The limiting forms when G is small are

(a) n, = 0, 1, ... /(^)= 2 (27ii+ 1)^^"^
, (91)

(6) ni= I, f, ... /(^) = 22(2^1+ 1)^^"^ (92)
(ni)

In aU cases constant terms are omitted from the set of energy values. They
depend of course on the definition of zero energy and do not affect any
physical result.

§ 2-7. Assemblies containing free molecules {or other classical systems).

If we are to introduce classical systems into the assembly and discuss them
by the foregoing method, it is clear that some limiting process is essential,

* Kramers, Zeit. fiir Phys. vol. xnr, p. 343 (1923).

t Dennison, Phys. Rev. vol. xxvin, p. 318 (1926), ignoring constant terms in the energy.
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for they must be introduced initially as quantized systems. As in fact all

motions are subject to the laws of quantum mechanics and all systems

are really quantized systems, we are concerned in this Hmiting process

only with questions of technical convenience. We shall now show that

this can be done very simply. Questions as to the validity of this hmiting

process are postponed to the next chapter. For simpHcity we shall

suppose that the assembly consists of M quantized systems of any type,

partition function / (z), and N atoms of mass m moving freely in a volume

V whose energy is solely kinetic energy of translation. The whole discus-

sion applies equally well to any number of types of classical and quan-

tized systems ; internal motions and rotations of the free atoms or molecules

can be included among the latter.

The phase space for a free atom is specified by the six coordinates

Pi, ...
, ^3, and is divided up into small cells 1, 2, ..., ^, ..., of extension

{dp^ ... dq^)t

and, by the rules of § 2-3, weight 8^ given by

{dp^...dqs)t ,

^t
= p—

.

(y^)

In the preceding problems we have dealt with assembhes whose state

depends only on a single parameter ^. Here we have a new independent

parameter V to take into account, and this is best done by starting with

atoms in an external field of force of potential Q which may finally be

reduced to the local boundary field of the walls. Then there is an energy

^j associated with the ^th cell given by

It = ^iPi' + Pz' + Pz% + Qu (94)

Q is a function of qi, q2, qz only.

Consider an artificial assembly in which the cells are small and the

energy anywhere in a cell constant and equal to t,i . Then all the ^'s and e's

can be supposed chosen so that they are commensurable and expressible

as integers with the proper unit of energy. The artificial assembly is

effectively composed of quantized systems only, and can be made to

represent the actual one to any assigned standard of approximation. In

the artificial assembly we have at once the partition function

7i (z) = 2,8,2^., (95)

and the distribution laws are given at once by the old formulae. To obtain

the distribution laws for the actual assembly we must proceed to the limit

by making the extension of every cell tend to zero. We construct in fact

any sequence of artificial assembhes for each of which we can determine

the distribution laws, and which has the actual assembly as a hmit

(8t
-^ for all t). We must then prove that these laws have a unique hmit,
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and that this limit represents the distribution laws of the actual assembly,

evaluated, that is to say, after we have proceeded to the classical Umit.

This point is postponed to § 3-7. We really carry out some such process in

discussions of the classical distribution laws by any method whatever.*

Now by the definition of an integral, when

ht -> 0, {all t),

h{z)->H (z),

= pj...|e '"^ dp,...dq„ (96)

the integration being extended over all values oip^, ...,q^. For an assembly

in a volume V we may represent the walls by supposing that Q = in F
and that Q -> oo rapidly near the wall. Then provided that the real part

of log 1/z is positive (| z
|
< 1),

logl/z ,
,

^ (2^^)^ T^
. (97)

h^ (log 1/z)^'

In the formulae for the distribution laws of the artificial assembly h' (z)

and perhaps other differential coefficients occur. It is easily proved

directly that h' {z) has the hmit H' {z), etc. Thus the laws for the sequences

of artificial assembhes have a unique Hmit which will be the laws given by

the formulae of the preceding sections if we use (97) for the partition func-

tion of the free motion of the atoms. For example,

E-^^N^^logH (^) = N^^ log [log 1/^]-^

= \NI log 1/9- = %NkT. (98)

j-_ N^^^t ^ N /log l/^\^ -^ m (log lA) {u^ + v'+w"')
J

7

This is Maxwell's Law.

Finally we observe that it is possible to replace h {z) by H {z) formally

in C and the other integrals, if y is fixed as the circle
|

z
|

= ^, although

the interpretation of the integral as a coefficient in a power series now

fails, and the integrand is no longer single-valued. If ^ (z) is taken to be

real for real positive z these formal integrals give all the correct results.

It will be shown in § 3-7 that this is always true.

* Cf . Jeans, loc. cit. chaps, ret, v passim.
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§ 2-71. Maxwell's distribution law with mass motion. It is easy to extend

the argument to the case of mass motion by introducing an extra variable

for each of the additive integrals of our systems which is conserved in

every interaction in the assembly. Consider for simphcity an assembly

of any number of types of classical systems. Let ^^ be the energy, and /xj

any component of the momentum, associated with the ^th cell of the first

set of systems. Then

^ - ^-'' a,\a,\... ""
•"' ^^^'

summed over all positive values of a, 6, ... subject to

i:,a,= M, S,6, = iV, ..., (101)

S,a,^,+ ... = ^, (102)

and i:,a,^,+ ... = (^, (103)

where G is the total component of momentum of the assembly. There is

a similar extra limitation for each component of momentum or angular

momentum which is conserved.

Now just as we introduced a selector variable z to select all the terms of

Sa6 which satisfy (102) from the simple expression in which (102) is not

obeyed, so we may also introduce another variable x to select further those

terms which obey (103) in addition. For this purpose we introduce the

partition function
^ ^^^ ^^ ^ S.S.^^^x^ (104)

and the proper value of G will be the coefficient of z^x^ in the double

series [h {z, x)f^ [j {z, x)]^ .... This is given by the double integral

c^= (2^J/^i^i[M^,^)]nife^)]'' (105)

Similarly, it is easily shown that we must have

M [^ dzdx

^^ = (ISpILt^^' f S ['' (^' """}t^' <^'
*"" O**'*

go: - j^).\\^^^. {- li
\h (z, .)r] U (z, x)]» (108)

where Ej^ and G^ are the energy and component of momentum of the first

set of systems. These double (and similar multiple) integrals can all be

evaluated by a simple extension of Theorem 2-5, which we shall dis-

cuss in Chapter v. The resulting distribution laws can be reduced to

those of the actual assembly by the limiting process of § 2-7.

The formal deduction of Maxwell's distribution law with mass motion

by this method is very simple. We treat the case in which G and /x^ are
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the momenta, in the direction of ^i, of free molecules in a volume V, so

that /x^ = {Pi)f Then

/i(2,a;)^^(2,a:) = p|(jexp - °|^ (i?i' + i>2' + 2>3') + (loga;)pi dp^dp^dp^,

-
(2-^^0^F^^pfm(log^-)

^^^g^
7^3 (log 1/z)^ ^ 1 2 log Ijz

The distribution laws depend on two parameters 0- and | which form the

unique relevant root of the simultaneous equations

reducing in the hmit to

E ^ M^^log H {^, i) + N^ ^logJ i^,^) + ..., (110)

G = M^I-^\ogH{^J) + Ni~\ogJ{^,^) + (Ill)

We derive from (107) and (108)

E. . d

1 m (log f)2

^ = 5^3^ log //(»,!).

_ 3 + '^.^rl'^., (112)
log 1/^^ 2 (log l/-^)2'

^ = fgjlOg// (&.?)= 13^ (113)

Since GJM is the mean g^-momentum per molecule of the first set, equal

to mwo say, it follows from (113) and its analogues that the bulk-velocity

Uq must be the same in equihbrium for every set of systems in the assembly,

and from (112) that the mean kinetic energy of translation per molecule is

Finally, from (109)

^ (^' ^) ^ J!r^!;L ^^P (> (log 1/^) ^^0^} (114)
li^ (log 1/9-)-

From (106) we find a7- M8i^it^>-t/H (^, i),

- Y {^kfj ^^ ••• ^'^ ®^P |-^ (^' + ^'' + ^^') + ^"^^ l^g ^ ~ 2M^ *^^"
J

'

= f (2;^f^'^-"^^^^p{-2H^^(^~''«^' +
'''+'^'j' ^^^^^

which is Maxwell's Law for this case. We may observe that.the parameter |
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which arises from the second selector variable has a simple physical

interpretation, for

log I = u,lkT,

where Uq is the common bulk-velocity of all sets of systems in the assembly.

§ 2-72. The theorem of equipartition. The most important classical

distribution law which we have not yet included is the theorem of

equipartition. This is often stated as follows

—

if we have any set of M
classical systems in the assembly each of s decrees of freedom, whose energy

{in Hamiltonian form) consists of the sum of t square terms (s < i < 2s), then

in equilibrium the mean energy of the set is Mt {\kT), or ^kT for each square

term in the energy. The present method enables us to give a very simple

proof of this theorem, and to indicate its full range of vaHdity, including,

for example, the rotations of a rigid body, which some current proofs do

not.

Suppose the equations of motion of the system do not contain the time

expHcitly. Then its Hamiltonian function is the energy and is the sum of

(a) a homogeneous quadratic function of the p's whose coefficients are func-

tions of the g's, and (6) a function of certain of the g's (the potential energy).

We will now suppose ( 1 ) that the potential energy is a homogeneous quadratic

function of t — s of the q's whose coefficients may be functions of the other

{2s — t) q's, (2) that the coefficients of the quadratic p-terms are functions only

of these {2s — t) q's ivhich do not contribute directly to the potential energy

wider (1). We can then show that the mean energy of the set is Mt {\kT),

ivhich is the theorem of equipartition in its most general form.

The partition function for these systems is

H {z) = ^^p...\^e-(^ogyz).dp, ... dq„ (116)

where e is the energy in Hamiltonian form. The Umits of integration of the

{2s — t) g's which provide no square terms in e will be determined by the

geometry of the system. Local boundary fields such as those defining the

walls of a containing vessel can be regarded alternatively as geometrical

constraints defining the Umits of integration of certain g's. The other

variables are to be integrated from — oo to + oo. The homogeneous

quadratic function of the ^'s can be expressed by a Hnear transformation

as a sum of s squares "with positive coefficients,

%^i^ + ... + ttgrj^.

We change the variables from p-y, ..., Ps to r^ , . .
.

, r^ and integrate with

respect to these from — oo to + oo. Then
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where ^l is the Jacobian of the {p
—r) transformation, and W the potential

energy. We can now find a linear transformation oi q^, ..., qt-^ which casts

W into the form

We change the variables from q^, ..., qt^g to ^i> •••> ^<-s- By hypothesis fx,

the as and the yS's do not depend on the w's and are fmictions of the

"geometrical" variables only. Integrating with respect to the w's we find

therefore

77 W 1
f(2^-<) f fX i^'H{Z)

(117)

where fx' is the Jacobian of the {q
—w) transformation. The integral in

H {z) depends only on the geometrical hmits, and is independent of z.

The mean energy for a set of M of these systems is

= -If^^ log [log 1/a-f,

= \Mtl\og 1/^ = Mt ilkT), ......(118)

which is the theorem stated. It is clear that the theorem cannot be true

for non-relativistic Hamiltonian functions under conditions wider than

those given here.

§ 2-73. Classical rotations. A special case included in this proof is that

of the rotations of a rigid body. General molecular rotations must there-

fore contribute 3 {\kT) to the mean molecular energy, and transverse

rotations only of a body with an axis of symmetry and no axial spin

2 {\hT). These results are in common use, and we shall refer in the next

chapter to the classical value Mk {= R) here obtained for dot- We shall

later want the complete expressions for these two partition functions, and

it is convenient to insert the calculations here.

For the transverse rotations, moment of inertia A,

^ f 2 >
P^^

2AV'' ' sin2

H (z) = ,1 Jjljexp j- (log 1/z) (g + ^^^)] dp.dnded4>.

sin ddOdxf),
h^logl jz J oJQ

8-!^. (119)
h^ log 1/z
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For the general rotations of a rigid body, moments of inertia A, B, C,

1

2A sin2 d
{{p^ — cos ^p^) COS ijs — sin 6 sin ^peY

^ 2B sin^ d
^^^* ~ ^^^ ^^*^ sin0 + sin ^ cos i/<:pe}2 + ^P^^

.(120)

1 r(6) rH (z) = j^l ... lexp (— e log Ijz) dpedp^dp^d9d(l)di/j,

the Hmits of integration for 9, 0, ifj being (0, 77), (0, 2-77), (0, 27r). The energy

can be expressed in the integrable form

, /sin^ i/f cos^ ih\ ( /I 1 \ sin j/f cos ib
, /, xl

^

+ 23Mn^ sin^^\os^>A ^^^ " '^^ ^^^^' + 2Z?
^''"^

A ^ B
Integrating with respect to pe, p<i>, p^i, in that order, we find

^^^^ = ¥^~<^\ 77^ smddddcf>dilj,
f^ (log l/z)2 J . ^0

_ Stt^ {8Tr^^ABC)i
~ h^ (log 1/^)*

'

§ 2*74. External fields of force. In addition to these formulae for the

distribution laws we shall require formulae for the average values of the

forces exerted by the assembly or its sets of systems on the bodies which

control the external fields. The most important example is the formula

for the pressure of a gas. We suppose that the forces are derived from a

potential defined by certain parameters a^^, Xg, .... In the partition func-

tion / (2) = Yi^vJrZ^r^ therefore, the e^ are functions of o^^, a^a, .... In calcu-

lating the equihbrium values of the reactions, that is, the work done in

small reversible changes of the a:'s, the weights w^ are constant, since they

are adiabatic invariants.

Now the reaction of a single system in its rth cell (or state) on the

external bodies is a set of generahzed forces

The total generahzed force X^ tending to alter the parameter Xy will

therefore be

"^("a|)'
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and its average value X^ "will be given by

^=^'^{-fe)-
(121)

Using (51) this becomes

Zi = S,ilf,t0,^^.(-^)//(U

M d

i5py^8^i^§^(^)- (1^^)

In the special case of free atoms or molecules in an enclosure in which the

sole external field is the local boundary field of the walls, giving a potential

term Q in the energy, equation (122) reduces in the hmit to

^ =
ioPy^a-F^^g ^ (^) = -p- (123)

This is the standard equation for the partial pressure of any constituent

of a perfect gas. It is most easily derived from (122) by regarding any

small area co of the bomidary as a piston free to move normally, whose

position is defined by the parameter x^ . Then X^ = pco by definition of p,

and codx = dV.

All this is quite straightforward for a potential energy term in the energy

function of classical systems distributed over the cells of their phase space.

It is, however, of great importance to reahze that the argument estab-

lishing (122) is general and apphes equally well to the variations in the

permissible energies of quantized systems due to the reversible changes

of parameters defining external fields.

Consider the case of any system whose Hamiltonian function expressed

in terms of uniformizing variables {J, iv) is

and is the energy of the system. Let this system be subjected to a

variation of the external parameters giving rise to a new term 8Q in the

potential energy. Then for the perturbed system

H, = H, {J„ ..., J„) + Sn (Ji, ..., J„, w„ ..., i^J (124)

Then, by the general theorems of perturbations,

H, = H,{J,',...,J:) + m, (125)

where J^' , ..., J„' are the new uniformizing variables, and hO. is the time

mean of hQ., which may be calculated (to the first order) for the unper-

turbed orbit. But since the J's are adiabatic invariants J^ = J^' , etc. for

reversible variations, and therefore
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where e^ is the energy in this quantized state. We may assume tliat the

form of Q. is such that to the first order

SQ = Sg ^— Sxg,

that is, that the operations of time averaging and differentiation may be

inverted ; this assumption is formally

OXrJn T
^r— at.

{)dx

Then Ser=I^sl§8xs. (126)

But 'dQ.jdXs is just the mean force exerted on the system by the

body exerting the outside field, and - dQ./dXs the mean force exerted by

the system on the outside body. By (126) this mean force is exactly

- dejjdxg as before, thus showing that (122) and (123) are of great

generality. For example, for any set of M independent systems of parti-

tion function H {^) or one complex system of partition function K (^) we

have j^ 9

^ = i^aT'°°^W> <'^'>'

respectively.

The importance of (126) can hardly be over-emphasized, as to it is due

the obedience of these assembhes to the second law of Thermodynamics,

and therefore their utiHty as models for actual matter. It is therefore

perhaps worth while to consider in detail the simple example of a pen-

dulum executing small oscillations in a uniform field of force (say gravity)

whose intensity can be regarded as variable at wiU.

For the small coplanar oscillations of a pendulum

where vq is the frequency of oscillation. Hence

For gravity we may take Q. = gh*, SO. = h*Sg, where h* is the height of

the bob above some fixed datum level. Then

r J

where SQ-o is the increase in potential energy of the bob in its position of

rest, I is the length of the string and 6 its angular displacement. We have

at once
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Now since the mean kinetic and potential energies of a pendulum are equal

Hence SO = SQq + ^ — Jvq
,

and, since vq ccy'g, Ihgjg = hvjv^,

SH = SDo + J^v.

This should be the change of energy. The first term gives at once the increase

of potential energy of the bob in its mean position, and since J is invariant,

the increase of vibrational energy in the rth state must be Jhv. Thus
§6^ = 8Q in accordance with the general theorem.

We see, therefore, that the mean reactions of our systems and assem-

blies to external fields of force can be calculated at once from the partition

function. For perfect gases, for example, the partition function gives at

once C„ and p as functions of T and V , and these, with Maxwell's distribu-

tion law, are all the equihbrium properties of the perfect gas. The partition

function contains in itself the whole of the equiHbrium properties. This, as

we shall see later, is a consequence of the fact that the partition fimction

is equivalent to a thermodynamic potential. When we have estabhshed

this equivalence it will be legitimate and sometimes convenient to appeal

to thermodynamic theorems instead of direct calculation when examining

thermo-mechanical or thermo-electrical relations.

§ 2-75. Analogies with Gibbsian phase integrals. The analogy with Gibbs

development can be clearly seen at this stage. The partition function for a

molecule of a perfect gas in an external field of force of potential W is,

in terms of T,

H{T)=j-^l ... e dpxdpydpzdxdydz,

and the partition function for N such molecules is this integral N times

repeated, or [H {T)Y-

Now this integral N times repeated is exactly Gibbs' integral* for this

assembly of N molecules of a perfect gas over '*an ensemble of such

assembUes canonically distributed in phase". Gibbs defines a function

rjj by the equation
r

all f6-^/0= ...\e-'l® dp^...dq^, (128)
J phases J

SO that here i/> = — NQ log H (T). Gibbs' is proportional to T, and his

is shov\Ti eventually to be equivalent to the thermodynamic potential

U — TS, an equivalence estabhshed directly for our partition functions in

Chapter vi. What we have done here may, if it is preferred, be regarded

* Gibbs, Elementary Principles in Statistical Mechanics, p. 33, eq. 92.
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as a generalization of the Gibbsian phase integral so as to include quan-

tized systems in the assembly. Our semi-logical dynamical foundation

can be discarded, without altering the results, for the hypothesis of

canonical distribution in phase.

We may observe here that whatever be the form of W the p^, py , p^

integrations can be effected, giving

H (T) = 1^![*|M!): p... L-wikT d^dy^^ (129)

Thus the partition function or phase integral splits into two factors for

the kinetic and potential energies, which can always be discussed separately

for classical systems. When W = except for boundary fields the factor

for the potential energy reduces to the volume F. The form of both factors

remains essentially Gibbsian.

§ 2-76. Boltzmann's distribution laiv. It remains to mention this law,

which is the complement of Maxwell's for classical systems, and is natur-

ally associated with the distribution in external fields of force. It can be

stated generally as follows

:

For any set of classical systems, the average numbers a^, a^ in any two

equal elements of their phase space are in the ratio

¥i : "aa = e'^il^'^ : e'^^l^''^, ( 1 30)

where e^ and e^ are the energies of the systems in these elements of their phase

space.

This law follows at once from previous theorems, for

T, = 8,^^ijH{^), "^ = §2^^./^ (.&), Si = Sa-

lt extends of course to quantized systems in the form

% : a^ = TOie-^i/^^ :
w^e-'^lkT^ (131)

also a consequence of preceding theorems. The law contains nothing not

already given, but is inserted here formally for completeness.

Boltzmann's law has, of course, numerous important apphcations and

important speciahzed forms. If we consider two elements of the physical

space accessible to the systems, in which their dynamical state is the same,

so that the Hamiltonian energy function differs only in the different values

of W, we can integrate over all possible momenta and obtain

7?i : n^ = e-^^i/'^^' . g-iF^/fcT, (132)

In (132) n-i and 713 are the average total numbers of systems without regard

to their kinetic energy in equal volume elements of physical space. This

leads at once to the density law for an isothermal atmosphere of perfect

gases. Since n is proportional to p, the mass density of the gas, equation

(132) can be written

p = p^e-(w-w,)ikT^ (133)
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If F* denotes the gravitational potential in the atmosphere per unit mass
(including any field of "centrifugal force") and m is the mass of a molecule,

*^®n
p = p^e-'^^^*-^o'm. (134)

This is the atmospheric density law, commonly known as Dalton's. Since

F* is the same for all molecules and m varies from molecule to molecule,

equation (134) describes the well-known settling of the heavier molecules

to the base of the atmosphere—the most prominent property of an atmo-

sphere in statistical (i.e. isothermal) equilibrium.

The potentials here considered are primarily potentials due to bodies

external to the assembly to which the systems of the assembly itself make
no effective contribution. This restriction is removed in Chapter vni.

We have no space to enter here into further atmospheric problems such

as the nature of convective equiUbrium and the rate of escape of molecules

from the boundary of the atmosphere. Such problems belong more properly

to the study of steady non-equilibrium states and require the exphcit

introduction of mechanisms of interaction, but escape is a border-Hne

problem and of particular interest which we shall discuss in Chapter xv.

The validity of equations (130) and (131) is completely general, but

that of (132) and (133) is not; they must be confined strictly to the field

specified in their enunciation. For example, we cannot always apply (132)

to elements of volume belonging to the system in different parts of the

assembly which are different phases in the thermodynamical sense. More

refined considerations are then necessary on which we embark in Chapter v.

We must also be careful not to restrict in any way the range of the integra-

tions with respect to the momenta. For example, if we apply Boltzmann's

theorem to the number of free electrons in the neighbourhood of a fixed

positive charge, we mean by free those which have sufficient kinetic

energy to escape altogether. The relative numbers of these in two volume

elements are not given correctly by (132). It is necessary to return to (130)

and observe that the integration with respect to the momenta must be

taken only over the region for which

{Px^ + Pv^ + Pz^)/^ m > - W > 0.

Thus in this case the constant quantity is

fi-WlkT r rr

e- (P^' + P/ + ^r)/ 2mfcr dp^ cipydp^

,

"^^ .^ J J % Px^ > - 2mW

which reduces easily to give

Too /CO
J

Wi : n^ = e-^il^^ e-^x^dx : e~^^l^^ e'^x^dx.
J -WilkT •) -WilkT

(135)

Equation (132) would of course continue to give the relative numbers of

electrons both bound and free, were it not for the limitations imposed by the

quantum theory on the bound electrons.



CHAPTER III

ASSEMBLIES OF PERMANENT SYSTEMS (cont.). THE SPECIFIC HEATS
OF SIMPLE GASES

§ 3'1. The properties of perfect gases. Specific heats. Further develop-

ment of the general theory without some detailed application to experi-

mental data would be somewhat arid. We pause here, therefore, to

compare theory and experiment for perfect gases. Since actual gases are not

perfect the properties of perfect gases cannot strictly be said to be observed.

They must be obtained by extrapolation to zero concentration from the

actual observations at ordinary concentrations. This presents no serious

difficulty and introduces little uncertainty into the results. In this chapter

we shall suppose that the necessary corrections have been made. The

methods of doing this will be reviewed in Chapter ix.

The theory provides us with (1) the equation of state pv = MkT = RT;

(2) Maxwell's velocity distribution law
; (3) formulae for G^, for any given

molecular model. It is hardly necessary to discuss the field of validity of

the equation of state of a perfect gas. It is sufficiently a commonplace that

pv = MkT is accurately the limit of the actual equation of state for all

permanent gases or gas-mixtures at all temperatures except very near to

the absolute zero.* For most of the simpler gases the equation of state

is already very near to its hmiting form at normal pressures of the order

of one atmosphere even if the temperature is low. Maxwell's law enables

us to calculate the numbers of events, such as colUsions of a definite type,

which occur per second per unit volume of the gas or per unit area

of the surface of a wall. Results of this type are of great importance in

surface phenomena and chemical kinetics and are obtained and used in

Chapters xvii and xviii. Here we shall be content to compare the present

positions of the specific heats of perfect gases in theory and experiment.!

From the definitionsJ of C^ and C^, namely

^^'-
fe),'

^'
'd {E + pv)'

dT
,(136)

it follows at once that for perfect gases

Cj,- C^ = R= 1-98 cal./gm. mol. (137)

* For this, see Chapter xxi.

+ The more important general authorities for the experimental data used in these comparisons

are: Partington and Shilling, The specific heats of gases, Benn (1924); Eucken, Zeit. fur Phys. vol.

XXIX, pp. 1, 36 (1924); I^ewis, A system of physical chemistry, vol. in, chap, iv (ed. 1919); Jeans,

loc. cit. chap. vii. These authors, especially the first two, contain a great quantity of well-digested

information.

J See, for example, Planck, Thermodynamik, ed. 6, §§ 81, 82.
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This relation is well known to be obeyed accurately so that it is only

necessary to discuss O^ or y (= CJC^) whichever is the more convenient.

By (98) the contribution of the translational kinetic energy to C„ is |i? in

all cases. Any excess of C^ over this value must come from internal

motions of the atom or molecule, that is, from rotations of the molecule,

from vibrations of the atoms in the molecule or from electronic rearrange-

ments. Any defect of C^ below |i? must be due to the effective entry of

translational quantum conditions ("degeneration") and only occurs at

extremely low temperatures.

§ 3-2. Monatomic gases. A free atom possesses classical kinetic energy

of translation and the internal energy of its electronic system. The energy

step associated with the change from the normal state to the nearest

excited state is very large, and the internal energy can contribute

nothing to C^ except at very high temperatures. The energy required for

this step varies for ordinary monatomic gases from 4 to 20 volts* (Hg, He),

while kT in volts is 8-60 x 10-^ T. Thus e/kT is of the order 105/22^, and
Q-e/jcT jg negligibly small for all terms in the partition function for the in-

ternal atomic energy, except the first (normal) term for which e = 0, unless

T is at least 10,000° K.j The theory thus predicts C^ = %R, C^ - |J?,

y = Cp/C^ = f for all monatomic gases at ordinary temperatures. The
experimental values of y are in satisfactory agreement.

Table 1.

Observed values of y for monatomic gases, corrected for deviation from

the perfect gas laws.

Gas



52 The Specific Heats of Simple Gases [3-3

molecules possess further types of motion. The atomic nuclei can rotate

about their centre of gravity to a first approximation like a rigid body,

and can vibrate along the line joining them to a first appoximation like

a simple harmonic oscillator. If the molecule is nearly rigid, so that

the frequency of these vibrations is high, the rotations and vibrations are

nearly independent of each other. Moreover, at fairly low temperatures the

nuclear vibrations will not contribute to C^ for the same reason that the

electronic structure does not contribute, and the whole extra motion reduces

to the rotations of a rigid body. The non-vibrating molecule must indeed

stretch under the centrifugal forces, but for stiff molecules of high vibra-

tional frequency this effect will be small for moderate rotations—that is,

at low temperatures.

Partition functions for such rotations were specified in §§ 2-62 and 2-63

according to the older quantum theory, and the shght modifications required

by the new mechanics were also noted. Their classical form was given in

§ 2-73. It must be shown next that the quantum forms satisfy the limiting

principle. The forms of (68), (72), (90) and similar functions for high tem-

peratures (T-> 00, CT^O), can be established by a variety of methods. Per-

haps the simplest is to compare the sum with the corresponding integral

/•oo Too

{^x -\- I) e-"""- dx, ov {2x + \) e-'^^^'^+'^Hx.
JO Jo

It is easy to show, by breaking up the sum and the integral into two parts

at the maximum of the integrand which is then monotonic in each part,

that they differ at most by a term of the order of the largest term in

the series. This term occurs for the value of n nearest the root of the

equation n {2n + 1) = l/o- or (2/^ -j- 1)^ = l/2o- and is of order a~^. Hence

S {2n + 1) e-"'<^ =1 {2x + 1) e-^'"^ clx + (--\
,

Jo W^J

+ «(7-.) ~l'
*^'*'

with a similar result for the other form.

A more exact treatment of this relationship is possible and not without

importance. The series Se~'^^" is a 0-fmiction and an exact discussion can

be given by using the transformation theory of these functions. The series

S (2j + 1) Q-'^^i+^y- is however not a ©-function and the transformation

theory does not apply. A special investigation* shows that

We find then that the limiting form of this partition function is

* Mulholland, Proc. Camb. Phil. Soc. vol. xxiv, p. 280 (1928).
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in agreement with (119). By repetition of these arguments it is easily-

shown that this asymptotic relation may be differentiated any number of

times. Thus
J2 f'f — f'^

Crot^R {T -^ oo), (139)

again in agreement with the hmiting principle. Using Mulholland's

asymptotic expansion we find that the specific heat

Crot =1 + 4^^2+0 (a3),

for small a. Thus the classical value is approached much more rapidly than

one would have anticipated. It is obvious that

Crot->0 (T^O), (140)

or more precisely that

Crot = (a2e-2-) (a -> oo).

Similar results are obtained from the more general expression (89)

when C is very small compared with A . There is then a range of values of

T for which a is practically zero but a' (= h^/S7T^CkT) still very large, so

that only those terms of (89) are relevant for which n^ has its least

value. The limiting form of the partition function is then either

STT^AkT

as before, or 2 f: g-'^Vs-^cfcT (141)

according as the least value of
]
?i^

|
is or |. Equation (139) holds

unaltered for this range of values of T. For all diatomic gases not con-

taining a hydrogen atom A is at least as great as lO^^^ gm. cm. 2, and

1/ct at least IT. All ordinary values of T are "large" for such gases so

far as concerns a and small for a', since C is at most ^/10,000, and we
should always have Crot = R- The extra factor 2 agrees with the Hmit-

ing principle, for it allows of the two possible directions of axial spin.

The limiting forms of (89) and (90) for large T and normal values of

both A and C can be estabhshed in the same way, using for (89) comparison

with a double integral. They apply of course rather to polyatomic mole-

cules (see § 3-6), and agree as they should with (120). For the rigid body
with three effective rotational freedoms we therefore find

Crot->0 (T^O)]' ^^^^^

§ 3-4. Rotational specific heat of H^ at low temperatures. The predicted

variation in the rotational specific heat has been observed for hydrogen

alone among diatomic gases. The best observations are shown plotted in
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Fig. 2. The specific heat G^ has approximately the normal value for a

diatomic gas (|i?) at ordinary temperatures of 300° K. and above, but falls

steadily to |i? (Crot = 0) as T diminishes. For temperatures below 40° K.

C^ and fi? are indistinguishable. This general behaviour is completely

accounted for if we may identify the variable part of C^ with Cpot and
apply the foregoing theory. The values of the temperature for which the

change occurs fit in with independent evidence as to the moment of inertia

of the hydrogen molecule. This explanation, originated by Ehrenfest, has

long been universally accepted.

T°K

Fig. 2. The specific heat of hydrogen.

It is only recently, however, that complete agreement in detail between
theory and observation has been obtained. Dennison* has shown that

the data for the normal state of hydrogen, derived from the analysis of its

band spectrum, yield precisely the observed values of C^ when properly

apphed.

As we have said, the first crude apphcation of the new mechanics to

the rotational states of a rigid rotator without axial spin yields the partition

function

/ (^) = 2 (2j + 1) 0-(^ + i)2^ (e - AVSttM). 143)

This set of weights and energies is undoubtedly confirmed by the analysis

* Dennison, Proc. Roy, Soc. A, vol. cxv, p. 483 (1927). A full discussion of theories previous to

the work of Dennison is given by Van Vleck, Phys. Rev. vol. xxviii, p. 980 (1926).
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of simple infra-red band spectra such as those of HCl, HBr, CO and CN,*
and no theoretical modification is possible. No sufficient agreement,

however, can be obtained with the observed curve of Fig. 2 for any value

of A. Choosing A to give a good fit at low temperatures, the best that

can be done is shown in Fig. 3| by Curve A.

The mistake in this attempted apphcation of the theory hes in applying

the formula (143), which appears to be correct for a heteropolar molecule

formed of two different atoms, to a homopolar molecule formed of two
identical atoms, mthout examining whether the homopolar character is

significant. It is now established in the new mechanics that the identical

nature of the electrons in an atom or the atoms in a molecule is vital to

its structure. J It is necessary to consider in detail the forms of the wave-

1.2
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out axial spin are symmetrical for J even in (143) and antisymmetrical for

j odd. Further, if the two nuclei are absolutely indistinguishable there is

no interconnection whatever possible between the symmetrical and anti-

symmetrical states and only one or other, but not both, can be expected to

present itself in this universe. This is in beautiful agreement with observa-

tions on the band spectrum of helium (emitter Hcg) which has for some time

been recognized to possess only half the expected number of lines in each

band, alternate hues being completely absent. The symmetrical rotational

forms do not occiu-.* The bands of Hg on the other hand show alternating

intensities and no missing hnes. Both symmetrical and antisymmetrical

rotational forms are present and the alternations are accounted for, as has

been shown by Hori,| if the molecules with antisymmetrical wave-functions

are three times as numerous as the symmetrical ones. This, however, is

exactly what we should expect if the nuclei have spins Uke the electrons

and if only wave-functions which are antisymmetrical for the nuclei can

occur when account is taken both of their orientations and their rotations.

Hori has also shown from the spectrum that the normal state of the

molecule has no axial spin, so that the spin-free rotator is a legitimate

model, and that its moment of inertia must be 4-67 x 10-^^ gm. cm. 2.

These results require that we shall take for the partition function for

the normal Hg-molecule not (143) but

/(^)= S (2j+ l)^y + *)'*+ 32: (2j-f l)^(^+i)^^ (144)
y=0,2,4... i =1,3,5. ..

Partition functions such as this were therefore examined by Hund,J but

were found to give curves bearing no resemblance whatever to the obser-

vations of Fig. 2. To apply the theory properly one further point must be

made. While Hori's work leaves no doubt whatever that the possible

states are correctly enumerated in (144), it is also assumed in (144) that

interchanges between all the states of (144) take place freely, so that the

distribution laws of the equilibrium state are correctly given by (144) even

at very low temperatures. But it is necessary to ask whether these inter-

changes can occur freely at ordinary and low temperatures ; they must all

be able to occur in a vacuum-tube discharge, but even then interchanges

between the symmetrical and antisymmetrical rotational states are rare

and no corresponding intercombination lines are observed in the spectrum

of the discharge. They would never occur if the nuclei had no spin, and

occur with a frequency proportional to the perturbation of the energy

values by the nuclear spins—much less frequently than interchanges

between the states of par- and ortho-helium. It is therefore reasonable

* It is not yet established by analysis of the observations that it is the antisymmetrical and not

the symmetrical forms which are found.

t Hori, Zeit. fur Phys. vol. XLiv, p. 834 (1927).

J Hund, loc. cit.
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to assume that in ordinary hydrogen gas interchanges between the sym-

metrical and antisymmetrical states only occur in times very long com-

pared with the time of an experiment. These times are estimated to be

of the order of a month. The specific heat measurements are therefore not

made on a gas in the true equilibrium state governed by (144) but in a

metastable equihbrium in which the gas behaves like a mixture of differ-

ent gases, one of them the symmetrical and the other the antisymmetrical

molecules.

We therefore proceed as follows. We introduce the functions

/,(a)= S (2i+ 1)6-0+*)^-, (145)
J =0,2, 4...

/,(a)= S (2i+ l)e-(^+*r-. (146)
i =1,3,5. ..

Then the rotational specific heat of the symmetrical gas (by itself) is given by

-^-^^^2 log/, (ex),

and of the antisymmetrical gas (by itself)

R da'- ^'"^ '

That of the actual 3 : 1 mixture mil be

Crot cr^ („ rf% ^ / x ,
^% f I \

= "i^^^°S{foHo)lAo)). (147)

We have to replace the (3/„ + /J of the true equihbrium by {fa%)^- The
result of using (147) mth A = 4-64 x 10-*^ is the set of points shown by
crosses in Fig. 2. The agreement with observation is all that can be

desired.

There is of course no doubt that (143) will yield the correct rotational

specific heats of polar molecules such as HCl at very low temperatures.

It is a great pity that this region is not accessible to observation as the

vapour pressure of HCl is too low. The important region for HCl is below

60° K.

The temperature at which, on the theory, Orot should have an assigned

value is proportional to 1/A since A and T occur only in the combination

AT. The moment of inertia of Hg is obviously smaller than that of any

other molecule and Crot/R is effectively unity for Hg above 300° K. and

zero below 40° K. Refinements of the partition function -will not affect the

general comparisons that follow. For we now see more exactly that, for

example in O2 , Crot/R must be unity at least as soon as the temperature

reaches 300/16 or 20° K. Observations of a variable CVot are therefore

impracticable for all diatomic molecules which contain no H-atom.
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Even the halogen hydrides have moments of inertia too large, that of HCl,

for example, being five times* that of Hg, and leading to the resiilt just

given above. The absence of other examples of this variation among

diatomic gases is therefore in accordance with the theory.

This analysis requires a broadening of the classification of the states

of a rotating homopolar molecule with which we shall be further concerned

later on. We have hitherto treated our atoms, still more our atomic

nuclei, as structureless points, a treatment which has just proved statistic-

ally inadequate. We may not even treat all nuclei as structureless mass

points. The proton—the H-nucleus—has two possible orientations and

so must be assigned a weight twice as great as that which we have

hitherto used for structureless points. The hydrogen molecule has therefore

a weight four times that of a structureless rotator (in the normal state no

further factor is introduced by the orientations of the electrons). If we
introduce the symmetry number ct, here 2, the prepared weight of the

hydrogen molecule reduces to tmce that of a structureless rotator. The

classical partition function with the prepared weights is then such that ( 144)

obeys the hmiting principle. Both in the classical and in the new mechanics

the nuclear structure introduces a factor 4, which in both is reduced to 2

by considerations of symmetry. These, however, are not entirely analogous

in the two theories.

§ 3-5. Diatomic gases. Vibrational energy. The next approximation to

a real molecule is to abandon the assumption of rigidity and allow for

the vibration of the atomic nuclei along the fine joining them. Besides

the translations and rotations already dealt with no other motion can

contribute effectively to the partition function at temperatures less than

about 10,000° K.

Let b (^) be the partition function for the vibrational and rotational

energy, referred to its own state of least energy as zero of energy. If the

binding forces are very strong so that the molecule is nearly rigid and the

frequency of vibration high, we may suppose to a first approximation that

the vibrations and rotations do not affect one another ; to this approxima-

tion b (^) will factorize into

6 (^) = r (^) V (^),

the partition functions for the rotations and vibrations respectively. To
the same rough approximation we may suppose that the vibrations are like

those of a simple harmonic oscillator of frequency v, but that as an energy
;!^

will dissociate the molecule not more than jp states are possible in which
the molecule remains a molecule. Then

* Imes, Asirophys. J. vol. l, p. 251 (1919). See also Table 13, p. 160.
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where 'pliv is of the order of x- [Actually this form is some way from the

truth. The energies of the vibrational states commonly appear to tend to

X as a limit.] If x and -phv are fairly large compared with liv, there will be

a considerable range of values of S- or T for which ^^^^ is neghgible

compared with 1 even if ^^ is not. For such temperatures

v{^) = (1 - -&'"')-i (148)

approximately, and in this region (148) will be an equally good approxi-

mation to more exact forms of the vibrational partition function. The

contribution to the specific heat is

CyUi/R
hv\' ohvjkT

,(149)

.(150)We shall write this Cyn^/R = P (Q/T) (9 = hvjk).

When hv/kT is large the contribution is zero. If v is so large that Jiv/kT is

large at room temperatures, then for such diatomic gases we shall have

Gv = h 7

Otherwise C^ exceeds f by the amount given by (149). These predictions

are in good general agreement mth the facts shown in Table 2.

Table 2.

Observed values of y for diatomic gases.
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given by Kemble and Van Vleck, who discussed an elastic rotator with a

particular law of force according to the classical quantum theory. They

used values of A and v^, however, adjusted to fit the specific heat curve.

From the point of view of statistical theory it is not necessary to go back

to a mechanical model. It is sufficient to take the states of vibration and

rotation of the normal Ha-molecule as enumerated directly from the

band spectrum by Hori, to construct a semi-empirical partition function

with their help and to use this function to evaluate Crot and Ovib- This

has been carried out successfully by McCrea.* At these higher tempera-

tures the differences between symmetrical and antisymmetrical rotational

states are unimportant, and we may use without serious loss of accuracy

the one partition function

where
,(151)

E {n, j)

he

/(^) = 2 S {2j + l)^^Ki),
n = i =

A{n+l)+ [j + 1)2 B{n+l)+ {j + i)^^ {n + i). ...(152)

The functions A, B, ^ are tabulated by Hori. It is easily verified that for

our purpose ^ may always be neglected, and that at the temperatures

concerned ^ im

,?„(2i+ l)e—l-»<,-..m..__^__ (153)

with sufficient accuracy. It remains, therefore, only to compute the series

2 -.f—^—^^
e-'^c^ln+ij/fcr (154)

and its first two differential coefficients. For the values of T concerned

not more than four or five terms are required, so that observed values are

available and no extrapolation is needed. The results are given in the

following table. Partington and ShiUing state that the best representation

of the observed total specific heat between 273° K. and 2273° K. is given by

C^ = 4-659 + 0-00070 T. (155)

Table 3.

Specific heat C^ of H^^ at high ternperatures.

Temp. ° K
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The agreement is satisfactory especially at the higher temperatures where

it would fail but for these theoretical refinements.

If it is desired to refer the energy values back to a model it is necessary

to assume a definite law of force betAveen the nuclei. Such calculations

have been made by Fues,* for example, using the new mechanics. His

result is quoted here for reference if required. For the law of force

£'pot=-^'+(2wo)-^^|^-2p2 + C3(p- ir + c,{p- 1)^...|, ...(156)

where p = r/vQ, Tq is the equihbrium distance apart, and V(, the classical

fundamental frequency of small vibrations, the energy values (constant

terms omitted) are

E {n,j) = hv, {n + 1) [1 - |/c2 (1 + 2C3) (i + m + ...

+ 8^ (i + W [1 - x' U +m - 8^ (^ + i)' [3 + 15C3 + ^c^ + 3c,],

(157)

where k = hj4.7T\-A . '.(158)

It is natural to attempt to extend to other diatomic gases the con-

struction of semi-empirical partition functions which has proved success-

ful for H2. The results are surprising and lead one to suspect grave

inaccuracies either in the observed specific heat or in the band spectrum

data. Errors in the latter would mean of course that we have taken data

for a state that is not the normal state. This is impossible for CO which

has an infra-red vibration-rotation absorption spectrum. Oxygen is the

worst case. The observed value of the specific heat given by Partington

is well reproduced by the simple theory using a Planck term if we use a

value 5600 for liVf^jh instead of 2240. These discrepancies are interesting

and await further investigation, but this will require experimental work
at high temperatures.

The specific heat variation takes place for the halogens CI2, Bra ^^^ I2

in a convenient temperature range, but good observations seem never to

have been made. Existing observations are consistent with values of hvjk

of about 1000, 450, and 300 respectively.! The value 300 for l^ is well

determined by the band spectrum.

§ 3-6. Polyatomic molecules. The only polyatomic molecules which could

possibly show less than the classical rotational energy in accessible tem-

perature ranges are those containing only one atom other than hydrogen,

and of these only CH4, NH3, and OHg need be considered. Low tempera-

ture observations are only practicable for CH4 (methane), and values of C^jR

* Fues, Ann. der Phys. vol. lxxx, p. 367 (1926).

t Cox, Proc. Camb. Phil. Soc. vol. xxi, p. 543 (1923); Eucken, loc. cit.
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less than 3 have actually been recorded* and Urey f has tentatively analysed

them. They seem in reasonable agreement with the partition functions

of § 2-63. In view, however, of the extreme symmetry of CH4 accurate

data for CroijR and an accurate analysis might well prove of great interest.

Turning now to higher temperatures, it is of course useless at present

to attempt the analysis for any but the simplest molecules, and as among

these there are good observations for CO2, HgO, CH4 and NH3 we confine

attention to them. Owing to the considerable number of vibrational

freedoms a convincing analysis is only possible when the vibrational

frequencies can be regarded as already known by other evidence, from the

(infra-red) band spectra.

§ 3-61. Specific heat of ammonia gas {NH^). A satisfactory explanation

of the infra-red band spectrum of the NHa-molecule has been given by

DennisonJ on the assumption that the molecule has the form of a regular

pyramid with the nitrogen nucleus at the apex. There are then four distinct

fundamental frequencies of which two are double. There is one relation

between them. The four frequencies can be correlated satisfactorily with

the frequencies of important bands. We may therefore take the two single

frequencies to be 1-340 x 10^^ and 0-281 x 10^* and the two double ones

1-009 X 10^^ and 0-474 x 10^^. If we make the rough approximation of

using Planck terms (150) for each vibration, then

^^.p(5^)+p(lM?) + 2p(iiL0) + 2p(^«) (159)

These are derived from Dennison's theoretical frequencies which are

slightly different from the observed ones given above. The molecule has

a symmetry 3 ! = 6 and the rotational terms divide up in an elaborate

manner § which, however, is of no importance at high temperatures.

Taking
CJR ^ 3 + Cvib/i2

the observed values are shown plotted against the theoretical ciu"ve in

Fig. 4. The agreement is very satisfactory on the whole, but much higher

temperatures are necessary to test the contributions of the first term

in (159).

§ 3-62. Specific heat of methane (CH^). A variety of evidence (such as

inertness and absence of electric moment) indicates a highly symmetrical

structure for the nuclei of this molecule, in which the H-nuclei (in equi-

librium) probably lie at the vertices of a regular tetrahedron with the

* Partington and Shilling, loc. cit.

t Urey, J. Amer. Chem. Soc. vol. XLV, p. 1445 (1923).

t Dennison, Phil. Mag. vol. I, p. 195 (1926).

§ Hund, Zeit fiir Phys. vol. xlhi, p. 788 (1927).
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carbon at the centre. The normal modes have been investigated by

Dennison* and shown to consist of one single, one double, and two triple

vibrations, nine in all of four independent frequencies. The band structure,

so far as it is known (which is not in great detail), agrees well with the

assignment to these modes in order of the following frequencies:

4
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investigated. But the observations even after Eucken's discussion are

hardly certain enough for more serious comparison with theory.

Table 4.

Vibrational specific heats of CH^

.

Temp. ° K.
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peratures where its specific heat is too high. No escape is provided

by the falhng off of the rotational specific heat for the small moment of

inertia G below its classical value, since the moment of inertia is too large

by a factor about 10,* The only possibiUty seems to be that molecules in

I' =7-05X10

J' 3=2-05x10

Fig. 5. The normal vibrational modes of the COj molecule. The lengths of the arrows

show roughly the relative amplitudes for the different particles.

Table 5.
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dotted line ah in Fig. 6, in reasonable agreement with observation at low

temperatures, using only data from the band spectrum. McCrea also brings

forward some other evidence in favour of this change of shape. There are

then, however, difficulties with the specific heat at higher temperatures, and

the question can hardly be regarded as settled.

§ 3-64. Specific heat of water vapour {H^O). Attempts have been made

to accoimt in a similar way for the specific heat of HgO, but without success.

A recent analysis by McCrea* shows, however, that the very large specific

heat at high temperatures must be accounted for by dissociation of the

molecules of water into Hj and Og . The observational material is therefore

not suitable for illustrating specific heat theory.

173 373 573 773 973 1173 1373 1573 1773 1973 2173 TK.

Fig. 6. The specific heat of COg; observed, C„; calculated for the bent model, C„';

for the straight model, C^".

§ 3-65. Summing up this survey we may say that the general forms

of the curves of specific heat for ordinary gases are well reproduced by the

theory. Closer agreement, however, between theory and observation may
require a knowledge of fine points in the theory of the structure of the

molecule and in discussion of the observations. The final refinements have

already been made in the discussion of the specific heat of Hg at all tem-

peratures, but not in any other case. In the hght of this example we may
expect such refined discussions to be valuable for other gases and hope that

they will not be long delayed. Attention might well be paid to Og, NHg
and CH4 in particular

.

* McCrea, Proc. Camb. Phil. Soc. vol. xxnr, p. 942 (1927).
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§ 3-7. The formation of partition functions by limiting processes. We
postponed from the last chapter a closer discussion of the difficult points

in the formation of partition functions for classical systems by a limiting

process. It will be sufficient to consider the partition function for the

translatory motion of free atoms in an enclosure of volume F, which is

the typical and the most important case.

In the earher discussion, where no limiting process was involved, it

was convenient to choose a unit of energy to fit the assembly, so that all

the energies were measured by integers without a common factor. Here
this implies a continual change of the unit of energy as we proceed to the

hmit, which is apt to obscure essential features. We therefore fix the

unit of energy once for all and assume that for the artificial assembhes

of the sequence the t,^ are chosen so that l,^ = ^^/t, where the ^^ and r are

integers, and t changes from one sequence to another. As we proceed

to the limit t -> oo.

The partition functions for the atoms in the artificial assembly may
still be taken to be 7 / x v <j ^

and we require the coefficients of z^ in, say,

[h{z)r[j{z)r,

and similar expressions. The powers of z in h (z) are now fractional and

[j (z)]^ represents the partition fmictions for the rest of the assembly. If

we write x = z^l^, h (x) = T^StX^t, etc., these coefficients are the coefficients

^^^^^^"
[h{x)r[j{x)r,

1 r rJr
and therefore ^ =

2^ij ^^^i ^^' (^)>'' ti (^)]^ (163)

On changing back to the variable z we find

in which the contour ry means that the integral must now be taken t times

round the circle y. We have to study the asymptotic form of (164) when

T -> CO.

The following arguments are incomplete in detail, but show how the

use of H (z) in place of h (z) in all the integrals and the derived dis-

tribution laws may be justified. The details can be filled in without

much trouble.

Let ^ (2) = Ef8fzf/% (165)

where h^S^ is the extension of that set of points in 6 dimensions in which

; < 2^ (i>i^ + i^2^ + P^') < ~r^ {(^1 » 92 , qz) in F}.

5-2
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Any other possible h (2) mil differ from this only by terms of order 1/t. Then

477
/i^S; {(^ r inM'v, ;i66)

It is found that the dominant contributions come from the first term in

{ }, and

Thus, approximately,

;i68)

and any other h{z) will hkewise approximate to (168). In (164) z^ and

j (2) are uniform functions of z, and so is [h {z)Y-^ when it is summed for all

the T circles. Thus we can write

C
2-771 J yZ^

dz
i [i {z)r Q {M, r, z), ,(169)

where Q {M, r,z)= - i: [h {ze^-^)f^,
T r =

(?^}"-;;y.(l-.V-e-A)r»" (170)

In (170) it is supposed for definiteness that am (z) = for real z and that

am [z) Hes between r: tj" on the circle y. The series in (170) can be expanded

in the form

^^r(|if + ^^^r(f^4-2.)^,^^^
T^^^ r (IJf

)

2t!

the other terms vanishing on summation. When r ^ co

r (IJf + rr)

Therefore as t ^ co

Q {M, r, z)

irr)l

I ((277m)i V\^

(rr) UI-1

rV (fJf ) ( h^

1

q {M, z). ;i7I)

The factor l/V will be irrelevant, as it mil occur similarly in all the integrals.

It can then be shown that we can work out all the distribution laws using

q [M, z) in the ordinary integrals in place of [h (2)]^. The imique distribu-

tion laws so obtained in terms of q {31, 2) will be those obtained by pro-

ceeding to the classical hmit before calculating average values.
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In order to see that this form is the same as that obtained by proceeding

to the classical Hmit afterwards as in § 2-7, we examine the form of q {M, z)

for large M. For real z it can be shown at once by comparing the series

2+ 2^^-lz2+ ... with

Jo V aOGrl/z)^^^J(log l/z)^'

that the difference is neghgible for large M. It follows that as Jf -> oo

q{M,
(27rm)^ V M

-{H{z)r (172)
.h^{\og\lzf-l

A closer discussion of the series for complex z shows that, for the pm-pose

of substitution in the integral (169), q {M, z) can be replaced by (172) for

all values of z provided that log (1/2) is real for real z and that
|
am {z)

\
< n.

This argument, when the details are filled in, is the full justification of the

procedure of § 2-7. It shows that the order of the operations t ^ 00 and
£^ -^ 00 is indifferent, and that, with the proper convention as to z, h (z)

may be replaced by ^ (z) in the integral for C. Similar arguments apply

to the other integrals, to differential coefficients of h (z) and H (z), and to

other classical systems.

A somewhat similar limiting process is required for sets of quantized

systems when the energy quanta are incommensurable, but the arguments

are simpler. We form a sequence of artificial assemblies with commen-
surable energies, whose hmits are the actual energies of the real assembly.

A procedure which uses the limiting partition functions with a properly

defined range for am {z) is justified by the same arguments. We shall not

find it necessary to refer again to such Hmiting processes. We shall assume

that, where necessary, they have all been carried out.

§ 3-8. Fluctuations. We have hitherto ignored all questions of the

fluctuations of a quantity P about its mean value P. As we pointed out

in the introductory chapter a proof that in general {P — Py = (P) is

essential to the completeness of the theory, to guarantee that an

average property is one which the assembly may be expected actually to

have. We shall show in Chapter xx that asymptotic formulae for the

general fluctuations (P — Py can be calculated for all integral values of

s by a simple extension of the analysis of this chapter. We shall not stay

to consider these here, but content ourselves with proving that

(P- P)2=. 0{P) (173)

in all the important cases that arise. We observe that

(P_ P)2.^ P2_ (p)2^ (174)
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Consider a typical assembly for which

G = ^. f^^!, [f{z)r [g {z)r - , (175)

and consider the case P = E^. Then, by the arguments of §§ 2-4, 2-6,

If we evaluate this we find

^=[/w]-^^(^^iy[/(w^(i+^Q) (177)

We have also

^ = [/(^)]-^(^j|)[/(W^(l + 0(i)) (178)

It is here necessary to include the 0-terms, for the leading terms in the

fluctuation will cancel. Thus, combining (177) and (178),

E? = \f (^)]-^ ^ ^ {^ [/ (^)]''} ( 1 + ^ Q)

'

= {K...^f|(i.o(l)).
It follows that

{E^ - E^)^ = {E/IE) + {E^),

-0{E2, (179)

which is the relation required.

The fluctuation of, say,^^ can be calculated in a similar way. We have

{a^ — a^Y = a^ {a^ — 1) + a^ — («r)^3

and CaAar-l) = ^ ^^J
^^

\ J^i {^rZ^^Y [/ (2)^-^ [g {z)Y . ...(180)

Evaluating this we find

o, (a, - 1) = if (if - 1) (wA-'mf {»W (1 + (g))

,

= (i-^)k)=(i + o(^)).

Thus (a, - a,)2 = a, - (a,)Vif + ((a,)V^),

= 0(^), (181)

which is the relation required. The method is quite general. We shall not

usually refer to such questions again except in Chapter xx, but shall in all

cases leave it to the reader to supply such proofs as are necessary to
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establish the genuine normality of the equilibrium properties of the

assembly. The omitted proofs are always extremely simple.

There is, however, one point of some importance which should not be

overlooked. All our arguments can be used to determine P, even when P
is not large for values of E which are large enough to make other mean
values such as Q effectively normal properties of the assembly. This does

not in any way invahdate the calculation of Q or P. It merely means
that P itself is not yet, owing to its smallness and relatively large fluctu-

ations, an effectively normal property of assembhes of this size.



CHAPTER IV

PARTITION FUNCTIONS FOR TEMPERATURE RADIATION AND CRYSTALS.
SIMPLE PROPERTIES OF CRYSTALS

§ 4-1. Temperature radiation. In addition to the energy of the material

systems in om* assembHes, there will be energy of radiation in equihbriiim

with the matter. It is desirable therefore to construct a partition function

for this energy, to enable us to include it in a general discussion of equi-

librium laws. This will be especially true of very hot assemblies, in which

the energy of radiation is comparable to the energy of the matter. It is

not without interest to observe that, if we treat the aether in any enclosure

as an approximately independent dynamical system, obeying the laws of

the quantum theory, then Planck's well-known laws of temperature radi-

ation follow at once from the equihbrium theory of statistical mechanics.

This is in itself trivial, for of course the laws of the classical quantum theory

were constructed to give it. What is of some importance is that we thus

deduce Planck's law of temperature radiation as a theorem of the pure

equilibrium theory, without appeal to any other fundamental principles

or to the mechanisms of the processes of absorption and emission. Such

an exposition was first attempted by Debye*.

§ 4-2. The normal 7nodes of a continuous medium. In order to construct

a partition function for the energy of the motion of the aether, regarded

as analogous to a material system, it is only necessary to find suitable

coordinates by which to describe its motion and to apply the rules of the

quantum theory. This is easily done. We must start by analysing the

number of degrees of freedom of a continuous medium—for the sake of

generahty this may be the aether or ideahzed gases or elastic sohds.| The
gas, the aether, and the elastic solid are fundamentally merely continuous

media capable of transmitting respectively compressional oscillations only,

transverse oscillations only or oscillations of both types.

The possible motions all must satisfy the general wave equation

^-^^V^*/*. (182)

In (182) (ji has various meanings in the various problems—a velocity

potential, a component of electric or magnetic force, the dilation Hdu/dx,

or a component of the "molecular rotation" w^ = | {dwjdy — dv/dz),

{u, V, iv) being the velocity components of the medium. For compressional

* Debye, Ann. der Phys. vol. xxxiii, p. 1427 (1910).

t Jeans, Dynamical Theory of Oases, chap. xiv. Some minor oversights are here corrected.
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waves there is only one independent type of solution. For transverse aether

waves if the components (Z, 7, Z) of the electric vector all satisfy (182)

then so do the components (^, B, C) of the magnetic vector and, moreover,

ox

There are therefore here just two independent types of solution. For the

torsional transverse waves of an elastic soHd

ox

so that there are just two independent types here also, or three in all for

an elastic soUd including the compressional waves.

Consider for simplicity an enclosure of the shape of a rectangular box

X = 0, X = a,

y=0, y = ^,

2 = 0, 2 = y,

and a solution (/> of (182). Let c/)o be the value of </> for ^ = 0. Then assuming

the possibility of an expansion of ^o in multiple Fourier series we have

00 00

JL V V V J cos l-^x COS ^Try cos rnry
•^^ ~

7 n n
..'""' sin ";^sin ^~sin y

^^^'^^

Similarly, if
<f)Q

is the value of dc^ldt for ^ = 0, we can write

JL / _ V V V J' cos l-^x cos in-^y cos n-ny

"^^ ~7 n n n"""sin a sin B sin v ^

Then it follows that the solution of (182) is

A V V V L .^o. / ,
^'irnn •„ ^,) COS l-^X COS ^^^TT?/ COS niry

(185)

where P'' - -'ci^
{^. + f. +$]

(1^6)

In each of (183)-(185) there are eight possible terms and eight independent

coefficients A, A' for given I, m, n.

We must now consider more closely the boundary conditions. For

sound waves in a gas (0 velocity potential) we must have d(f)jdn = on

every boundary; that is, dcfy/dx = at a; = and x = a, etc. This can only

be effected by retaining only the cosine terms in </>, so that

</> = S 2 S -^^j^^cosp^H ^^smp^^cos — cos -^ cos

—

-.

Z = 07?i = 0n = i i? J
« P y

(187)

Thus to each Imn there corresponds here just one possible normal mode of

the system—one degree of freedom. For compressional waves in an elastic
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solid ((/) the dilatation) we must have ^ = over the boundary, only the sine

terms can occur and there is just one normal mode as before.

The transverse aether waves and the torsional elastic sohd waves are

similar. For the former we may take cf)
= X. We must then assume that

the walls of our enclosure are perfect conductors, or energy will not be

conserved in the assembly. Thus X ^ at y = 0, y = ^, z ^ 0, and z = y,

which leaves the two terms of type

cos I'^x • 'miry . TiTTZ

There are similar terms in Y and Z. In X, Y and Z, however, the pure

sine terms are impossible, or else the condition

^|f=» <!««)

cannot be satisfied. Of the one remaining term in each of X, Y, Z, two

only remain independent when (188) is satisfied. There are thus 1, 2, or 3

normal modes per value of I, m, n in. the three cases gas, aether, elastic

sohd.

We now return to (186), in which a can take dififerent values for the

different types of wave. Since p = iirajX, where A is the wave length, we

X-.
= ^. + ^.+-.- (189)

The number of normal modes with wave lengths A satisfying A > Aq is equal

to 1, 2, or 3 times the number of points with integral coordinates inside

an octant of the elUpsoid (189) with A = A^, which has the volume

The number of normal modes with wave lengths between A and A + f?A is

therefore 7n

47ra/Sy^(l,2, 3) (190)

dX
in the three cases, or 47rF -rj (1, 2, 3), (191)

A

where F is the volume of the enclosure. This result is really independent

of the shape of the enclosure.* For the aether the number of normal modes
with frequencies between v and v + dv \q

SttF
-^^'^^^^ (192)

where c is the velocity of light.

* Weyl, Math. Ann. vol. Lxxi, p. 441 (1911), or Courant, Gott. NacJir. (1919), p. 255; Math.

Zeit. vol. vn, p. 14 (1920).
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§ 4-3. The 'partition junction for temperature radiation. We shall assume

that the zero of energy for the vibrations of the aether is the state in which

every normal mode has its lowest possible quantum number.* The energy

in any other state is then on all versions of the quantum theory

h {n-^vy + ... + n^v^ + ...),

and each such state is of weight miity. The partition function is then

R{Z) = S(„)2'^K-l + ... +nr''r + ...),

= n,{\-z^^r)--^. (193)

This factorization is tjrpical of systems whose motions separate into inde-

pendent parts, hke the normal modes of a continuous medium controlled

by Hnear partial differential equations. Convergency conditions are

satisfied so long as
]
2

]
< 1. To obtain an inteUigible form of (193) we

apply (192). Then
877F

log R{z)= f Y^v^dv log (1 - z'^") (194)

On proceeding to the limit dv ^ we obtain formally

\ogR{z)= -^ Tv^log {I- z^^)dv (195)
c J

To evaluate the mtegral we can use the logarithmic series and integrate

term by term. Then

- r vnog{\-z^^)dv= . 3 n
^

,1 ,
S\ (196)

Jo ^ (log IjzY in*

Since Sw"^ = 77^90, we find

8775F
log^W =

45,3;,. (log iy,)3
- (197)

Consider an assembly containing radiation and N material systems of

partition functions/ (z). Then by the arguments of the last chapter

C=2^,.[^,iJW[/(z)F, (198)

7'

where Ej^ is the average value of the energy of the radiation in the assembly.

It follows that

E^=^~\ogR (a) (^ == e-V^^), (200)

F~ - - 8775F _ 877^^-^
,

°^ ^ ~ 15c3F (log 1/^)4 \5c^h^ '
^

'

* Any other choice of this zero introduces an infinite constant into the energy of the radiation '

which is without physical significance.
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This is the Stefan-Boltzmann law of total radiation with the usual theoretical

value of Stefan's constant. To find the energy associated with any particular

range of frequencies we write

R {z) = R, (z) R, {z),

SttV
where log R^ (z) = — —^ v'^dv log (1 — z^").

Then by the usual arguments

:^ = ^^iogi?,(^),

SttJiV vHv

c3 ^-nv _ I
.(202)

In the usual notation E^dv is the energy density in this frequency range,

and we find

^.-"^'eH^. (203)

which is Planck's law.

We can now introduce the energy of radiation by means of its partition

function R (z) into any discussion of equilibrium conditions. The limiting

processes involved are of a simple type, for the final form of .B (2) is merely

an analytical approximation to the partition function (193), which is that

of a quantized system. No special investigation such as that of § 3-7 is

necessary except to deal with incommensurable frequencies.

Though we do not take up thermodynamic relationships until

Chapter vi, it is again convenient to record at once the thermodynamic

consequences of the existence and form of the partition function R (•9-).

The radiation contributes k log R (&) to the characteristic function, and

therefore by equation (399) we find

S,=^klo^Ri^)-,kT'-^§^,

3277^1-^ 4 g"
4:5cVi^ 3 T' ^ '

p^^kT^logRi^),

-4^^-^f' (^^^)

for the entropy, Sj^, and pressure, p^, of radiation.
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§ 4-4. Applications to crystals. The partition function for a crystal can

be similarly constructed, to the approximation with which we can deter-

mine the normal modes. The work is a transcription of the usual deter-

mination of the energy content.* It will not be possible here to enter in

great detail into the equihbrium properties of crystals, in particular into

the calculation of the necessary functions from assumed lattice structures

and laws of force. For these the reader should refer to Born {loc. cit.). But
some account of the very great successes of statistical mechanics in this

field should be given, not entirely limited to specific heats. The field of

apphcation here is of course far richer than for the permanent perfect gas,

whose equilibrium properties are summed up almost completely in

pv = NkT and the form of C^ .

A crystal may be supposed to be built up of a lattice of N congruent

cells each of which contains s atoms, atomic ions or electrons. It is not

normally necessary to include aU the electrons in every atom in the cell.

Those which are tightly bound to a particular atom belong to that atom
just as in a gas, and a partition function can be assigned to each atom or

atomic ion for its internal degrees of freedom. These, however, make no
effective contribution to the properties of the crystal at relevant tempera-

tures any more than to those of a gas and for the same reason (§ 3-2).

But for the sake of full generahty it is necessary to allow for some of the

atoms being ionized and for some few of their electrons having an inde-

pendent existence in the cell.

We regard the crystal as a single Hamiltonian system, and its motion

as small oscillations about a configuration of equihbrium, which we analyse

into its normal modes. To a first approximation these ^\'ill aU be simple

harmonic oscillations, and will adequately represent the motion so long as

the general run of the oscillations is small, that is, when the crystal is

not too hot. At greater violence of oscillation terms in the potential energy

of higher order than the squares of the displacements must be introduced.

The effect of these on the energy and partition function can be treated by
perturbation theory.

§ 4-5. The partition function for a crystal. It has been shown by Born
{loc. cit.) that there are, as one would expect, 3s distinct sets of normal

modes for a crystal of s structural units per ceU, and that the frequencies

of each set Vj {j = 1, ..., 3s) N in number are distributed uniformly through

a certain three-dimensional space in which spherical polar coordinates

represent space frequency (i.e. wave number) and direction of wave
normal for the corresponding wave. The 3s sets of frequencies divide neces-

sarily into two groups, those whose frequencies tend to zero for long wave

* Bom, " Atomtheorie des festen Zustandes", § 27 (1923), Encyc. Math. Wiss. vol. v, part 3,

No. 25, whose exposition we follow in the main here.
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lengths of the normal mode, and those whose frequencies tend to a non-

zero hmit. In general if the unit cell of the crystal is properly chosen there

are just three of the first type, for which

v,= c,/A+ ... {j= 1,2,3); (206)

the Cj are the, velocities of sound and are functions of direction of the wave
normal. The other (35 — 3) sets of frequencies may be called by distinction

optical, and for them we have

y. ^ ^.0 + c,/A + ... (i
= 4, ... , 35) (207)

The Vj^ and Cj are functions of the crystal structure and the Cj again of

direction of the wave normal. The v/ correspond to the frequencies pecuhar

to the crystal determining its anomalous reflections (Reststrahlen)

.

In apphcations of this analysis into normal modes it is usually suffi-

ciently accurate to ignore the variation of Vj with wave length in (207) for

the optical modes, but for the acoustical modes this is inadequate. The

more exact frequency distribution law is required. The analysis has been

carried through by Born for the general lattice structure. It is clear that

the result ought to approximate closely to the results obtained in the

simpler problem of § 4-2 of fixing the acoustical frequencies of a continuous

medium (elastic solid), and this is in fact the case. It can be shown that

for the acoustical modes the number of the N frequencies of the jth set

which lie in the frequency range v, v -\- dv for wave normals in the solid

angle dQ. is asymptotically equal for large N to

^.v^dvda (i=l,2, 3), (208)
Cj

where V is the volume of the crystal. Since there are N of these frequencies

in all there will be a finite upper limit vj* for these v's in each dQ., such

V r^r vHv - ^ ^ da = N. (209)
J Cj J Q O J Cj

Both Vj* and Cj are functions of direction. In general for frequencies not

too near Vj*, the total number dN of acoustical frequencies in the range

V, V + dv is therefore

dN=4^v[~+^, + ^^^v^dv, (210)

in which the c's represent mean values for direction. For isotropic crystals

or quasi-isotropic mixtures there is no dependence on direction, and this

reduces accurately to

dN^^7rV(J^, + ^^v^dv, (211)

where c^ and Cj are the velocities of torsional and compressional waves

respectively—this is the result of § 4-2.
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It is now easy to construct the partition function to this approximation.

There is one new point that here first needs attention—the precise specifica-

tion of the zero of energy. One might be tempted to define this to be either

the state of lowest permissible energy in each normal mode, or the state

for which the Hamiltonian H of the small oscillations is zero. With the

latter definition the energy zero for the crystal is then the state of rest

with every constituent particle in its position of equihbrium. [According

to the new mechanics this is not a possible state of the system. There is

an irreducible nullpunktsenergie ^hv in every normal mode.] This specifica-

tion, however, of the energy zero hardly goes deep enough, if variations

in the volume of the crystal are taken into account, for such variations

which vary the length of edge of the unit cell must alter the potential

energy of the state of rest itself. This ambiguity can be avoided by taking

the energy zero as the state of infinite separation at relative rest of all the

constituent particles of the crystal, each particle separately being in some
specified normal state. The energy of the crystal in its state of rest is then,

say, Fq {V). Fq { V) is of course negative ; its argument can usually be safely

omitted. It is, however, only in the simplest case of an isotropic crystal

subjected only to isotropic pressures or tensions that the argument V
sufficiently defines its state. We return to the more general case in § 4*9.

The energy of the state of the crystal specified by the quantum numbers
n^, ...,n^, ... is

Fq + h (WiVi + ... + n^Vr + ...),

the weights unity (or at least all equal), and the partition function K (z)

given by
3sN

logK (z) = F^logz- Slog (1 - z^-r). (212)

according to the classical quantum theory. This must of course be approxi-

mated to by the foregoing analysis of the frequency distribution. We then

find at once

log K {z) = Fologz- F S r^J log (1 - 2^^") v^dv - N S log (1 - z'^"/).

(213)

It is usually sufficiently accurate to ignore variations of vj* and Cj with

direction and to define mean values Vj and Cj by the equations

cr c-

In virtue of (209) v^ = Cj
( ^ Y

.

(215)
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If we now define three new constants of the crystal by the equations

^0^. = ]iy. (j = ij 2, 3), and replace Vj* by Vj in (213), we find

SAT 3 1 rk@j log Hz
log K (z) = f„ log z - (i„p^^.S jj0^3j„

log (1 - e-') xH.

Zs

- N i: \og{\ - z^^f) (216)
y = 4

According to the new mechanics we must replace log (1 — e~^) by

log (1 - e-^) + Ix and log (1 - z'^"/) by log (1 - z^^f) - Ihvj^ logs in the

formula (216).

Having constructed the partition function K {z) we have at once the

usual expression for the mean energy hi^ of the crystal;

W^ = ^^\ogK{^). (217)

In terms of the absolute temperature T,

log K (T) = -j^ - 3JV S ^J log ( 1 - e-^) x^dx - N Hlogil - e-^'fl^'^),
kl j^l^} Jo i = 4

(218)

3 1 r@f/T r^rlr 3s 7,^,0

E, = n + ^N^T^^^^.l, ^1 + «^,-^^-, (219)

The last result has been simphfied after differentiation by an integration

by parts. These are the complete formulae, but the 3^—3 frequencies can

be grouped again into two classes : 3 (^ — 1 ) infra-red frequencies not

necessarily all different, and Z {s — jp) ultra-violet, where p is the number
of massive particles in the unit cell and s — p the number of separated

electrons. We can in most appHcations (always at low temperatures) ignore

the ultra-violet frequencies of the electrons altogether, and so find in all

in (218) just 3p terms, pN being the total number of atoms in the crystal.

This view of the part played by the "free" electrons in the lattice is

somewhat old-fashioned and should probably be discarded altogether. In

view of the work of Pauhf and Sommerfeld|, which we can discuss more

conveniently in Chapter xxi, we should now again rather regard these

electrons as an electron gas in free movement among the positive ions of

the lattice just as in the classical theory of metaUic conduction which we
owe to Drude. The only difference is that the gas is an almost completely

degenerate one and does not contribute appreciably to the specific heat.

The result is therefore the same as for a lattice of high frequency.

If in (219) we ignore the differences between O^, ©3 ^^^d ©3, and neglect

the terms arising from the infra-red frequencies, we find approximately

^ 9NkT^ M^ xHx

t Pauli, Zeif.fur Phys. vol. XLi, p. 81 (1927).

X Sommerfeld, Naturwiss. (1927), p. 825, and Zeit. fur Phys. vol. xLvn, p. 1 (1928).
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This is Debye's result, which we could recover directly by constructing a

partition function according to Debye's theory. The complete theoretical

result (219) is due to Born. The form was first suggested by Nernst.

The two types of term in (218) and (219) are often referred to as

Debye's terms and Einstein's terms respectively. The latter name arises

from the early investigation by Einstein of specific heats of crystals in

which he treated their normal modes as Planck's oscillators all of the same
frequency. Einstein's terms in (218) are obviously only significant when
the Vj^ are effectively different from zero, so that it is allowable to ignore

the terms c^/A. When v^^ -> we must finally get an additional Debye's

term. For example, in a two-atom lattice in which both types of atom are

similarly situated and of approximately equal masses (e.g. KCl) it is

obviously better to neglect Einstein's terms and treat the whole body as

if it were built up of atoms of a single type. We shall thus get a better

approximation to the corpus of normal modes.

§ 4-6. Debye's formula for (7„ in theory and experiment. The possible

field of vahdity of Debye's formula for the partition function of a crystal

can be defined fairly closely. The formula can only be expected to apply

to crystals built up out of atoms of one type, all of which are similarly

situated in the lattice—that is, for elements crystalhzing in the regular

system, with extensions perhaps to nearly regular crystals and to simple

compounds of similar atoms like KCl. The unit cell of the lattice may then

be thought of as containing a single atom, and N is the number of atoms

in the crystal or conglomerate. An examination of the facts shows a

remarkable agreement with the theory in the expected region, as will now
be described. The quantity directly observed is C^, while the theory gives

C^. The derivation of C^ from Cp is effected by formula (250) of a later

section.

Let us introduce for shortness the notation

3 [^

D (x) is frequently called Debye's transcendent. Then

E^= Fo + 3NkTD (0/T), (222)

C,= 3iVA:|i)(|)-|i)'(|)| (223)

For large values of x

^W = ^.-3e-jl +
0(^)}

(224)

rx r<x> rco

This is easily proved by replacing by I — , expanding l/(e'' — 1) in
J Jo J X

F 6
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the infinite integral and integrating term by term. For small values of x,

by direct expansion of the integrand,

D{x) = 1 - fx + ^x^ + {x^).

These relations can be differentiated. Therefore we have approximately

E^=Fo+SNkT, C,=^3Nk(l-^^^^ {T -^ co), (225)

^ = i^o + ^-^ Nk g, G^ = '-^ Nk |^(l - ^^, e-l-) {T -> 0).

(226)

We make the following observations: (1) The relation C^, = 3Nk is an

example of the theorem of equipartition of energy and expresses the well-

known laws of Dulong and Petit and Neumann and Regnault. It should

hold to within | per cent, for T/Q > 3. The law of Dulong and Petit states

that the specific heat per gram-atom has approximately the same value

(6-4 for Cp, 6-0 for C^ after correction) for all elements in the sohd state.

The law of Neumann and Regnault states that the specific heat per gram-

molecule of a simple compound in the sohd state is approximately equal

to the sum of the specific heats of the corresponding sohd uncombined

components. These laws, their region of vahdity and the nature of the

exceptions to them are well known. (2) The relation (226) states that

C^ and Ej^ vary as T^ and T^ at low temperatures, with deviations of at

most 2 per cent, so long as T/Q < 1/10. (3) The general form of (223) shows

that C^ obeys a law of "corresponding states", being a function of the

single variable @/T. (4) Equation (215) and the following definition show

that can be calculated from the velocities of soimd and so from the

elastic constants of the crystal. These four deductions are borne out by
experiment. The nature of the agreement will now be examined more

closely for the last three.*

The T^-law at low temperatures has been accurately verified for elements

and simple compounds. Typical examples are shown in Table 6. The figures

of the third column should be constant when the T^-law holds.

The law of corresponding states has also been found true for elements

and simple compounds. Fig. Tf shows the observed values of C^ for

eighteen substances plotted as functions of T/Q, the value of for each

substance being chosen to give the best fit for that substance with the

continuous curve which represents equation (223). The agreement is

eminently satisfactory. The substances and temperature ranges are

specified in Table 7 overleaf.

* The following statements of fact are based on Schrodinger, Phys. Zeit. vol. xx, pp. 420, 450,

474, 497, 523 (1919), except where otherwise stated. Full references to the original literature will

be found in this paper.

t Schrodinger, loc. cit.
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Table 6.

The T^-law for C^ at low temperatures.

Copper (Cu)
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Table 7.

Data for Fig. 7, studying the law of corresponding states.

[4-6
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The following examples are given by Born:*

Table 8.

Comparison of the values of from specific heat data and from direct

calculation from the elastic constants.

85

Substance
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calculated from the elastic constants at low temperatures. There is some

tendency for these 0's to be larger than those derived from the whole

curve, but the increase is far smaller than the calculations indicate, and

the matter remains not fully cleared up.

Table 9.

Comparisons of derived by various methods.

Substance
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Then the contribution to G^ is

Br,{%n- 1) 7"K,

87

i 1

\y ,(234)
(2w) ! {In + 3) ^2.

Formula (234) replaces Debye's term in C^. The integrands of the coeffi-

cients K„ can be shown to be rational functions of the measurable elastic

constants of the crystal, so that the K„ can be calculated. The full formula

for C„ is then

C„ Wk 1
g, {2n - 1) y-\^\

t ^ ^^"(2w)! {2n+ 3) T^.

3p (Q,/y)2eeyT

,• = 1 (e«j/^-l)2'

(235)
vaHd when T > 0/27r.

Forsterhng has used this formula in the most accurate comparison of

theoretical and observed specific heats yet attempted. Having calculated

the first term entirely from elastic data, the correct number of extra terms

of Einstein's type are introduced corresponding to the known lattice

structure. The number of different Q, allowable is also known from the

structure and symmetry. These are then fixed to give the best fit possible

between the observed and theoretical C^ , and the whole theory is checked

by comparing these 0^- mth the natural frequencies of the crystal deter-

mined by the method of Reststrahlen . Excellent representations of C„ are

possible among other substances for NaCl, KCl, KBr, CaFg and SiOg, and

typical comparisons of the wave lengths of the natural frequencies derived

from specific heats and optical measurements {Reststrahlen) are shown in

the following table.

Table 10.

Comparisons of wave lengths of Reststrahlen directly measured and

deduced from specific heat curves.

Substance
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In (236) we have shown © expUcitly as a function of F; must always

vary with V according to the simple theory, unless F^ k~^ (x (c)}"^ is

independent of the volume. If the soUd obeyed Hooke's law perfectly, so

that for all displacements the stresses and strains were strictly proportional,

this function would be independent of F, for Poisson's ratio ct would be

an absolute constant, and the compressibility k would be proportional to

the linear dimensions. But this ideal case can never hold for actual soUds,

and a F-variation of 9 must be admitted.

By the general formula (127)' which becomes ^ = A^T ;^ log K (T) when

rewritten in terms of T, it follows at once that

p=-F,'{V)-3NkT®^D(^^^ (237)

This is the equation of state. For many isotropic bodies it is sufficient to

assume that

^0(1') = -^ + ^. («>'«). (238)

where A and B are constants. This is the form of Fq (F) when the atoms

in a regular crystal act on one another with central forces consisting of a

strong repulsive field of short range of potential /3/r", and a weaker attrac-

tive field of longer range of potential — a/r^K In the calculation of F^ (F),

by definition, the structural units are taken to be at rest in their mean
positions. We cannot enter here into the calculation of A and B from the

laws of force of individual atoms (see Chapter x). If Vq is the natural

volume of the solid at zero temperature and pressure, then

i^o'(^'o) = 0. (239)

For the form (238) Fq is therefore fixed in terms of the constants of the

interatomic forces by the equation

^ = ^. (240)

For small volume changes we may write

Fo' {V) ^ F," (Vo) {V - Fo),

_l n{n-m)B
-

9 F„i«+2
(•"-

''o)' ^^*1)

and ^o(F) = i^o(^o) + j^""^^^^^;^ (242)
Vo-

F^ (Fo) = - -^^. (243)
n — m B



4-8] Simple Equations of State 89

We may now introduce the usual coefficients of thermal expansion a

and compressibiUty k by the equations (definitions)

-4(a' ^-)(a (-)

(245)
At the absolute zero this reduces to

^^0= l/Foi^o"(F),

and by (241) and (243) we have the relation

Fo{V,) = ^^. (246)
nniKQ

This important relation between the compressibihty and the lattice energy

or heat of evaporation at zero temperature can be used to determine nm,

or n when m is known as for an ionic lattice (w = 1). The actual comparisons

are made with a calculated Fq (Fq), after fixing B to give the right scale

to the lattice. We shall take up the general question of the specification

of interatomic forces in Chapter x.

On differentiating (237) with p constant we find that

h"(n.3i^.-^^{|^(f)}e'](|I)^=-3i..|j^(|)4z>-(|)

^^

This can be reduced to the simple form

3a f
0'

,

^,C,. (247)
K (0

We see at once that a body for which 0' = should show no thermal

expansion. Finally, from the thermodynamic relation

0,-O.^Ti^^)X^)^ (^*«)

and fro.
(|f). = f S ^^ ^' '''''

obtained by differentiating (237) with F constant, we deduce

C^-C^= 9a^TV/K. (250)

This formula is of great practical importance in deducing C^ from observa-

tions of Cj, . It is principally used in certain semi-empirical simplified forms.

These formulae appear to be in good agreement with observation for

many sohds. In particular (247) is satisfied if the value of — F070 is

about 2-3. A calculation of a and k in terms of the interatomic forces would

allow this value to be interpreted as fixing a relation between m and n.
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§ 4-9. General equations of state of the general crystal. We have hitherto,

in discussing its equation of state, regarded a crystal as an isotropic solid,

subjected only to changes of volume by isotropic (hydrostatic) pressures,

which might be negative. The single geometrical variable necessary could

then be the volume V as for a gas, and the single elastic constant the volume

compressibihty. This, however, is insufficient for even the simplest sohd,

since sohds possess at least two independent elastic constants, say Young's

modulus and Poisson's ratio, and crystals of lower symmetry may possess

many more, 21 in all. We are therefore led to re-formulate the calculations,

to include the symmetry of the crystal structure and the general mechanical

and perhaps electrical stresses to which a rigid body can be subjected.*

We start by specifying more closely than in § 4-4 the basic cell, by
repetitions of which the crystal is constructed. The cell is of course not

unique, but we suppose a definite choice has been made. The cell is then

a definite parallelepiped whose three concurrent edges are specified by the

vectors a^ , a.^, ag . The volume of this cell is

A = §3 =
.(251)

and 8 is called the lattice constant. Choosing any origin in the basic

cell, let r be the vector from O to any other point, usually to one of the

other atoms in the same cell. Then the vector distance from to the con-

gruent points in the other cells is written

r + r^ r'= ?iai + Z2a2 + iJgag, (252)

where li,l2, Is are any integers positive, zero or negative. The}^ are con-

tracted to I and called the "cell-index".

The positions of the atoms or other units requiring separate considera-

tion in the basic cell are denoted by the vectors from 0,

r, {k^l,2,...,s). (253)

Any atom of the lattice is at a point specified by r;^.^, where

r,^=T,+ vK (254)

The vector distance between any two atoms of the lattice is

r,^ - r,/ = r, - r,, + r^^-^ = r,,,,(^-n (255)

§ 4-91. Crystal statics, or energies without heat motions. We will next

consider the form of the potential energy fimction when the atoms are at

rest in their mean positions and act on one another with radial forces of

* My knowledge of the atomic theory of crystals is derived almost entirely from Born, Problems

of Atomic Dynamics, Cambridge, Mass. (1926), and "Atomtheorie des festen Zustandes", lac. cit.,

q.v. The simple account, which I have tried to give here, not unnaturally follows Bern's lectures

closely.
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potential energy (/.^^ ^. (r) for the pair of atoms of type k and ¥ at a distance

r apart.

We require of course the potential energy per unit cell, which may be

taken to be the basic cell, and have therefore to calculate the potential

energy of each of the k units in this cell in the field of all the other units in

the crystal, which is regarded as infinite in extent. We then obtain the

total energy of the crystal, omitting surface effects, by summing these

potential energies over the k units of the cell and multiplying by \N , where
N is the number of cells in the actual crystal. Every term would be counted

twice over by this summation, hence the factor \. We shall continue to

call the total potential energy of the actual crystal Fq , and have therefore

F^ = ii\^S,i:,,,,c/,,,,, (r\^:). (256)

It is commonly convenient to use a different notation for the I and k

summations, calling them 8i and S^. We have therefore

F^ = i^^S^S,,,, </.,,,, {r\^,). (257)

In (257) the summation Si rims from — cx) to + oo in each of the three

indices and the summation 2^^ j.» twice over the s units of the basic cell.

All terms for which r = 0, that is, k = k', Z = 0, are omitted.

Methods of evaluating these sums in terms of given atomic forces for

the simpler cases are sketched in Chapter x, and we shall not consider them
further here.

We should observe in passing that the form chosen for the unit of

summation as a term depending on two atoms only is by no means general.

More general forms are to be expected and are required to account for

the more intimate properties of crystals. For example, if we have in the

basic cell three non-colhnear ions 1, 2, 3 with appreciably polarizable

electronic structures, their mutual potential energy can be reduced to the

form
J. (r^ r^ r^ \

^^123 ^*125 ^235 ^31^5

at least approximately, but is not expressible in the form

<^12 (^12) + <^23 (^23) + </> 31 (^31),

which is the form assumed in (257). Summations more comphcated than

(257) are then required, which we shall not formulate here.

Let us now consider the requirements of the equilibrium state. If we
suppose that the vectors a^ , ag , ag , r^ , . .

,
, r^ as specified refer to the equi-

hbrium state with all units at rest in their mean positions, then the first

order variations of F^ must vanish for any small variations in position of

any one (or more) of the constituents. Since all the cells are the same

these conditions of course are not all independent, and it is easy to see

that the independent conditions reduce to those in which every cell is

submitted to the same variations. Such variations may be called homo-

geneous displacements and are of special importance.
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Let us now pause a moment to consider the complete specification of

the geometrical variables which describe the crystal, and which are entitled

to enter into thermodynamical or statistical equations. It is no longer

possible conveniently to use the actual volume; again, the displacements

from the equiHbrium state with the atoms at rest and undisturbed by
external fields of force are practically always small in an actual crystal.

It is therefore convenient to take as standard the undisturbed state of rest,

and to refer all other states to that state. In any other actual state of the

crystal (preserving the lattice repetition) the mean positions of the struc-

tural units can be just specified exactly by specifying the general homo-

geneous displacement which transforms the standard state to the required

state, and this disturbance may usually be regarded as small. When
external forces are acting, mechanical or electrical, they must therefore be

supposed to be uniform over the extent of the crystal. Since the actual

space variation of external fields is very small on the molecular scale this

apparent restriction is a trivial one.

The general homogeneous displacements, which we are thus led to

regard as a suitable geometrical specification of the crystal, contain terms

for the displacement of one set of atoms relative to another which are at

first sight not accessible to direct observation and control for the crystal

in bulk and so not permissible statistical variables. Ideally, however, one

can regard these displacements as directly measurable by X-ray methods,

which can already place all the atoms in the basic cell at least in simpler

cases. Moreover, in ionic lattices some at least of these displacements can

be varied independently by external electrostatic forces. They cannot

therefore all be ignored, and it seems a legitimate generalization to include

them all in the statistical description of the crystal. As we shall see, they

can be ehminated later from the partition function by the usual thermo-

dynamic process as soon as it is desired to do so.

Disturbances of the crystal other than homogeneous only enter with

its thermal motion.

The general homogeneous displacement consists of small vector changes

in aj, ag, ag, Tj, ..., r,, the lattice being rebuilt out of the cells so altered.

In greater detail we write these changes as follows, where bars denote the

new values. For the components of a^, a..^, a.^

o^x = at,x
+

'^y u^.y at,y (^=1,2,3); (258)

for the components of Tj^

xl = Xk + Uk,x + '^yU^^yyk {Jc=l,...,s) (259)

The displacements then consist of a homogeneous strain of the whole of

each cell defined by the tensor u^^y, and then a displacement of the s
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elements of each cell by the vector u^ . To exclude a rotation of the lattice

as a whole as a rigid body the tensor u^^ y must be symmetrical or

Ux,y=i^v,x {allx,y), (260)

and to exclude a translation of the lattice as a whole as a rigid body the

sum of the s displacement vectors must vanish or

2a.%,x=0 {allx). (261)

Let us now suppose that we can compute the value of Fq given by (257)

under this homogeneous displacement, retaining terms in the displace-

ments up to the second order. Then

+ Z 2.,,, 2.,,,
g^^_ ^9,,^^^

^fc.x Uy,, + 2.,., 2.,,,,,
^^^^^ g^^^^^^

Uy^, Uy,^,,^,

^F^ + F^ + F._. (262)

By the conditions of equilibrium in the specified standard state

These equations are not all independent, for the change of potential energy

must vanish identically when the crystal is moved as a whole or rotated

as a whole in the absence of external forces. Thus

\8w. Jo ' V3w. Jo

'(,
^^^1^0, (264)

and since in a pure rotation w^. ^ + Uy^^ = 0, etc.,

The independent conditions (263) thus reduce to 35 + 3, which is the same
as the number of independent displacements {u^^y, Uj.^^) subject to (260) and

(261), and therefore just suffice to fix the standard equihbrium state. The
numbers of independent variables and equations can of course be reduced

by the crystal symmetry, but are reduced equally.

Suppose now that the crystal is again held in equihbrium but not in

its standard state. This is possible if external mechanical or electrical forces

exist, acting selectively on the different miits of the crystal cell. We have

then to consider a crystal element in a resultant state of homogeneous
displacement. The selective forces on particular sets of atoms may naturally

be thought of as being apphed as body forces acting uniformly through

the body of the crystal, but the ordinary mechanical stress tensor which

primarily deforms the cell is in actual practice apphed to the surface of

the crystal. One may think at first sight that in a scheme which omits
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surface effects these surface appKed stresses cannot be included, but this

difficulty is only apparent. We find the same apparent difficulty in dis-

cussing imperfect gases in Chapters viii and ix, which is considered in

detail in § 5-71. We shall not go into details here, but by similar arguments

the surface apphed stresses can be seen to be transmitted uniformly through

the sohd by considering the actions across suitable sets of geometrical

interfaces inside it, so that effectively the cells of the crystal are subjected

to uniform body forces. In any such case of non-standard equilibrium

under uniform homogeneous displacements we have therefore

(^.,Jo=-^^, (^^^)

{K,,^\^-^, (267)

where the functions so defined, vanishing in the standard state, are the

external stress tensor and the s external selective force vectors respectively.

This identification follows at once from the requirements of the conserva-

tion of energy.

§ 4-92. Crystals iviih thermal agitation. It is now possible to superpose

on the distorted crystal the usual general thermal agitation, and so to

construct its partition function. Into the details of this calculation we need

not go. It requires calculations of Fq to the third order in the displace-

ments in order to get the frequency spectrum of the crystal correct to the

first order terms in the homogeneous displacements. The calculations are

complicated, but can be carried through. With approximations of the

same type as before we arrive at

log K iz) = (F„ + F,) log z -
^j^jp^,

^S j3g^3 j^
log (1 - e-') xH^

3s

- N I. log(l - z^",*), (268)

corresponding to (216), but now ©,* and v^* refer to the displaced lattice.

If we anticipate Chapter vi as before and write (268) in terms of T, like

(218), we have

log K{T)^- '-^^ - SNE^ ^3 (

^ log (1 - e-) x^dx

3s

- iV 2 log (1 - e-®,*/^'), (269)

where 0,* = 0,- { 1 - 2^, ^ B\^xU^^x- ^x,yB^'^^yU^J (270)

Strictly speaking, the averaging for direction of equation (214) must be

carried out remembering that B^j^^^ and B^xy{j=^ 1, 2, 3) are functions of

direction. This will be indicated in the equations that follow.
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The analysis is of course only carried through for small displacements,

so that only the first order terms arising from the changes in the 0's can

be retained. When we expand (269) in powers of %^a. and w^.^^ and indicate

the hitherto ignored directional averaging, the result can easily be reduced

to the form

log K{T) = - -^^ - ^N S ^3 I
^

log (1 - e-) xHx

3s I- N 2 log (1 - e-^^n + ^ {S,,, K\, ^ w,,, + S^,, K\^,u,J,

(271)

where, the bars denoting averaging for direction,

(272)

K .,, = NkT j3 _2 £^.,, ^3 1^ ^-^—J
+ _S^5V ^i5;yF31

(273)

To the specified order of accuracy this is the complete partition fmiction,

replacing (218), and depending on all the geometrical parameters Uk^^ and

u^^y instead of only on V. The temperature dependent terms have only been

given to a first approximation in these parameters.

§ 4-93. General applications. By the general formula (122), which

applies to the assembly we are here considering, we have in terms of T

KZ>=^T ^^\og K{T), (274)

K::^ = kT g^^ log K (T). (275)

These are the average reactions of the specified types which the assembly

exerts on the outside world, or the forces exerted by the surroundings

reversed in sign, so that the external work done by the crystal in any

specified displacement at the given temperature is

^x,yK3:,y8Ux.y + '^k.xKjc^x^Ujc^x- (276)

The average energy E^ is given as before by

T^ = kT^~\ogK{T). (277)

The forms of the average reactions are found on combining (266), (267),

(274) and (275) to be
r^ rr

Kx,y ^ "^^x,y — -^, . (278)
'-''^x,y

f) F
J^k,x=T^°k,x—

^

—

•

(279)
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Anticipating the results of Chapter vi we may of course apply all the

processes of thermodynamics to our crystal. In particular we can evaluate

the displacements Uy.^^ and construct a new function of the other variables

and Kj,,^ instead of the Uy.^^ which has similar properties. This is a process

of practical importance because all observable properties of a crystal are

properties which it possesses for given values of the external forces

Ky^^ and not for given values of the displacements %,(,. As appears in

Chapter vi k logK (T) for the crystal is the thermodynamic function known
as Planck's characteristic function, and — kT log K {T) is the more usual

work function'f A . The function we require here is

A* = A + i:.,K,,u.,, (280)

expressed as a function of T, u^^y and K^^^ after ehminating the u^^^,

from (280) by means of (279). It is as it were a partial transformation

from the work function to the free energy. By the formation of the usual

total variation we see that

'^^'-=^¥=' (2^1)

We have still to define the strength of the electric doublet p induced in

the crystal by the displacements of type u^.^^, whether they are due to

external electric fields, to thermal agitation or to the other displacements

u^^y. We have at once

p^ = N'Lyej.Uj,^^, (282)

where e^ is the charge on the kth unit of the basic cell. If an external

electric field of components E^., E^,, E^ is acting, the forces X^
a;
are given

by the equations

T;;:=-Ne,E,. (283)

The Uy^y. may be supposed eliminated from (282) also, with the help of (279).

We cannot pursue the theory of crystal structure in detail any further,

but must content ourselves with general remarks. The general equihbrium

properties of crystals and their relationships may be illustrated by the

following diagram. J
The formal equations connecting these quantities can all be derived

from the functions A or ^*, and can therefore be evaluated for given

crystal structiire and given atomic models by carrying through the calcula-

tions which we have indicated here. For example, the pyro-electric effect

is a change of dipole strength in the crystal caused by heating it, and is of

course coupled with the corresponding inverse electrocaloric effect which

is a change of temperature following on the apphcation of an external

t This function is sometimes called the free energy, but not with strict accuracy, and it is well

to distinguish it systematically from F—A +pv, the true free energy.

X Given by Bom, loc. cit. after Heckmaim.
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electric field. The pyro-electric efifect appears of course as the production

of equal and opposite surface charges on opposite faces of the crystal. The
best known example is tourmaline in which the charges separate along the

trigonal axis. This effect can be calculated by evaluating p^, py, p^ for zero

external stress tensor and zero electric field. The pyro-electric moment so

calculated corresponds to that observed, but it is not what may be called

the true pyro-electric moment which would naturally be that for zero external

electric field and zero displacements u^^y. The actual displacements u^^y

for zero stress tensor themselves involve non-zero values of it^. j, (indepen-

S tress Field

Energy

Fig. 8. The equilibrium properties of crystals.

dently of the direct temperature effect), and so produce a piezo-electric

moment which is superposed on the true pyro-electric moment to give the

observed value.

The point of chief interest to statistical theory is the dependence of all

these parameters on the temperature. It is not difficult to see that the

interconnections between the pyro-electric moment, the thermal expansions

and the temperature are fixed by the coefficients B^^ ^ and B^^., y of equations

(272) and (273). At low temperatiu*es only the Debye-terms, j = 1, 2, 3, are

important, and we find in addition to (226) for the energy, the relations

Thermal expansions oz T*. (284)

p,,Py,p, azT\ (285)

The proportionahty between the excess energy content over the zero point
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energy and the thermal expansions is in agreement with observation, and

represents a law formulated on empirical grounds by Gruneisen, but the

proportionality with the pyro-electric moment is not in agreement with

observation. The observations suggest that p^. tends to zero rather like

T or T^. The explanation is still uncertain, but it is probably connected

with certain other phenomena in crystals of low symmetry to which we
shall now refer on account of their striking character.

§ 4-94. Some properties of strongly anisotropic crystals. The investi-

gations of Gruneisen and Goens* on single crystals of zinc and cadmium
have shown that these hexagonal crystals are very strongly anisotropic,

'P&L —\f6

-ZnW

<;alculated

observed

J 1_J I I L
nX?" 200° 300"

Fig. 9. The coefficients of thermal expansion all and a j_ of

zinc crystals along and across the hexagonal axis.

all their properties being markedly different along and across the hexagonal

axis. In particular the frequencies of elastic vibration are very different

in these directions. On following through the calculations for the coeffi-

cients of thermal expansion it is found that

where

* Gruneisen and Goens, Zeit.fiir Fhys. vol. xxvi, pp. 235, 250 (1924), vol. sxix, p. 141 (1924),

vol. xxxvn, p. 278 (1926).

«ll
=

yii^ii + yi2V^_,
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To a first approximation /^ and
f.^

are of Debye's type, but with very

different 0's. The y's are elastic moduh, so that the p's are of the nature

of "thermal pressures". The 0's are as usual fixed by the elastic constants

and serve to determine successfully the specific heats.

The interesting special property of these crystals is that they show for

certain temperatures a negative value of aj^ , that is a contraction across the

hexagonal axis on heating. But this follows from the theory, for owing to

the great difference in the 0's /^ at low temperatures has a sensible value

while /a is still negligible. At higher temperatures both a,, and a^ become

positive, for the functions /^ and
f.^

become comparable and yga > ] yi2 |

•

The observations and theoretical calculations for zinc are shown in Fig. 9

and are in remarkable agreement.

In view of this result it seems possible that the observed variation of

pyro-electric moment, which does not obey the T'^-law, arises from a com-
bination of several rather different functions of the temperature which
partly balance each other. The crystals concerned in pyro-electric effects

are in general strongly anisotropic.

7-2



CHAPTER V

THE GENERAL ASSEMBLY. DISSOCLITION AND EVAPORATION

§ 5-1. Introductory. We now pass on to the general assembly in which

gaseous atoms and molecules combine and dissociate, or evaporate from
and recondense on crystals. Generally speaking we may say that we are

now to investigate the equilibrium state of an assembly of practically

independent systems, which no longer retain their individualities through-

out the motion of the assembly, but are able to break up and recombine

in such a way as to form any specified number of different tjrpes of inde-

pendent systems. It will obviously be important to specify what we regard

as the ultimate structural elements of the assembly—the indivisible systems

which can combine, but never break up further. The formal exposition will

be the same whatever the ultimate units are assumed to be, but the physical

interpretation will be different. In- the initial exposition we shall for

definiteness suppose that the ultimate units are the atoms of chemistry.

At a later stage the same formulae will be reinterpreted in terms of positive

nuclei and electrons in the study of the properties of matter at very high

temperatures. This interpretation is obviously the more fundamental.

There are naturally outstanding difficulties in the picture of molecules

built up from structureless atoms, which disappear when the electronic

structure of the molecules is considered. We have already had an example

(Ha) in § 3-4. This later mterpretation will of course include the former as

a special case, but in practice the two fields hardly overlap. In any
assembly hot enough to contain an appreciable equilibrium concentration

of atomic ions and free electrons, the number of molecular species effectively

present will be found to be always very small and generally zero.

Recent discussion of the problems of dissociation from the standpoint

of pure statistical mechanics adopted in this monograph has all been based

on the work of Ehrenfest and Trkal*. These authors only discuss the dis-

sociation problem on semi-classical lines; they assume, that is, that all

degrees of freedom of a system are either "fully excited" so that the clas-

sical theory is adequate or "completely unexcited", in which case they

may be ignored. This restriction is here removed so that the discussion is

perfectly general, and subject only in its range of apphcability to restrictions

of a physical nature inherent in the problem. Actual matter (for example,

imperfect gases) ^^dli not always be comparable to an assembly analysed

* Ehrenfest and Trkal, Proc. Sect. Sci. Amsterdam, vol. xxm, p. 162 (1920). I do not know o

any earlier discussion of dissociation or the kindred matters of chemical constants, "thermo-

dynamic probability" and absolute entropy on the hypotheses of Chapter i which can be regarded

as logically convincing.
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into practically independent systems. We shall make a first attempt in

a later chapter towards the removal of this particular restriction.

For simpHcity of exposition we begin by considering a gaseous assembly

in which a single reaction A^ + A^ :^:^ A^A'^ can occur. This serves to bring

out the essential points at which the analysis of Chapter ii must be extended

to take account of such reactions. We find that the expressions we require

are still coefficients in certain expansions in multiple power series as in

§ 2-4; to sum them it is only necessary to use the exponential theorem

instead of the multinomial theorem used there. The required coefficients

can then be picked out by a multiple complex integral which can be

evaluated by steepest descents. The new selector variables, over and above

z, have their proper physical interpretation. Just as z corresponds to the

temperature, so the new variables, one for each type of atom (or other

structural unit) in the assembly, correspond to the partial potentials of

thermodynamic theory.

After discussion of the simple case mentioned we give the analysis for

the general gaseous assembly, and then the extension to assembhes con-

taining crystals or other condensed systems for which we can construct

partition functions. We include some simple examples of the interpretation

of our formulae in terms of atoms, molecules and chemical reactions, but

the main discussion of the results can only be profitably taken up after

we have discussed the relationship between the equilibrium theory of

statistical mechanics and the laws of thermodynamics.

§ 5-2. The nu7nber of "examples'" of a dissociating assembly, the number

of iveighted complexions of an example, and the total number of iveighted

complexions. In conformity with our general principles we are to determine

the equiUbrium state of the assembly by averaging over all elements of

the phase space, or all complexions representing possible states of the

assembly. Let us denote by an example of the assembly that collection of

states in which all the systems of the assembly retain their individuahties.

An example of the assembly is then exactly equivalent to an assembly in

which no dissociation or recombination is going on, so that the numbers

of each species present, and the particular atoms constituting each mole-

cule, remain permanently fixed. The number of weighted complexions of

any example of an assembly can therefore be directly calculated by the

methods of Chapter ii. The new feature in the enumeration of the total

number of weighted complexions for a dissociating assembly consists solely

in the enumeration of the number of examples.

In the simple case in which there are present in all X^ atoms A^ and

X2 atoms A^ we may classify the examples of the assembly into groups,

which are characterized by the specification of the numbers of free atoms

and molecules which the assembly then possesses. For example, we may
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here specify a group of examples by the specification that there shall be

M^ free atoms A^, M^ free atoms A'^, and N molecules A^A^, these numbers

being subject of course to the conditions

M^ + N = X^, M^ + N = Za. (290)

Each member of the group will be represented by the same number of

weighted complexions calculated as in Chapter ii. To determine the number

of examples in the group we observe that every possible distribution of

the X^ atoms A^ among the M^ free atoms and N molecules is possible,

and similarlj^ for the X^ atoms A^. The total number of ways in which the

atoms can be permuted is of course

X^\X^\,

but this counts separately permutations of the same M^ free atoms A^, M^
free atoms A'^, and N molecules A^A^ among themselves. Such permuta-

tions do not correspond to separate examples of the assembly, for they

are included in the count of weighted complexions for any one example.

The comit of the complexions for an example takes full account of all the

possible positional interchanges of the systems of any species among them-

selves, for these interchanges are effected by the free motion of the one

example since all our systems are here atoms and molecules in a gaseous

phase. To avoid this reduplication we have therefore to divide by M^ ! If2 \N\,

so that the number of examples in the group is reduced to

This however is not necessarily all. It may happen that certain rotations

of the molecules as a whole will also be equivalent to a permutation of the

constituent atoms of each type. In general, let there be a different orienta-

tions of each of the N molecules which are equivalent to such a simple

permutation. This will be called the symmetry number of the molecule.

These interchanges, a^ in all, will again be taken full account of by the

count of weighted complexions for any one example, so that the number

of independent examples in the grovip is finally reduced to

-^1
'
^2 i

/29n

In the special case under immediate consideration o- = 1.

The foregoing arguments are quite general. If there are in all X^ , Xj , ...

atoms A^, A"^, ... or other ultimate structural units, M^, M^, ... free atoms

A^,A^,... and N^^jN^,... molecules of various types, with symmetry
numbers ctj , 0-2 , . .

.
, then the number of independent examples in a group

^illb^ X,\X,\...

M^lM^l ...N^lN^l ... ai^i(T2^2
.(292)
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An alternative presentation of this important point may be of value.

During the natural motion of any example the centres of gravity of the

M-^ free atoms A^, the M^ free atoms A"^ and N molecules A^A'^ may inter-

change their M^, M^, N positions respectively, and each of the N molecules

can independently assume any one of a orientations. Each of the resulting

changes, M^l M^l N I a^ in number, is a permutation. No one of these

permutations must be allowed to count as a new example.*

Having enumerated the number of examples in a group the final count

of the total number of weighted complexions is a simple matter. If c is

the number of weighted complexions corresponding to a single example,

then the number corresponding to the group in the simple case is

The total number wall then be obtained by summing (293) over all possible

values of ifj, M^ and i\^—that is, all positive values subject to (290). There

will be similar formulae in the general case.

Following Chapter ii we suppose that the partition fmictions for the

free atoms A^ and A^ are fi {z), f^iz), where

f,{z)^i:,w,H^u\ f,{z) = i:,wjz^u\ (294)

and for the molecules A^A^, g {z), where

g {z) = i:,p,z^v. (295)

We shall suppose, further, that the statistical state of any example is

specified by assigning the numbers a/, a.2^, ..., aj-, ... , a^^, a^, ... , a^, ...

,

6i , 6.2 , . .
.

, 6^, . . . of atoms and molecules respectively to their various cells or

quantum states. We may suppose for convenience that g {z) is so specified

that it includes both (classical) kinetic energy of translation and (quantized)

internal and rotational energy. It is then actually the product of two

separate partition functions.

In constructing these partition functions it is necessary to specify pre-

cisely a standard state of the assembly to which we assign by convention

zero energy, and to measure all energies consistently relative to this state.

In all cases of gaseous dissociation the most convenient state of zero energy

to assume is that state in which all the molecules are dissociated, so that

the assembly consists entirely of free atoms, at rest, sufficiently far apart

to be entirely outside each other's fields of force.f On this convention the

assembly can in certain states possess a negative energy, but of course

there is no objection to this. If, then, in any state E is the total energy of

* See for all this enumeration Ehrenfest and Trkal, loc. cit. p. 169. The corresponding formula-

tion according to the new mechanics, which is, I think, completely satisfactory, and simpler than

that of the classical theory, is given in Chapter xxi.

f This specification is that already used in § 4-5.



104 Dissociation and Evaporation [5*2

the assembly, it must be specified relative to this zero, and so must all the

e's and t^'s. For example, if x is the heat of dissociation per molecule at

the absolute zero—that is, the work required to separate a molecule at

rest in its lowest permissible quantum state of vibration and rotation into

two free atoms at rest—then the energy to be associated with this state of

the molecule is —
;\;,

or, say, r\x^ — X-

It is necessary to go back to our original enumeration of the weighted

complexions representing any specified statistical state of the assembly

—here, of an example of the assembly. We fomid in § 2-6 that this number

c was given by

^ ^ i^fl!lfJiv^!K^^^.(V^^..(Pl^...
^^oe)

a^ \ ... a^\ ...hy\ ...

This was eventually to be summed over all positive a's and 6's subject to

S„a/ = if1 , SA^ = if, , S, 6, = iV^, (297)

S^ie^i + S„a„2^„2 + Y.^K-q, = E. (298)

In view of (293) and (290) we here obtain a number of weighted com-

plexions for each group of examples equal to

Z,!Z,!«)'-^V.. (V)V...(p»^i...
.

a^\ ... a^^l ...b-^\ ...
'

in (299) each p^ can betaken to occur divided by a, since D^^v = -^- The
expression (296) has here to be summed over all positive a's and 6's subject

to (297) and (298), and then over all positive ilf's and iV's subject to (290).

This is equivalent to summation of (299) over all positive a's and 6's such

that
S„a„i+S,6, = Zi, (300)

i:„a„2+2,6, = X2, (301)

^ua^e^ + S„a„26„2 + T^X-nv = E. (302)

In view of the fact that the molecular weights p^, always occur divided

by the symmetry number in the form p^.jo, it is usually convenient, as we
stated in § 2-2, to regard a as absorbed into p^, and to use always these

prepared weights for the molecules. We shall in future suppose that this

has been done.

The construction of integrals for C and CP proceeds here from (299)

subject to (300)-(302) instead of (as in Chapter ii) from (296) subject to

(297) and (298). There will be similar formulae in the general case.

§5-3. A gaseous assembly ivitli two types of atom and one possible reaction.

We will now complete the analysis for the simple case, determining the

equihbrium properties of the assembly. To conform to equations (300)-(302)
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we introduce three selector variables Xj , X2, z, and construct the multiple

series

A.IA^IS,,,,
«,M...V!...6i!...

' ^^^^^

summed over all positive values of the a's and 6's. Its sum is obviously

Xi ! X2 ! exp {a'l /i (z) + a;2 /a (2;) + x^x<^g (z)} ( 304)

It is evident that the total number of weighted complexions C, that is the

sum (299) subject to (300)-(302), is the coefficient of x^^ix^^-^z^ in (304).

This can be expressed as the triple complex integral

„ X^ ! Xo ! [ff dx-ydx^dz en,. j. , ^ . ^->

^ ^
(27ri)3 jjj a;,^,+i^^x,+ig^+i e^^P K/i (2) + ^2/2 (s) + ^1^29^ (2)}-

(305)

The integral for each variable is taken round a circle in its own plane,

with its centre at the origin. In the z-plane
|

2
|
< 1, but

|
x-^

\
and

|
X2

\

need not be restricted.

We must next construct similar integrals for quantities such as CaJ-.

For this purpose we have to sum (299) wdth an extra factor aJ- mider the

sign of summation. Each term in (299) or (303) so modified can be obtained

from the unmodified term by the operation Wy^djdw^. Therefore

Ga^ = w^ ^^^ .

In (305) vjy}- occurs only in/^ (2;) and

Therefore

^—r XilXoIfff dx-,dxodz , ^ ,, , /. / X /. / .

(306)

Similarly, CM, - CSa/ = S„t57„i^ (307)

X^l Z2 ! [ff dx.dXodz en,.. r ^ / V £ , ^ / vl= -(2^3~ jj \ x^x,^i^^x,+i^E-.i i^ifi i^)} exp {xj^ (z) + 0:2/2 (2) + x^x^g (z)}

.

^12
^^^^^

For E^^i, the mean energy of the free atoms A, we have

CE^. = C7S,a,ie„i = S„ta,ie/ ^^, (309)

and the extra factor in the integrand is

XiY,^w^^e,^z'u\ or x^zdfjdz.

For Cb^ the extra factor in the integrand is p^XiX^z'^r^ and for CN,
x^x^g [z). For the mean energy Ej^j^ of the molecules A^A^ the extra

factor in the mtegrand of CEji^s is x^x^zdg/dz.
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Let us assume for the moment (for a proof see § 5* 5) that when the

assembly is sufficiently large, integrals such as these can be approximated

to, by the method of steepest descents, by making the contours pass

through a unique set of positive real values ^^,^^,^Qiix-^^,x^,z, at which

the first partial differential coefficients of the integrand all vanish. We
shall then find by extensions of the arguments of Chapter ii that

^1 = liT0,i^V, 6;= ^ie./>.^^ (310)

^= ^i/i (^), ^= IxIsS' W, (311)

etc. The equations defining ^i, ^2? "^ ^^®

liA(^) + ^i^2^(^) = ^^\, (313)

U2{^) + Li29{^) = X2, (314)

^,.§/^p + ,,.§^ + ,,^..^ = ^ (315)

Assuming that ^^^ , ^2 ? ^j which define the concentrations and temperature

of the assembly, are thus uniquely determined, the complete form of the

"equation of mass-action" follows at once from (311) by eliminating |^i, |2-

We find

Thus the equilibrium constant of the laws of mass-action is expressible at

once, in the simplest way, in terms of partition functions.

Integrals can obviously be constructed, which will enable us to

evaluate fluctuations in these assemblies, and prove all such relations as

{P — Py- = O (P), which guarantee the effective possession of normality.

We need not stop over these points further here; details will be found in

Chapter xx.

Let us consider in rather more detail the physical meaning of (316),

which is also called the reaction isochore. We may take

h^ (log 1/^)*
"^

h^ (log l/^)t

{2.(m,-fm2)}tF
^

h^ (log l/^)t

where 6' {^) is the partition function for the internal energy and rotational

energy of the molecule. Relative to our assigned energy zero the normal

state of lowest energy of the molecule has an energy — x- It is therefore

convenient to write u/ /cw a v/ /a\
(0-) = 0--^o {^),
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where b ({>) begins with a constant term, and is the partition function for

the internal and rotational energy of the molecule referred to its own state

of lowest energy as the zero of energy. If to the usual first approximation

we suppose that the internal vibrations are unaffected by the rotations,

the partition function b (^) factorizes into

b (^) = r (&) V (^),

where r {^) is the partition function for the rotations and v (9-) for the

internal vibrations. If we express (316) in terms of average molecular

densities, Vj = 'M'JV , etc., we find

v^^f^TTm^m^^ ^ 1
.g^^,

vi2 Wi + mj h^ (log l/&)t r (^) V (&)

'

~h^\m, + mj " R{T)V{T) ^ '

It is convenient to collect the commoner approximate forms which (318)

may be expected to assume. When T ^
E{T)^pJa,

where p^ is the weight of the lowest possible rotational state calculated

from (91) or (92). When T -^ oo, if the moment of inertia A of the molecule

is effectively constant we find from (119), allowing for the symmetry, that

R (T) ~ '-^.
For the vibrational term one may suppose that to a similar rough

approximation the vibrations are those of a simple harmonic oscillator of

frequency Vq . In discussing specific heats in Chapter ill we have already

seen the hmitations of these simphfications. Then

V (d-) = 1/(1 - ^''"o).

When T ^0, F (T) -> 1. When T -^ oo,

F(T)~f^.
hvo

This form will only be vahd if kT > hv^ and at the same time kT <4 x>

which is in general a limiting value of the sequence of vibrational energies.

For values of kT comparable with x no simphfied form is available.

If we write e = h~/S7T^A then in general, as we have seen in Chapter ill,

hvQ >» €, and the reaction isochore takes successively the following standard

simphfied forms

:

v^,^^2^km,m,\ia ^^^_^^^,

= C'^^'^''^'f ^-^, y^e-W^^ {e<kT<huo,x), (320)

= r?^^')* -4tf.
^"*^-"'" (H<kT<x) (321)
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Equation (320) corresponds to the conditions considered by Ehrenfest

and Trkal and agrees with their result, but only because we have taken

the weights Wn of the nth state of rotation of the molecule to satisfy

t<7„~2n as n ^ 00. Weights such as w or n + 1, which were sometimes

suggested before the advent of the quantum mechanics, could even then

only be maintained by very forced arguments, disagree here with the

limiting principle, and are certainly wrong.

These formulae for the reaction isochore are of very well-known forms,

of recognized vahdity. It is unnecessary to undertake a direct comparison

of the whole of these and similar formulae with experiment, because, as

we shall see in Chapter vi, these formulae and the general equation (316)

really only differ from the formulae of thermodynamics by fixing the precise

value of the constant factor—or, in other words, the "chemical constants".

The ultimate test of the theory need therefore only be made by comparing

observed and calculated values of these constants, and to this we shall

return in connection with Nernst's heat theorem in Chapter vii.

§ 5'4. Oaseous assemblies with any number of components and reactions.

In view of the preliminary formulation of the simple case above, it is now
only necessary to specify a notation suitable for the general gaseous

assembly. Let the different tjrpes of atoms be denoted by the affix r,

molecules by the affix s. Then the energy, weight and number of free atoms

of type r associated with their wth cell will be denoted by ej, wj and aj.

For molecules of type s the corresponding quantities are e„*, Wy\ and a/,

the weight w^^ being taken to include the symmetry number Ug. If A^ is

the atomic symbol for the atom of type r the molecular symbol for the

molecule of type s in the chemical form wiU be

We have assumed here that the molecule of type s contains g/ atoms of

type r. All possible reactions may then be regarded as contained in the set

2,g/^- ^i!: n,^V («= 1,2,...),

or constructed out of members of the set. The actual sequence of reactions

by which equihbrium is attained is without effect on that equilibrium.

Let the number of atoms of type rhe X^, there being j types in all, the

free atoms of type r, Mj. , and the molecules of type s, N^ . Then

X,= M, + i:,q/N, (r= 1,2, ...,i) (322)

To preserve the correct atomic and molecular totals we require

2„a/=lf, (r= 1,2, ...,j), Y,a/ = N, (s=l,2, ...),

and therefore in general

S„a/ + S.S.g/a/ = X, {r = 1, 2, ...,j) (323)
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To satisfy the energy equation we require also

2,5:„a/e/ + S,S,a/e/ = E. (324)

The total number of weighted complexions is therefore

(n.x, !) St^, n,n„ ^^' n,n, ^^^, (325)

where the summation is extended over all positive a's satisfying (323) and

(324). To smn (325) subject to these conditions we introduce the appropriate

selector variables and form the expression

(n.z,!)n.njS(,/^"y;^)""^ n,n. Ma) zrT\

(326)

where S(a) now means unlimited summation over all positive a's. To obtain

(325) we must select the coefficient of x^^ix^^^ ... z^ from (326), but the

expression (326) reduces at once to

(n,X,, !) exp {i:,Xrfr {z) + 1:,Xt^^s^x^^s' ... gr, {z)],

where /^ [z) and g^ {z) are the partition functions for the atom of type r and
molecule of type s. We observe that the exponential contains a single

term of a very simple natiu-e corresponding to each type of atom or

molecule present. We obtain at once

(327)

For CaJ and similar expressions we obtain similar integrals. For

example,
^^ ^^

Ca/ = wj ^^^ = wjz^u^ ^. (328)

The integrand therefore only differs from that of C by the extra factor

w^x^z^u\ In other cases the extra factors are as follows:

For CM,, xJAz),

Co/, W/Xj^s^ X^^s- . , . z'v\

CN, X^^s'x^^s\..g^{z),

(yJi^ri "^ ~dz~ '

Anticipating the results of § 5-5, a unique set of parameters Ix' ^2> •••> ^
are defined by the real positive solution of the equations

Ur (^) + 2,g/|i^.^|2^.^ ... g, (^) = Z, (r = 1, ..., j), ...(329)

^rL^^-^ + 2,^,^.^^// -^^^^ = E (330)
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It then follows by the method of steepest descents that

^- = t^/^,^V, M, = Ur {^), ^ = i^W^V//, (^), ...(331)

(332)

The laws of mass-action follow from (331) and (332) m the form

S;^. = nJa (»)}V
<^='.2....) (333)

We obtain also the energy distribution laws

E:=ir^^^=M;^^\ogfA^), (334)

K = ^,'^s^$,<^ ... ^
^-^P

= N-,^ ^ log g, (^), (335)

and, similarly, any other details of the equilibrium state. For the reaction

of the assembly on external bodies which submit its systems to fields of

force we find, as in § 2-74,

In the case of local boundary fields this reduces of course to the ordinary

equation of state for a "perfect" gaseous assembly (in which, however,

the number of constituents is a function of the temperature),

p= -y{i:,M,+ i:,N,}. (338)

§ 5-5. Proof of the results of §§ 5*3 and 5-4. We now give a proof of the

results of §§ 5-3 and 5-4, parts of which for simplicity are written out for

the case of three variables x, y, z. The proof, however, will be easily seen

to be quite general.

The form of the integrand of C and the analogous integrals is that of

a triple (in general multiple) power series

^--^auQaJ^cX'^y'z'', (339)

in which the Q^sc are all positive, and the a, b, c (integers) start at negative

values and run to + oo. The domain of convergence of the series (339) in

our actual problem is all values of x and y and all z's such that
|
s

|
< 1,



5-5] Formal Proofs 111

but its actual form is immaterial. For our proof we require certain

properties of this function which are obtained in the following

Lem^na. For real positive values of x, y, z the function O has an absolute

minimum at ^, -q, %• ivhich is the unique solution of the equations

80 ao ao

in this domain.
dx dy dz

,(340)

(i) Since (^ is always positive, and since it may be assumed from the

physical origin of the Qajjc that O ^ + co SiS x, y, z tend to their boundary
values (i.e. 0, oo or 0, 1) in any manner, O must have an absolute minimum
value Oq which it assumes at some points of the domain of real positive

values X, y, z. At such a point ^, 17, ^ equations (340) must of course be

satisfied.

(ii) That f, nq, ^ is the unique solution of (340) in the real domain will

follow at once if it can be shown that a7iy stationary value of O must be

an absolute minimum—that is that, if Oq is any stationary value,

O - Oo >
for the whole domain, equality being only possible when x = ^, y = t],

z = ^. If we write x = e^, y = e>^, z =^ e", then

and, by Taylor's theorem, for any stationary value Oq,

O %=l (A-Ao)^^+... + 2(A-Ao)(/.-Mo)
a^o

,(34i;

an expression in which all the partial differential coefficients are to be

evaluated for some particular set of values of A, //,, v. It is therefore only

necessary to prove that the expression on the right of (341) is a positive

quadratic form.

(iii) The proof of the lemma reduces therefore to the proof of the

essential inequahties

aA^>^'
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for every term is positive. Secondly

[5-5

820 d^
W-' dXdfx

320 32$
dbc ^dbc "^^ —'a'6'c' ^a'b'C ^ *^

dXdfX 9/x2

If we collect together all terms containing Qau Qa'b'c we see that this

determinant reduces to

T' n O p{a + a')K + {b+b')iJ. + {c + c')v
a^ a'b'

ab 6'2 +
a "

a'b'

ab

62

The terms { } are formed of all possible permutations of the dashed and

plain letters, and reduce to

ab' a
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to go through the real-value minimum of O, it is only the contribution

from this neighbourhood which need be considered.

To see that only this neighbourhood makes an effective contribution

needs somewhat careful consideration. If certain relations are satisfied

between the a, b, c, there may be other points on the contours at which the

amplitudes of all the terms are again equal so that the same maximum
value is repeated. The same difficulty comes in when z is the only selector

variable (Chapter ii), in which case we have shown that the repetitions

of the maximum are without effect on the physical applications, and can

in fact be avoided by proper choice of the unit of energy. In the case in

which O takes the special form

exp K/i + xj^ + x^x^g}

it is not difficult to see that no repetitions of the maximum can occur

except those which are identical with the repetitions of Chapter ii. To
attain the maximum every term in x^f^ + x,J^ + x^x^g must be real and
positive. This will occur and occur only at points at which the amplitudes

^ici > 0X2 , d^ oi x^, X2, z satisfy the relations

dx, + ^u^z = (Mod 2tt) {all u),

dx2 + ^Jdz = (Mod 277) {all u),

Qn + 0X2 + r)J, = (Mod 277) {all v).

The first of these equations is equivalent to the assertions (1) that e„i is

of the form e^^ + nl,J, where n and the ^J- are positive integers, and (2) that

277/* 277^
6^=^, ^.,= -—%o^ {0<r<n).

The remaining equations add the information that

2 I ^r 2
277r

=0 ^L^ Vv = Vo + n^v , 0X2= eo^,n

%-^o'-^o' = 0(Modn/r).

It is easy to see that if 7^ > 1 these relations may permit of a number of

subsidiary maxima. It must be recalled, however, that/^ and/2 ^i"© neces-

sarily partition functions for free atoms and therefore start with a cell of

zero energy eo^ = €q^ = 0. Subsidiary maxima can therefore only occur for

real values of the a;'s, that is to say, can only be strictly analogous to the

subsidiary maxima of Chapter 11, and can be removed by a change of the

unit of energy.

It may be mentioned finally that, even if the most general type of sub-

sidiary maximum could occur, it would not affect any physical result,

for these depend only on the ratio of two of our mtegrals, and owing to the

special forms of the integrands all such ratios are completely unaltered.
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It is convenient at this point to recall the forms of the partition

functions / and g. Each of them contains as a factor the partition function

for the translatory motion of the atom or molecule as a whole, namely

^>I^^, (342)
7^3 (log \\zY

in which m is the mass of the molecule or atom and F is the volume of the

assembly available to this particular species. We thus obtain for each

partition function the factor F, the rest of the function depending only

on z. It is convenient to recognize this structure explicitly, by writing

Y^F^ (2) for/r (z) and Y^G^ {z) for g^ (2). If there are semipermeable mem-
branes to be considered the F^ and F^ need not all be equal. As we shall

see directly, the asymptotic expansions, which we require when E and the

X's are large, naturally involve also the corresponding largeness of the F^

and Fj.

Consider now the integral

„ Xj ! X2 ! [Udx^dx^dz exp {V^^x^x + ^.^P^^F^ + Yx^x^G)

{1lT%Y ]]] X^X^Z X-^-i.X.^iZ^ .

'

whose integrand satisfies the conditions of the lemma. The unique mini-

mum on the positive real axis is at li, |2» ^j where ii, i^^ ^ is the unique

relevant solution of the equations

Fi^ii^iH- Yi,i,G=X„ (343)

Y,i,F,+ V^,$,0 = X„ (344)

VJ^^F^' + V, ^,^F,' + Yi,i,d-G' = E (i^/ = dFJd^, etc.). ...(345)

We observe that |^i, ^2? ^ ^^^ intensive parameters. Their values are un-

altered if E, the Z's and the F's are made large in any fixed ratios. We
may assume that, when the circles of integration are made to pass through

f1 ) ^2
» -^3 this point provides the unique relevant maximum value of the

modulus of the integrand on the contours of integration. To show that

its neighbourhood contributes the dominant part of the whole integral we
write

FjO^ii^i + Vi^^F^ + Yx^x^G =- FT {ia^, ia^, i^),

so that if the ratios of the F's are fixed W is independent of F. Then for

small values of a^ , ^2 ^^^cl /S the integrand takes the form

exp {FT (0, 0, 0)}

+ KYa^ + 0{Ya^)\, (346)

n which the differential coefficients are to be evaluated at a^ = ag = i^
= 0.

We have already shown in the proof of the lemma that this quadratic
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form is essentially positive. If V is large it follows by the arguments of

§ 2-5 that the variables a-^, a^, § in the quadratic terms may be supposed

to range from — oo to + oo while all other terms remain small. By a

linear transformation the quadratic form can be reduced to its principal

axes, and the value of this exponential, integrated in all variables from
— 00 to + 00, can be shown to be

,(347)

The terms KVa^ vanish on integration. The terms {}^a!^ leave an error

term (1/F). We have already shown in the lemma that J > 0. We
therefore find ultimately for C the asymptotic form

C = XilZ^Iexp {FT (0,0,0)}

(277 F)t
^x,^x,^ W +

v^^
,(348)

Any other integral containing an extra factor R in the integrand can be

discussed in exactly the same way. The leading term differs from C simply

in the extra factor R (^j, ^2? Q')? ^^^ there is still an error term (1/F) as

before. We are led at once to all the results obtained formally in §§ 5-3

and 5-4.

In conclusion it should be mentioned that it may often happen in

actual cases that certain theoretically possible species may be exceedingly

rare in the assembly; some term such as ^^fr (^) may be excessively small.

This will not in any way invalidate our formulae. If we suppose that a

certain species is completely absent we have merely to drop a single term
from the main exponential. The arguments can then all be repeated

unaltered, and it is clear from the form of the equations that the equi-

librium laws which we so obtain differ only imperceptibly from their

complete form. The general validity in fact of this proof of the laws of

dissociative equihbrium is dependent solely on the sufficient size of the

assembly as a whole and not on the effective presence of any particular

possible species, except of course in so far as the laws exphcitly refer to

this particular species.

§ 5-6. Crystals. It is easy to adapt the present methods to include in

the assembly crystals for which we can construct partition functions

(Chapter iv). Consider first an assembly of X molecules (or atoms) of

which P compose a single crystal (or a small number of such crystals) and
N its molecular vapour, so that only questions of evaporation and con-

densation, not of dissociation, arise. To enumerate the total number of

weighted complexions, we observe first that the number of weighted com-
8-2
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plexions of the vapour of iV^ molecules with energy F is by the principles

of § 5-4 the coefficient of x^z^ in

N ! 2, '^'
,

' - = N\exp [xg {z)},
ttj . ...

where g {z) is the partition function for the free molecules. The crystal

(Chapter iv) has a partition function which is effectively of the form

[/c {z)Y, and is represented by weighted complexions in number equal to

the coefficient of z^ in [/c {z)Y, where U is its internal energy. If the energy

zeros are suitably defined then U + F = E, where E is the total energy

of the assembly, and the number of weighted complexions representing

this example of the assembly, including all ways of dividing the energy

between the crystal and the vapour, is the coefficient of x^z^ in

N ! [XK {z)Y exp {xg (z)}. (349)

There is an essential difference in the enumeration of the number of

examples in a group for crystals and for gaseous molecules. For during

the motion of a single example the molecules in the crystal do not inter-

change their positions as do the molecules in a gas. When therefore we
permute the molecules to obtain all possible examples of the assembly

arising during the most general evaporations and condensations, we do

not have to divide by P ! as we divide by iV ! to avoid repetitions of the

same configurations. Thus there are hereX \/{N ! a^) examples in the group,

where o- is the symmetry number of the gaseous molecule. We can suppose

as usual that the symmetry number a is included in the weights of the

partition function g (z). When therefore we sum for all values of N, we
find that the total number of weighted complexions G is given by*

G - J^.\iJ^^ exp {xg {z) - log [1 - xk (.)]}. ...(350)

Equation (350) leads at once to the usual formulae. f For example,

0P= ~^.\\J^. 1-^) -p W (.) - log [1 - .. (.)]}, ...(351)

leadingto ^=
l-fJ(^Y

' <^^2>

* It should be observed that the form {k (z)Y for the partition function of the crystal is only

valid for large values of P. For small values there is of course a partition function k (2, P), but

the deviation of this from {k {z)Y will be without effect on the final equilibrium, provided that

the crystal phase is effectively present.

t A strict view of equations (350) and (351) leads one to include the extra factor 1/[1 -xk 2)]

in (351) in the exponential term, with an expectation that (351) may have to be evaluated at

values of ^ and & different from those for (350). It appears on a closer investigation that no

effective difference is made by this inclusion, as a consequence of the particular values of | and S-

concerned.
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^ = f.^) +7^,. (353)

X^ig m + ^^^

.

(364)

On evaluating (352) we find that to this approximation

|/c(^)= 1 (355)

if the crystal phase is effectively present, so that P is large. From (352)

and (354), or by the usual direct argument,

iV = |gr(^), (356)

which in virtue of (355) becomes

W=g{^)lK{^). (357)

This in the present notation is the usual formula for the vapour-pressure

of the crystal.

It is now clear how to include crystals in the general assembly. In the

expression (327) for C the exponential factor in the absence of crystals is

exp [T^r^rfr {z) + ^s^l"'' X2'''-' •••9s (z)].

If, for example, the molecule 1 is also present in crystal form, with partition

function /c^ (z), the exponential factor becomes instead

exp [llr^rfr (z) + I^s^x'^^" ^-z"'" •••9s{z)- log {1 - X^'^s' X.,'^s' . . . k^ (z)}].

(358)
The equations (329) become

Xr = Ur (^) + ^sq/i^^^'^.^^' ... 9s (^) +
/L^ffff/;;;^^^^

(359)
and the equation (330)

(360)

The equation for P^, the molecules in the crystal, is

_ '~
l-^l^^^^2^^^..Kl(^)' ^

^

which leads (P^ large) to

flV^,'^I^..K,(^)= 1. (362)

The ordinary laws of mass-action in the vapour phase (333) all follow

without modification

N, _ g, (^)
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To these must now be added the vapour-pressure equation

N^ = gA^)lxA^), (363)

which follows from (332) and (362) when this type of crystal is present.

The analysis thus leads at once to the well-known modifications of the laws

of mass-action for gas reactions due to the presence of a sohd (crystalline)

phase of any of the constituent molecules. The concentration iV^i/F of the

constituent which occurs in the sohd phase must by (363) have a deter-

minate value, a function only of T, which is unaffected by the presence of

all other constituents and to which these other constituents must conform

in the laws of mass-action.

The method of evaluating any other mean values connected with

assemblies containing crystals should now be sufficiently clear. It may
be observed, however, that a direct evaluation of P^ needs a second approxi-

mation to (361) and is better obtained if required from the residue of the

X's when the requirements of the gaseous phase have been met.

An example of such extensions to assembhes with crystals (assembhes

of more than one phase) is the generaUzation of (337). This is easily found

to have the form

(364)

The interpretation of this equation for local boundary fields is best post-

poned until we have introduced the idea of internal stresses in § 5-71.

In concluding these remarks on the most general assembhes which we
have yet discussed we should include the energy of radiation in the assembly

which we have not yet done explicitly for dissociating assembhes. We
observe that it merely needs the inclusion of the factor R {z) in every

integrand to take complete account of the equihbrium temperature radi-

ation in the assembly. The equation (330) determining ^ in terms of E is

of course altered, but obviously no property of the assembly expressed as

a function of ^. So far as the laws of dissociative equihbrium are concerned,

it makes no difference whether radiation is or is not exphcitly included,

and this is as it should be. The equihbrium will be the same whether

exchanges of energy take place by radiation or by colhsions alone ; but of

course this does not imply that the steady state remains unaltered when
the assembly is subjected to radiation of a different temperature from

outside. We must of course exphcitly include R {z) when the energy E
of the assembly as a fimction of ^ is under discussion.

Deeper discussion is required when the systems evaporating from the

crystal are not the crystal molecules, for example, in thermionic pheno-

mena. To this we return in § 5-9.
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A further application obviously open to the methods so far developed

is a study of the equihbrium theory of adsorbed films and surfaces phases

in general, but this will not be taken up in this monograph.

§ 5-7. Interiorelation of the vapour-pressure equation. Equation (363)

determines the vapour-pressure of the molecules in a gaseous phase in

equihbrium with a crystal or other sohd for which we can construct a

partition function of the form [k {^)Y- It is desirable to interpret this

equation. The standard state of zero energy can here conveniently be taken

to be that in which all the molecules are condensed in the crystal, and the

crystal is in its lowest quantum state, for we can ignore refinements con-

nected with changes of volume of the crystal. Let x be the work required

to remove one molecule to rest (or its lowest quantum state) at infinity

from the crystal in this standard state. (More strictly let Px be the work
required to separate the crystal of P molecules in this state into P free

molecules at rest at infinite separation; for we are ignoring surface effects.

Defined thus, x wiU b© independent of P for large P, but may depend

effectively on P as the crystals get small, for then the ignored surface

energy may become sensible.) Then, relative to the assigned zero of energy,

h^ (log 1/^)^

Moreover, p = N'kT/V. (366)

Thus

logi> == - ^ + i log T -f log ^^"^^ + log R (T) V (T) - log K (T).

(367)

The symmetry number a may be taken most suitably in the weights of

E (T). This is the complete form of the vapour-pressure equation. For

monatomic gases in which R (T) = V (T) = 1 it takes a well-known form,

and a form hardly less well known when R {T) has its classical value. But,

as with the dissociative equilibria, only the additive constant in the

equation need be discussed in relation to experiment, and this must be

postponed until the thermodynamic relationships of (367) have been

estabhshed in Chapter vi.

§ 5*71. Internal stresses. We have so far defined the pressure only in

such a way that pdSdn is the average work done by the boundary field

on the assembly when an element dS of the boundary is moved in a distance

dn normal to itself. Thus the pressure so far refers entirely to the relation-

ship of the assembly to the outside world. Pressures at points or across

areas inside the assembly, or in general internal stresses, are as yet

undefined. Definitions of these quantities will often be required.
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The average stress per unit area across any imaginary surface inside

the assembly is defined to be the resultant force 'per unit area exerted by

systems on side A on systems on side B, together ivith the momentum transferred

per unit area per second from A to B by systerns crossing the surface from A
to B and Bto A. The stress exerted by side A on side B is necessarily equal

and opposite to the stress exerted hy B on A so long as the forces obey

Newton's third law.

The stress so defined is of course in general a symmetrical tensor of the

second rank of nine components Pxx^ Vvv^ Vzzn Pvz {= Pzy), Pzx {= Pxz)^

Pxy {=-'- pyx)- I'or any gas (or fluid) in equilibrium it reduces necessarily to

the simple form p^^ = pyy = p^^ , py^ = p^^ = py.y = 0. This simple isotropic

stress per unit area, always normal to the surface across which it acts, is

defined to be the pressure. The verification of this simplification and the

explicit calculation of the pressure across any internal surface is immediate

for perfect gases. The forces between the systems are negligible, so that,

for example, p„ is the rate of transfer of a;-momentum across a unit surface

normal to the a;-axis. Molecules with the ic-component of velocity between

u and u + d.u carry x-momentum mu across the surface, and the number
of such molecules crossing unit area in time dt is the number of such mole-

cules in a volume udt. Both other velocity components are entirely irrele-

vant, merely fixing the shape of the volume udt. Thus by Maxwell's law

the number is -m j* , x iNudt jn\\
V WkTJ ^ '^'''

, Nm / m \4 r
+ °°

„ , 2,,^ 7and p,, = -y-
y^;^^) I ^

^2g-j^«2/,T ^^^

_ Nm ( m U /2^\f '^^ _^im~ ~V' \27TkT) {rnTj '2 ~V
Similar values are found for pyy and p^^- ^^r p^,,, which is the rate of

transfer of ^-momentum across unit area normal to the a;-axis, we find

similarly ^^ ^
Pzx= ~^^^f\ I

uive-^^^^^'+'^'y^^dudw,

= 0.

This calculation is of course merely one version of the classical pressure

calculation of the Kinetic Theory.

We have so far considered the case of a single set of systems and calcu-

lated the "partial" stress which they cause. Obviously for perfect gases

the stresses are additive, and reduce as above to an isotropic pressure given

by the equation
, j,

P = ^{S,M; + 2,]^.}. (368)

In (368) the values of M^ and Ng are local values in the neighbourhood
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of the internal point considered. If there are only boundary fields then

the pressure is constant throughout the gas and equal to the pressure on

the boundary previously otherwise defined. This result of course continues

to hold generally, e.g. for imperfect gases, in which connection we return

to it in Chapter viii.

The surface across which we calculate the stress may be an interface

between two phases. It follows at once that the pressure on a soUd phase

is equal to the pressure in the surrounding gas phase evaluated at its

surface.

We are now in a position to examine the form of (364) for boundary

fields. By definition of the external pressure p, Ydy = pdV , and from the

geometry of the assembly dV = dVs+ dVg, where Fg , Vg are the volumes

of the solid and gaseous phases. Hence

Ydy = pdVs + pdVg.

But by (364) Ydy = p.dVs + PgdVg,

where j^s and Pg are the expressions obtained hj applying the general

pressure formulae of § 2-74 to the two phases in their average state as if

they were separate assemblies. Such an apphcation will therefore always

give the correct equal pressures in the various phases.

We may notice also that the equilibrium state of statistical mechanics

as calculated on our general hypotheses is a state of mechanical equilibrium

of the matter in the assembly. No element of it has any mass motion

relative to the enclosure containing the assembly, and in the absence of

external fields the pressure is everywhere constant.

The final result of these paragraphs may be expressed by saying that

the stresses on any volume element or any phase of the assembly may be

calculated by applying the general laws to this element or phase with its

average constitution and energy as if it were itself a separate assembly.

It is possibly more significant to start by postulating that the general

laws of statistical mechanics apply not merely to the assembly as a whole

but also to its constituent elements and phases as if they were separate

assemblies with their average constitution and energy. We can then work

backwards and deduce the constancy of the pressure and the existence of

mechanical equiUbrium.

§ 5-8. Dissociative equilibrium in an external field offorce. The formulae

of the preceding sections refer to gaseous (and other) assemblies subject

to no external fields of force, except the local boundary fields. This

restriction can easily be removed for the gaseous part of the assembly, for

which alone it is of importance. We will suppose for simplicity that all
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the gaseous components are confined to the same volume F. Then the

F-factor in their partition functions must be replaced by Fa (^), where

F. (^) =
[J f

e-'»^aiogi/^ dq^dq^dq^; (369)

Wa is the potential energy of the atom or molecule of species a in the field.

The equihbrium laws for the wJiole gaseous part of the assembly are then

unaltered in form. It is, however, now necessary to consider also the

equihbrium laws for any physically small element, dV^ of the assembly,

since the. distributions are no longer uniform in space.

The function V^ (^) is strictly the partition fmiction for the potential

energy, and has all the properties of a partition function (see Chapter viii).

If nj, 7i„* are the average numbers of the atoms r or molecules s in the

volume element dVu, then, by general formulae, such as (331),

V= M.e-^Aogii^dV^jVri^), (370)

^^^W.e-^siogii^dVJVA^)- (371)

Besides being obtainable directly from the properties of Va. (^), these

formulae can of course be obtained from (331) by summing or integrating

for all variables except the positional coordinates g^ , q^, q^. For the whole

gaseous part of the assembly the laws of mass-action (333) take the form

n,(i^)«/ n,{F,(^)}«/^n,{i^,(&)}v ^' '
'-^

^ ^

For the volume element dVy, they take the form, after reduction by (372),

In general, therefore, the equilibrium constant might be expected to

be a function of position in the gas, varying from place to place according

to (373). In actual fact there is no such variation in any known conditions.

For there will be no variation provided

IF, - S,g/Wv = 0, (374)

that is, provided the potential energy of any system or group of systems in

the field is unaltered by dissociation or recombination. But this proviso is

in general satisfied in actual conditions. Actual fields are usually com-

binations of gravitational (including inertial) and electrostatic fields. Let

O be the gravitational and T the electrostatic potential. Then

Ws - w,0 + e,T, Wr = w,0 + e,T, (375)

where w^, m^. and e^, e^ are the mass and charge of the systems s, r. But

total mass and total charge are conserved by dissociation and recombina-

tion. Therefore v r v r

and IF, - S,g/1F, = {m, - S,g/m,} 0) + {e, - S.g/e,} T = 0.
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Thus in all such cases

and the equihbrium constants for all volume elements of the gas are the

same, and the same as that for the whole gas, without external fields.* The

total amoimt of dissociation, however, in the whole gas will in general have

been altered by the external field.

This constancy does not necessarily hold for magnetic systems in

magnetic fields, which require further consideration (see § 11-8).

It is interesting to verify that the equihbrium laws of the assembly

still contain the laws of mechanical equihbrium under the influence of

external fields (gravitational, inertial, or electrostatic). Equation (368) still

gives the pressure in the gas if M^/V is replaced by n/JdVu and NJV by

**mV^^m- As functions of position nj and 7i„* are given by (370) and (371)

and Wr and Pf« by (375). Hence

P = jjr (^rn/ + 2sV),

dp ^ —j^ (Zr^udWr- + 1.71^^ dW,),

= -^ {(S.m.TV' + S.m,V) d^ + i^r^rnj + S,e,V) dW},

= - pd^- ad^. (377)

Since p and a are the density of mass and charge in the gas, equation (377)

is the usual equation for fluid equihbrium.

§ 5-9. Evaporation of partial constituents from a crystal. We have so far

considered only the evaporation from a crystal of its complete structural

unit, the crystal molecule, so that the vapour and the crystal have been

al\Yays composed of systems of the same type. We can allow the unit cell

of the crystal to consist of more than one molecule of the vapour phase,

but that is all. Such a discussion is, however, insufficient in many apphca-

tions, for example, in all appHcations to thermionfcs in which electrons

and positive ions are evaporated separately and in different numbers from

metaUic crystals. The necessary formal generalization of the argument to

include such cases is due to Schottky f and is very simple. The practical

evaluation of the new partition function introduced is, however, impossible

without a far deeper knowledge of solid structure, and we obtain little

* For the independence of gravitational forces see Gibbs, Collected Papers, " Thermodynamics ,

pp. 144, 171; for the extension to electrostatic forces, Milne, Proc. Camb. Phil. Soc. vol. xxn,

p. 493 (1924).

t Schottky, Ann. der Phys. vol. Lxxvni, p. 434 (1925).
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more than by the usual thermodynamic discussion of the same problem.

It is sufficient to consider a simple case of a crystal of two components

evaporating separately without interaction in the gas phase. Such inter-

action can obviously be included at once when required.

We may formally suppose that we can construct a partition function,

Kp^p> (z), for the crystal or solid containing P, P' systems of the two types.

From this we form the function

^j p p*tJC JC ^P P' V^y?

or K {x, x' , z).

Actually of course only large values of P and P' will be relevant, and then

only in very nearly some fixed normal ratio. For such an assembly,

including also a vapour phase, we have

C = ^j^ \\\ ^^z^i^Ji^^i
K {x, x', z) exp {xg {z) + x'g' [z)}.

(378)

The equilibrium state is then as usual fully specified by the parameters

^, I', and S- which give the integrand of C its unique minimum for real

values of the arguments, and we have as usual

P =
1
1 log K, F = r |, log K, (379)

and similar equations. We can then apply the usual argument applicable

to any substantial sohd, that P and P' must be practically infinite so that

to the first approximation (379) may be expected to be equivalent to

relations of the type
^k{^)= 1, ^'k {^)= 1. (380)

For the vapour phase we shall have the normal relations

N = ^g{^), W^iVi^)- (381)

Combining these with (380) we find

N = g {^)/k (^), W = g' {^)/k' (&) (382)

These are of the same form as (357), but there is no obvious method by

which K (^) and k' (^) can be constructed. Much more would be required

than Born's analysis of normal modes for the normal crystal. The thermo-

dynamic meaning of k (^) and k' (^) will be brought out further in § 6-5.

It is fortunate that the treatment of the evaporation of electrons from

the condensed gas of free electrons in the metal, in the manner of Sommer-

feld, avoids these difficulties and allows k (d-) for the electrons to be exactly

calculated, to the approximation to which this picture is vahd.



CHAPTER VI

THE RELATIONSHIP OF THE EQUILIBRIUM THEORY TO CLASSICAL
THERMODYNAMICS

§ 6-1. In the preceding chapters we have obtained all the distribution

laws of the equiUbrium state of any assembly for which we can construct

partition functions. Except for the extension to imperfect gases which is

the subject of Chapter viii, this includes all types of assembly commonly
treated in statistical mechanics. We have obtained all these distribution

laws without any reference to thermodynamical ideas except to specify

the exact relation between ^ and the absolute temperature, where it will

be seen that such an appeal is logically essential. It is fair to claim this

feature for a merit in the present method of exposition. The ideas of

thermodynamics are entirely foreign to the foundations of statistical

mechanics which are mainly dynamical. The proper course is to prove that

the laws of thermodynamics are true for the assembhes of statistical

mechanics if we use suitable analogies to interpret their properties.* Such

proofs are given in the succeeding sections, and it will be seen that the

direct introduction of the laws of thermodynamics in this way is satis-

factorily simple. We definitely discard Boltzmann's h3rpothesis relating

entropy to a probabiUty too often ill-defined, and introduce the entropy

in just the classical way in which it is introduced into ordinary thermo-

dynamics.

When the true relationship between the equihbrium theory of statistical

mechanics and thermodynamics has thus been made apparent by showing

that our assembhes in equiUbrium are thermodynamic systems, it is

natural to enquire into other methods of exposition in which an early

introduction of entropy plays a leading part. This is the more natural,

since many writers have contributed such expositions, and it cannot be

maintained that logical clarity has often been achieved. Detailed criticism

is out of place, but for completeness a short survey is included.

§ 6-2. Temperature. We have already in anticipation identified ^ with

the temperature on some empirical scale, but we may conveniently re-

capitulate the argument here. The legitimacy of the identification depends

solely on the possession by ^ of properties strictly analogous to those

assigned to the "empirical temperature", in a rational formulation of the

foundations of thermodynamics.! The basic fact of thermodynamics is that

* This is made abundantly clear by Gibbs, Elementary Principles in Statistical Mechanics,

chaps. IV and xiv.

t See, for instance, Max Bom, Phys. Zeit. vol. xxn, pp. 218, 249, 282 (1921).
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the state of any two bodies in thermal contact is determined by a common
value of a parameter which is defined to be the empirical temperature,

but of course on an arbitrary scale, and any convenient body may be

chosen for thermometer. On the statistical side we have shown in Chapters

ii-iv that when two assemblies or sets of systems in an assembly can

exchange energy, so that there is one common energy total for the whole,

then theij equihbrium states are defined in terms of a common value of a

parameter ^. The analogy is exact, and we are therefore logically justified

in identifying ^ with the empirical temperature as defined in thermo-

dynamics.

It was shown further that it was possible to prove that ^ = e~^''^^ by
postulating the properties of perfect gases, using a perfect gas for thermo-

meter, and asserting that the temperature shall be proportional to the

pressure of the perfect gas at a constant volume ; but this appeal to the

properties of an ideal substance is illogical (though often convenient) and

inessential. In thermodynamical theory the absolute teinjperature is defined

in connection with the second law, and can only be defined in this way.

We wish to show that the assembhes of statistical mechanics obey the

laws of thermodynamics (or from our assumptions to prove the laws of

thermodynamics), and so we must not postulate a knowledge of the abso-

lute temperature but define it in connection with entropy, just as we do in

classical thermodynamics.

§ 6-3. Entropy and absolute temperature. In classical thermodynamics

the "heat" dQ taken in in any small change is defined to be the increase in

internal energy plus the external work done by the assembly.* Thus for

our general assembly dQ = dE + Y.J,dy,. (383)

The second law of thermodynamics asserts that there exist functions T and

8 of the state of the assembly such that T = f {^), where ^ is the empirical

temperature, and ^q ^ ^^^ ^3g4^

Except for a certain arbitrarily assignable constant multipher and an

additive constant these functions are unique.

For the assembhes contemplated in § 5-4 Y and E are given by (336)

and (330). On differentiating E we find that

log l/^dQ

= d

= log
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With the help of (329) the last sets of terms in (385) reduce at once to

It is therefore established that log 1/^ . cZQ is a perfect differential, and.our

assembly obeys the second law of thermodynamics. The postulated func-

tions T and S exist and are defined by the equations

\jhT = log Ij^, (386)

{S - So)/k = llrL [fr + log lA • ^ H}

+ llsi.'^s^^,'^^' " ]9s + log lA • ^ ^j - ^rXr log |„ (387)

= S,fJ, + S.I^V^,'^.^ ... gr, - ^ log ^ - S,Z, log f,. ...(388)

The constant k, Boltzmann's constant, is of course fixed by fixing the scale

interval between two standard temperatures, and Sq is essentially undeter-

mined. It is usually convenient to put Sq = 0.

We may note here that S is closely connected to C, the total number of

weighted complexions which represent all possible states of the assembly.

It is not difficult to show if required that this total number of weighted

complexions does not differ significantly from the number of weighted

complexions which represent the approximately average state of the

assembly. The value of C is given in a simple case by (348) which can at

once be generahzed. Doing this we find that approximately

log C = S, log Z, ! + llrUr m + S,|iV|,^.^ ... g^ (^)

- S.Z, log I, - ^ log ^ (389)

In this equation terms of order log V have been neglected compared to

the much larger V, X, E. Comparing (389) and (388) we find the relation

S-S,= k\og^^^. (390)

If we agree to take Sq = and to retain only the variable part Cq of C,

omitting therefore the X^
!
, we can write this relation in the form

S= klogCo, (391)

where k is Boltzmann's constant. We may also describe Cq as "the

integrand of C evaluated at (^, ^) ".

It is instructive to cast (388) into a form in which the contributions to

the entropy of each molecular species or each solid are separately in evi-

dence. We have at once

2, Z, log i, = 2, (If; + 2,g/F;) log I,,

and therefore

s/k = s, {ij, - w, log ir-K log ^
+ S, {^,^s^i,^s^ ...gs- iVTlog {i,^s^i,^s^ ...)} - ^log ^.

Bill
Highlight
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Thus a gas of simple systems contributes to 8

k[Ur{^) -M, log ^,-^Aog^, (392)

or a gas of composite systems

h U^'s^L'^' ... {7s (^) - 'N, log (li^^l/.^ ...) -'E, logn ...(393)

The contributions are of identical type and need not be separatelj^ dis-

cussed. In exactly the same way a crystal contributes

h [- log {1 - ^^^s^^.^s^ ... /c,m - p, log {i^^s-^^^s^ ...) - 17. log n
(394)

These mixed forms may be made more valuable by eUminating either the

^^ or the M^ and N^ by means of (331) and (332). Thus the contribution of

a set of molecules in the gaseous state takes either of the forms

lc[f{^){^-^\og^)-E\og^l (395)

k [M {log (/ {^)IM) + \]-E log ^], (396)

the contribution of a crystal, after reduction,

A; [P log /c (^) - Flog ^]. (397)

The crystalhne form corresponding to (395) is necessarily illusory. These

results can be embodied in the following

Theorem (6-3). Any 'particular species of free molecule with partition

function f (^), present in the assembly to an average number M with average

energy E contributes (396) or (395) to the entropy.

Any crystal {or other solid) containing molecules to an average number P
with partition function [k {^)Y and average energy E contributes (397).

It is to be particularly noticed that the theorem determines explicitly

the dependence on ilf.* This is because, for the assembhes discussed, Jf can

be made (by dissociation, etc.) to vary reversibly—that is, a sequence of

natural equiUbrium states can be found, in which M varies. A great part

of the controversies about entropy in statistical mechanics has centred

round the determination of the variation of S with 31, ignoring just this

point, that such variations can only be relevant, and therefore deter-

minable, when M can change reversibly. This has naturally led to great

confusion of thought,! only avoidable in some way equivalent to the fore-

going.

The forms of (395) and (397) suggest at once that the connection

between partition functions and the functions of thermodynamics can be

* Strictly M. But since it never matters whether we are dealing with a fixed M or an

average M we shall usually omit the bar in future over symbols representing numbers of

systems of a given type unless the context requires it for clarity.

"i"
See Ehrenfest and Trkal, he. cit., for a critical exposition of this confusion.
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simplified by the use of Planck's characteristic function as the primary
thermodynamic quantity. T is defined in thermodynamics by the equation

Y = 8- E/T; (398)

it is thus merely a modification of the work function A* It has the

properties

E=T^'^,8 = W+t'^, Y,= t'^^, (399)

In terms of T the foregoing theorem can be rewritten as follows

:

Theorem 6- 31. Any particular species of free molecule contributes to the

characteristic function
kM {log (f{^)/M)+ 1}; (400)

any crystal or other solid

kP log k{^). (401)

We may conveniently recall here the further property ofT as a thermo-

dynamic potential, that for any assembly at given temperature and given

volume (or generally given parameters y^) the equilibrium state is deter-

mined by the equation
(W = (402)

for all relevant variations. It is easily verified by differentiation of T that

the general laws of mass-action, etc., which we have determined directly

in Chapter v are equivalent to this equation.

§ 6-4. The increasing property of entropy. We are now in a position to

complete our account of the thermodynamic properties of our assembhes

by showing that the function S which we have identified with the entropy

possesses the characteristic increasing property. We have to show that,

with such conventions for the arbitrary constants that S^ + S" = S when
an assembly in equihbrium is separated into two by an ideal workless

process such as the closing of an ideal door, then on junction by a similar

process
8' + S" <8; (403)

8' and 8" are the entropies of the two assembhes before junction or after

separation and 8 the entropy of the combined assembly. Since the joining

together of two gaseous assembhes is essentially irreversible only a con-

vention can settle the values of the various entropy constants. A sufficient

convention is to take aSq = in (388)—that is, to take 8 as given completely

by theorem 6-3.

To estabhsh (403) it is convenient to exhibit exphcitly the dependence

of the partition functions on the volume accessible to each free species of

* See Planck, Wdrmestrahlung, 5th ed. p. 127 (1923).
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system. If, then, we distinguish all quantities referring to the two separate

assembhes by single and double primes we have

8'Ik = S,|/F/i^, (r) + S,^/^^^'^^^- V:G, (r) - ^'log^' - S,Z/log I/,

8"Ik = 2,^/' Vr"F, {r) + S,^/'^.^^^"^^' . . . V; G, (^") - ^"log^" - S,Z/'log|/',

81k = 2,1, (F/ + F/') F, (0-) + 2,^1^/f// ... (F/ + F/') 0, (^)

- (^' + E") log ^ - 2, (Z/ + X/) log ^„

= .S' (&, li, |„ ...,)/A^ + 8" (a-, li, ^2, ...,)/A^.

But it was shown in § 5-5 that ^', |i', ^^ ^ ... define the unique minimum
of the function 8', so that

8'{^'A,',^,\...)<8'{^,^„^„...),

equaUty being only possible when

Similarly, 8" (^", f/', f2", . • • ) < >Sf" {^, li , I2 , • • • ),

equality being only possible when

We see therefore at once that 8' + 8" < >S', equahty being only possible

when
^' = ^" = ^> il = ll" = llJ I2' = I2" = ^2' ••••

Since the ^, |'s are intensive parameters (see equations (343), (344), (345),

generahzed) the necessary and sufficient conditions are

^' = r, f/ = li", ^2=^2",-, (404)

which are equivalent to asserting that, if there is no change of entropy on

junction, the separate assembhes must have had equal temperatures and

concentrations, or rather temperatures and partial potentials (§ 6-5).

§ 6-5. The physical meaning of the |'-s. The parameters ^1, ^25 ••• which

we have been led to introduce by the nature of the mathematics play such

a natural part in the preceding discussions, that one is led to expect them

to possess a natural physical interpretation, just as ^ may be interpreted

as the temperature. This is the case, and we can relate them in a simple

way to the partial potentials of the various constituents in the assembly,

as is in fact already obvious from the form (395). Just as d- was iden-

tified with the temperature because it helps to define and has the same

value for every component fraction of the assembly, so |, must be equi-

valent to the partial potential of the rth constituent because it helps to

define and has the same value for every component fraction of the

assembly in which the rth constituent occurs.
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Thermodynamic partial potentials /x^ may be defined by the equationf

^^ + S Ydy =dQ= TdS + E, ^,f?ilf,*

;

(405)

in forming this variation we are to suppose that the total massesj M^* of

the various constituents in our assembly or in any phase or part of it are

varied, as well as the temperature and the ordinary geometrical parameters

y. If we form the variations of (388) in this manner we obtain

TdS = dQ- T.,hT log ^^dX,.

Now X^ is the total number of atoms of type r and M* is the mass of the

rth independent constituent in gram-molecules. Therefore

X, = RM,*/k,

and fjL^^ BTlog^r- (406)

This is the relation between ^^ and the corresponding partial potential. If

we evaluate ^^ by means of the equation

W, ^ $,VrFr (&)

for the concentration of free atoms of type r we find, using (97),

log I, = log vr - log F, (^), (407)

fji^/RT = log V, - f log T + log --—,

,

(408)
{zTTmkp

which is consistent with the usual value of /x^ for a perfect gas.§

If in a similar manner we imagine an addition to the assembly not of

free atoms, but of ^iV^^* gram-molecules of the molecule s, then

dXr = Rq/dN*/k,

and the partial potential fx^ of the 5th molecule is given by

fis = RTlLrqs' ^ogir,

fjiJRT == log v,-logGA^), (409)

Avhich is also consistent with the usual value. We can thus see that the

partial potential of the molecule s in the equilibrium state is equal to the

sum of the partial potentials of its constituent atoms. This is the usual

relation between partial potentials necessitated by the existence of a

chemical reaction.
||

It is another aspect of the usual theorem that the

partial potential of any constituent must be the same in aU phases in which
it occurs.

Let us consider also in conclusion the thermodynamic form in the more
general case of § 5*9 in which two components form a crystal in variable

t Bryan, Thermodynamics, p. 152.

X The masses are here written M^* to avoid confusion with the numbers of free atoms J/^.

§ Bryan, loc. cit. p. 120.

il Gibbs, Scientific Papers, "Equilibrium of Heterogeneous substances," pp. 67-70.

9-2
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proportions. Applying (391) to (378) we find for the entropy contribution

S^ by the crystal

8^=k [log K-P\og^~P' log r - ^log &],

or for the contribution to the work function

A^ =^ hT [P log I + P' log r - log Z] (410)

It follows that at constant temperature and volume

dAs: = hT [log ^dP + log ^'dP'], (411)

for in view of (379)

Pd log I + P'd log ^' -d\ogK = 0.

But (411) corresponds exactly to the thermodynamic form

dA^ = iidM* + ix'dM'*,

so that the relation (406) between the /u.'s and |'s is repeated. The ^'s

therefore, or rather the log f s, have all the thermodynamic properties of

the jLi's. In particular, since the complete A^ is a perfect dififerential,

djx^ _ dS_

dT~ dM*'

or -A(Tlog|)==g|,(TlogZ(T))=ig^, (412)

a relation which wiU be useful later,

§ 6-6. The invariance of iveight. We can now examine somewhat more

closely the postulate of the invariance of weight for slow reversible changes,

formulated in § 2-3. The preceding discussion, establishing the existence of

8, has proceeded on the assumption that

i:,i,^ + S.liV^,^.^ ... IH (413)

This, however, is only true if the tn's do not depend on the y's (are in fact

adiabatic invariants). For if they do so depend, we have the additional

terms in (413)

_ 1

~ loglj^

Therefore the general form of log Ij^dQ will be

dS (^, ^1, ^2, ...) - iLCi (^, ^1, ... , 2/1, ...) dy^ - (414)

where

i^i (^, li, ..., ^1, ...) =-- ^r^u^r ^^'^^«^ + S.E.^i^.^^,^.^ ... ^^^V.

S,S„e. ^' ^'-' + 2.S„|iV^,./
-Wx^^

dyi
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We may suppose that the independent parameters which define the state

of the system are S,yi,y2, .... Then the conditions that (414) should be
a perfect differential contain the equations

iU.riMir-' <*->

for all values of S (or ^) and the y's. It must also hold for all Z's and
however many types of molecule or atom may be supposed to be present

or not.

Consider first the simplest case in which the assembly contains a single

type of atom. The expressions then simpHfy to

/^i
= Z,S„^'^V//,(^),

and (415) reduces to dfj^/d^ = 0. Now fx^ is of the form

and therefore if it is a function of y^^ alone we must have

2 (6„/xi - aj ^" = {all ^),

or jui = /xi (?/i ...) = ajbn {all n, y^ ...).

That is to say, we must have

~- = K^-mJ, Kr= ^ log wj, (416)

where k^ depends only on the y's. Thus the w/ may have a common factor

Wr {yi, ...) and the resulting change in S would be — X,. log a>^. This would

not affect any argument for such assembhes. Similar arguments hold for

assembhes of a single type of molecule.

Returning now to the general gaseous assembly we should have

fX, = i:,Ur (^) 3^ log a., + S.fi^e^^.^ ... g, {^) 1- log CO,,

and the extra terms in log 1/^ dQ reduce to

- -L^Ur m d log a>, - S.li^la^^^ ...gs{^)d log co,,

or - S,Z,^ log CO, - S.^^V^,^.^ ... gr, (^) d log ^^,.

The CO,, and co^ being functions oiy^, y.^, ..., these extra terms can in general

only be a perfect differential if

^logw^.=-0 (417)

for all s. For the extra terms are of the form

^s^s {^, Vi, 2/2' •••) dB, (2/1, ^2 •••)
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and can only be a perfect differential if for ^j, y^, ...

dAgdBs _ „

Since dAgjd^^O and the A^ have in general no special relations between

them, these relations can only be satisfied if dBs/dy-j^= ..., which are the

equations (417). It follows, therefore, that the weights can contain factors

dependent on the yi, y2, •• provided that

where the a's are absolute constants. Thus the non-invariant factors co^,

if they exist, must persist with the atom through every combination into

which the atom can enter. They are therefore without significance in any

physical problem and can be omitted without loss of generahty, and apart

from these trivial factors the adiabatic invariance of the weights is estab-

lished.* The conclusion holds good for the most general assembhes so far

discussed.

§ 6-7. The inverse relation between specific heats or average energies and

the weights and energies of the states of an individual system. In the foregoing

chapters we have shown how to determine the mean energy and specific

heats of any system or set of systems, when the weights and energies of the

permitted states of one system are known so that the partition function

may be constructed. We have had in fact the relations

E = M^^\ogf{^),

C,= Mk {log 1W(^^) log/(^), (418)

where / (S-) = S^tu^-Q-^r.

It is desirable at some stage to pause and attempt to answer the question

whether given J^ or C^, and so the form of the function/ (^), we can deduce

the Wj. and e^, and in particular whether such values, if they can be derived,

are unique. It appears that the theoretical answer is "yes". The w,. and e^.

can be derived and are unique, with the exception of trivial constant

factors, which arise as the constants of integration in determining / (S-)

from (418). The practical importance of this answer is (as will be seen)

limited, but its theoretical importance is still considerable.

The most convenient variable to work with here is r where ^ = e~'". Then

C,= Mkr^(^^y\ogf{r), E=-M^\0gf{r),

f{r)^i:w,e-^rr.

* Bohr, Proc. Camb. Phil. Soc, Suppl. p. 17, and previously Ehrenfest, Pkys. Zeit. vol. xv

p. 660 (1914), have considered this question and shown that the weights must be adiabatic

invariants. It appears, in the light of the foregoing discussion, that their arguments hardly go

deep enough.
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A knowledge of C^ determines / (t) with trivial exceptions ; the problem is

to derive from this / (t) the Wr and e^. For this purpose we express / (t)

as a Stieltjes' integral in the form

/(t)= e-^^dw{e), (419)
.0

where div (e) represents the weight corresponding to the energy e or the

range e, e + de, and it is indifferent whether we are concerned with

quantized systems or with classical. In all casesw (e), the integrated weight,

is an increasing fiuiction in the wider sense, which has simple isolated dis-

continuities if the system is quantized or contains a quantized part.

Now it has been shown that (419) can be inverted so as to express

w (e) as an integral of/ (t).* It may be supposed that w (e) is a monotonic

increasing function of e for all values of e considered, which has only a

finite number of simple discontinuities or steps nj^ in any finite interval. The
function w' (e), derived from iv (e) by the removal of the discontinuities,

has a dififerential coefficient O which exists and is continuous, except

perhaps at a finite number of points in any finite range, and is boimded
in any finite range. These conditions wiU be referred to as conditions W.
Then we have the following

00

Theorem 6-7. // iv (e) satisfies conditions W, and if Soje"''^* and
roo

e-"OfZe converge for r = y^, and if

f{r)= \^ e-^^dw{e), (420)
. —a

then f (r) is a holomorphic function of r in the half-plane R (t) > y^ , and

Uw{e+0) + w{€- 0)} -io{-a) = ^. r'''^f (r) e" -, (421)

where y >yo, y > 0, and the infinite integral in (421) is evaluated as

ry+iT
Lt

r-^oo Jy-iT

It is clear that the theorem theoretically must apply to the physical

problem in hand, and therefore, given/ (t), the Wr and e^ (and any classical

part) are uniquely determinate. But it is not practically applicable unless

our knowledge of / (r) is so precise that we know it not merely numerically

but formally, as a function of the complex variable t. This difficulty can

be turned by a method due to Schwartzschildf, but as it is still doubtful

whether even so the method would give results of practical interest, we
shall not pursue it further.

* For a proof see R. H. Fowler, Proc. Boy. Soc. A, vol. xcix, p. 464 (1921). A deeper version

of the same theorem has been given by Burkill, Proc. Camb. Phil. Soc. vol. xxm, p. 356 (1926);

Proc. Lond. Math. Soc. vol. xxv, p. 513 (1926).

t See Fowler, loc. cit. p. 470.
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In the case, however, of radiation (or the linear harmonic oscillator) we
beUeve that we do know the exact form of/ (t). It is then of interest to

see that the weights must be of the form assigned. For if

so that /(r) = C (1 - e-'''0-^ {C constant), (422)

then H- (^ + 0) + t. (. - 0)} = ^/^_^^ Y^^'ir-

Now (1 - e-'^'"")-^ = 1 + e-'*"'" + ... + e-p^-"- + e-(J'+i)'"'7(l - e-'""').

Choose p so that p < e/hv < p + I. Then

l{w{e+0) + IV (e - 0)}

[o 27r*j^_,-oo T 27r*.!y_^oo 1 - e-'^" rj'

= C(i?+ 1 + J). (423)

By an apphcation of Cauchy's theorem it is easily shown that J = 0. It

follows that the weights must be C for e = rhv and zero for all other e.

No other scheme of weights can be admitted.

If alternatively we demand the average energy

^-^l^^ + i
then by simple integration

rjp^hvT

f (t) = Y-V-^r (C constant). (424)

The weight function can be evaluated by the same arguments and we find

that the only admissible weights are weights C for e = (r + |) hv and zero

for all other e.

If we accept the general basis from which we have developed the

equilibrium theory of statistical mechanics in this monograph, then the

laws of temperature radiation may be taken as demanding that / (t) for

a simple linear harmonic oscillator shall be given by (422). It then follows

that the weight function must be determined by (423), that is, must be

that assumed by Planck. It is of course possible to call in question the

general basis, but not, accepting this basis, Planck's assumption.*

A direct analysis of the Stefan-Boltzmann law by this method is also

not without interest ; the value of / (r) is

/(T) = Cexp(c7T7T3).

* This discussion contains the whole substance of Poincare, J. de Phys. V, vol. n, p. 5 (1912),

but much simplified and rendered more rigorous by the use of the machinery of the present

methods. The hypothesis and conclusions are essentially the same.
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From this it follows by further applications of Cauchy's theorem that

w{- ()) = 0,

w{e) = C 1 I I ^ i L .^ 1_ I

^1!3!^ 2! 6!^ 3! 9!^

The weight function therefore must have a discontinuity C at e ^ 0. The state

of zero energy must have a non-zero weight. For other energies the function

is too complicated to give us much information, but the non-classical

nature* of the weight function is already evident.

§ 6-8. Entropy and thermodynamic probability. It is not in general our

purpose in this monograph to attempt critical discussions of alternative

presentations of statistical mechanics, but rather to develop the theory on
a single consistent plan in a manner as logical as possible. It is not, how-
ever, possible at this point to pass by entirely in silence other methods of

introducing entropy into statistical mechanics, without giving some indica-

tion of why the very strict analogy to classical thermodynamics has been

preferred here.

Entropy is usually introduced into statistical mechanics by means of

Boltzmann's hypothesis relating it to probabihty. We cannot do more
than abstract the various arguments here ; for the best systematic account

the reader should refer to Planckf . It will be assumed that he is famihar

with Planck's account. Boltzmann's hypothesis is based in general on the

fact that on the one hand the assembly tends to get into its most probable

state (which is equivalent to the average state with which we work here),

while on the other hand its entropy tends to increase so that a functional

relation between the entropy and the probabihty W of a state

S^fiW)

may be postulated by a legitimate analogy. The analogy is of the same type

as that by which we have postulated functional relationships between
%• and T and the |'s and the /x's. The argument then proceeds somewhat
as follows. Suppose we can assign the numerical value of W for the prob-

abihty of the state of any assembly. If then we have two such assembUes

which are entirely independent, then by a fundamental principle of prob-

abihty, the joint probabihty is the product of the two separate probabilities

or

W,,= W^W,. (425)

On the other hand, by the second law of Thermodynamics the joint entropy

* See the classical paper by Ehrenfest, Ann. der Phys. IV, vol. xxxvi, p. 103 (1911), where

just this point is established by reasoning essentially the same. The present methods again allow

of great simplification.

t Planck, Wdrmestrahlung, 3rd Abschnitt, ed. 5 (or later).

Bill
Highlight



138 Statistical MecJianics and Thermodynamics [6-8

is the sum of the separate entropies (with suitable adjustments of the

additive constants) and so

S^^=S^ + S^. (426)

The functional relationship must then be

S=^k\ogW, (427)

k being a universal constant. We have still to assign a definite way of

specifjdng W for any statistical state of any assembly. For use as If in

this connection the quantity "thermodynamic probabihty" is introduced

and defined to be equal to the number of weighted complexions corre-

sponding to the specified state. This number W is then made a maximum
subject to the condition of constant energy—the assembly is then in its

most probable state—and the maximum value of k log W so obtained is

equated to the entropy S. The entropy S so defined has been shown by

(391)* to agree with the entropy of classical thermodynamics, and in

general possesses the fundamental increasing property. It should be

observed that there are two qmte distinct steps in the argument after W
has been equated to the thermodynamic probabihty. In the first the

determination of the maximum fixes the most probable state of the

assembly by itself. In the second the assembly is related to the outside world

by determining its entropy by (427). Finally, the absolute temperature

scale is introduced by the relation dS/dE = l/T.f

Unfortunately, there is much to be criticized in this argument. In the

first place there is some vagueness as to what precisely is happening in

the building up of one assembly out of two to yield equations (425) and

(426). The addition of entropies can usually only be reahzed by some form

of thermal contact, and is then true in general only when the temperatures

are equal. But both these conditions require that the assembhes shall not

be independent. So it is only possible to give a meaning to (426) by making

(425) invahd or at best not necessarily vaUd, which destroys the a priori

nature of the argument. For example, it is argued that Sy^. = 8^ + 82

follows directly from the second law. It is hard to see how this can be

derived except from the equation dQ^2 = dQx + dQ^ which is true neglecting

surface interactions. This then leads to dS-^^^ = '^'^i + ^^^2^ ^^^ so to (426),

only if the temperatures are equal. J It is not maintained that this criticism

could not be turned, but it disposes at least of Planck's example of a com-

* A slight extension of (391) is required to show that Tfniax and IF,,, are effectively the same.

The correctness of S is easily verified directly in simple cases.

t This abstract is intended to do proper justice to the argument described, which is in any

case elegant and attractive. The reader should supplement it by reference to Planck (loc. cit.)

at least.

J It is just at this step that an importa'nt logical obscurity enters. We have no right to derive

81^=8-^ + 82 from dS-^„=zdSi+d82 without an explicit recognition that we have made a special

choice of the additive constants in the entropies.
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posite assembly consisting of any body on the Earth's surface and an

enclosure of temperature radiation on Sirius.

In the second place, the probability W of any statistical state of an

assembly requires of course precise and careful definition in such a way
that (425) holds a priori. The definition of W actually used, thermo-

dynamic probability or number of complexions, makes W a large integer

and not a probability at all (which must be a proper fraction) ; thus (425)

cannot be maintained by any appeal to the theory of probabihty, for,

franklj', that theory is irrelevant. On the other hand, genuine probabilities

such as the ratio of the number of complexions representing any statistical

state to the total number of complexions do not lead (straightforwardly)

to the right result.

It is well known that actually the " thermodjTiamic probability" does

lead to the right value of the entropy, and it is perhaps worth while to

pause and enquire how the criticism just formulated is to be satisfied. If

we take the genuine probability, in so far as we have to calculate the most

probable state for given energy the total number of complexions C is

constant, we are concerned only with the equation

S' - S" = k log {W'/W"), (428)

i.e. with ratios of W, and so the argument is unaffected. But when in the

second step we attempt to determine the value of the entropy itself from

(427) with TFmax we find in all cases the trivial result S = 0. It is a simple

consequence of the arguments leading to (391) that Wmax/C or

W (average state)/(7

is always effectively unity, expressing the fact that the possession of the

average or most probable state is a normal property of the assembly.

It is thus clear that the straightforward process is useless, and if we

are to retain a relation between entropj^ and probability we must find a

way of justifying the omission of the denominator C. As long as we con-

sider the assembly as a whole this is impossible, for C depends on ^ and

cannot be ignored when variations of temperature are contemplated. In

fact the usual arguments are attempting an impossibihty, for they attempt

to determine the entropy of an assembly, which determines its relation to

the outside world, by consideration of the assembly by itself. The difficulty

can be overcome, therefore, only by considering the assemblj^ in question

as part of a much larger assembly. Consider, for example, a group of M
general quantized systems immersed in a bath of a very much larger number

N of other systems. The statistical state of the whole is specified as usual

hy Uq, a-y, ..., bo, b-i^, ..., the numbers of systems in the permitted states or

cells. The probabihty of the statistical state specified hy a^, a^, ... is

Win n ^

(M^w^o^-^ ...\ / N ! PoVi^^... \ /^
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where Sj, denotes summation over all 6's such that 'LsVsbs ^ E — 'Lj.^r^^r'

Comparing C and S^ we see at once that

1 r dz

27TijyZ'

Since N is very large compared to M, theorem (2-5) shows that approxi-

mately
2, _ a-^a

where ^ is fixed by

A (^^] =

Thus W K, a„ ...) = -^° 7
'"

tTT^wT/
(^29)

Equation (429) shows that the true probabihty W is proportional to the

thermodynamic probabihty provided E^ , the total energy of theM systems,

is fixed, but even now not otherwise unless the temperature of the large

assembly is practically infinite, ^ = 1. If we wish to maintain the relation

between the entropy and probability it seems as if we can only justify the

use of "thermodynamic probabihty" by considering a group of systems

as part of a very large assembly at a very great temperature. If we do

this, then it is easily verified that W^^ = Wj^W2 for any two parts of such

an assembly (whether or no the temperature is very great) and the first

difficulty is also turned. This treatment would be perhaps artificial but not

illogical.

We can cast (429) into an alternative, more illuminating form. For the

natural contribution of the M systems to the entropy of the assembly in

equilibrium is
j^ ^^ j^^^ ^^^ _ ^^ j^^ ^^^

which we may call ^S'max- Therefore

W {a„ a^, ...) = " ^ e-'^-l'^ (430)
fJ/Q I (J/-\ > • • •

which shows at once that Ifmax = 1 as before, and that, defining entropy

via probabihty, we arrive at

W/ Tfmax ^W=e is-s^^^VK (431)

It is only in some such sense as this that a meaning can be assigned

to Boltzmann's hypothesis, but then it must be noted that it survives in

Boltzmann's own form
S - S' = yL-log W/W. (432)

The whole development has thus become rather clumsy, for the entropy

itself is a function only of the group and its temperature, but has to be



6*8] Criticism of '' Thermodynamic Prohability'' 141

derived for the group in relation to an infinite assembly at infinite tempera-

ture. It would appear to be much better, if a direct definition of entropy

is required in terms of complexions and not via the classical form clQ = TdS,

to abandon all reference to the theory of probabihty and define the entropy

simply as k times the logarithm of the number of weighted complexions.

This definition must then of course be justified by direct comparison with

classical thermodynamics, not by the a priori arguments which we have

been criticizing here.

As yet no reason has been given against the introduction of entropy

by (432), if such a way is still preferred. It must be observed, however,

that there is no hope of a logical definition of absolute entro-py by such an
equation. This is as it should be. Much has been written of absolute entropy

in the belief that in this way a basis could be found for Nernst's heat

theorem. We shall show in the next chapter that this theorem takes its

natural place in the equihbrium theory of pure statistical mechanics, and
can be formulated without reference to entropy at aU, stiU less to absolute

entropy.*

There is, however, yet a further difficulty in the introduction of entropy

in this way, logically founded on its increasing property. The identification

of 8 and k log W is based on an analogy, correct enough so far as it goes,

but insufficiently deep. For it is tacitly assumed that the entropy is the

only function of the state of the assembly which has this increasing pro-

perty. This, however, is untrue, for H = aS + bE, where b is any constant,

also has the same increasing property, and we have no a priori reason for

preferring one value of 6 to any other. If we take the general value 2 for

the entropy we find for the relation between T and %

^ = g^ = ^ log 1/-3- + b,

which does not determine a unique temperature scale. In fact we can

only see that 6 = by a direct appeal to the second law dQ = Td8, which

will only hold with 6=0. The use of fmictions with the increasing property

can apparently never lead to precise results without an appeal to dQ. If

this appeal has to be made in any case, the method of approach by the

* Even in the 5th edition (p. 119) of his Wdrmestrahlung Planck says: "As opposed to [Boltz-

mann's hypothesis (432)] we assign to the entropy S a quite definite absolute value. This is a step

of essential import, which can only be justified by the verification of its consequences. It leads,

as we shall see later, of necessity to the quantum hypothesis, and thereby on the one hand, for

radiant heat, to a definite law of distribution of energy for black radiation and on the other for

the heat of solids to Nernst's heat theorem." It should be remembered that Planck is thinking

primarily of the fact that in the classical theory the entropy of a solid would not remain finite

as T -> 0, and the requirement that it should remain finite demands the quantum theory. Even
allowing for this, it is impossible to accept his statement fully. It will be maintained in this

monograph that whatever the practical convenience of the idea of absolute entropy (often great)

it is of no theoretical importance whatever.
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increasing property loses any possible advantage over the classical method

adopted in this monograph.

The difficulties pointed out above occur for the simplest non-dissociating

assembUes, and render unsatisfactory, even for these, the introduction of

entropy via Boltzmann's hypothesis. When we come to general dissociating

assembHes the difficulties become still more pronounced, because the logical

determination of the proper dependence of the entropy on the number of

systems of any type present is almost impossible by this method. These

difficulties have been pointed out by Ehrenfest and Trkal* and we need

not stress them here. They again arise in what is virtually an attempt to

determine the dependence of S on N or M without reference to any

reversible method by which N or M may be supposed to be varied, and as

such are doomed to failure.

§ 6-9. Position of Boltzmann's hypothesis in the present theory. The very

general form of (431) or (432) makes these equations important instruments

of investigation especially in complicated assembUes for which expUcit

forms for the partition function may be difficult or impossible to construct.

It is important, therefore, to fix their position in the theory as here

developed, a position of course not that of a fundamental hypothesis but

of a general theorem, when our definition of the entropy S is suitably

extended. We have shown in equation (391) that for the whole assembly

S = k log Gq . We can extend our definition of S, in conformity with the

usages of classical thermodynamics, so as to apply to any physically

separable part of the assembly by the convention that the entropy of the

part may be calculated as in § 6-3 as if the part were a separate assembly

with specified energy and configuration. This convention is obviously self-

consistent. Special adjustments of *S'o are of course implied to make the

entropy additive in equihbrium. We then recover (432) as a general

theorem, valid at least for any small part of a large assembly, if ratio of

probabilities means simply ratio of representative weighted complexions.

In order to provide a priori for a connection between entropy and

probability we were logically compelled to discuss a part of a very much
larger assembly, and have formulated (432) in this connection. The
large assembly, however, is irrelevant to the truth of (432) as a general

theorem in statistical mechanics. It is easy to verify that (432) apphes at

once to any specified configurations of the whole assembly or of the whole

of any parts into which we choose to divide it. We can calculate the entropy

of each part as specified,f and it follows at once by (391) that for each

part S = k log Gq . The total number of weighted complexions representing

the specification is therefore 11 (Gq) taken over each part and therefore the

* Ehrenfest and Trkal, loc. cit.; Fowler, Phil. Mag. vol. xlv, p. 497 (1923).

I Subject to the conditions specified, each part will be in its own equilibrium state.
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probability is proportional to exp {HS/k). When the specified state is the

equilibrium state for the whole assembly S/S reduces to the usual 8 and

n (Co) effectiv^ely to C. For the ratio of the probabiHties of two such

specifications we have therefore exp {{US — S/S")/^} which is (432). We
summarize this conclusion in the following

Theorem {BoUzmann's hyjyothesis). If the entropy S of any assembly or its

parts is defined as in § 6-3 {with suitable additive constants) , and if as usual

the probability W of any specification of the assembly is proportional to the

number of representative weighted complexions, then

S- S' = klog WIW. (433)

The theorem as proved refers only to specifications of the assembly or

its parts in which molar variables alone are concerned. If the specifications

become so detailed as to be molecular, then our 8 ceases to have a meaning.

We shall not be concerned to use 8 in such cases, but if an extended defini-

tion to cover such cases is required it can obviously be provided by the

equation 8 = k log Cq , which we have already seen to be vahd in all cases

in which a thermodynamic 8 exists.

Problems arising in compHcated systems such as hquids or far from per-

fect gases, particularly in connection with fluctuations, can sometimes be

handled with the help of (433) and the theorems of classical thermodjniamics,

when a direct treatment would fail for lack of power to construct or handle

the complicated partition function. A well-known example is the theory

of density fluctuations and the opalescence of hquids near their critical

point.* A formula is required for the relative frequency of volume fluctu-

ations of specified range in a given small element of volume. This frequency

is given of course by the W of (433), which can be used in the form

Tf = ae2(AS)/A: {a constant). (434)

If, however, the volume fluctuations may be thought of as isothermal

—legitimate certainly for a small element of volume out of the large

assembly—this can be cast in a form which is easier to use. For then, since

8= {E - A)/T

where A is the work function, and since for the volume element and the

rest of the fluid S {AE) = 0, we have

Tf ^ ae-2(A4)/fcr, (435)

where S (A^) denotes the maximum work that the assembly can be made
to do in returning isothermally and reversibly to its equihbrium state.

* Einstein, Ann. der Phys. vol. xxxm, p. 1275 (1910). See Chapter xx.
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CHAPTER VII

NERNST'S HEAT THEOREM AND THE CHEMICAL CONSTANTS

§ 7*1. Vapour pressure equations in thermodynamics and statistical

mechanics. As an introduction to the main subject of this chapter we must

compare the formulae of classical thermodynamics and statistical mechanics

(§§ 5-7 and 5-3) for the vapour-pressure equation and the reaction-isobar.

The classical thermodynamic formula for the vapour-pressure of a sohd

or a hquid is deduced from a combination of the Clausius-Clapeyron

equation, in the simphfied form applicable to perfect vapours of specific

volume large compared with that of the condensed phase, and Kirchhoff's

equation for the latent heat of vaporization (see also § 7-31). If Cyap and

Csoi denote the specific heats per gram-molecule of the vapour and the

sohd at constant pressure, the thermodynamic result is

logp^-^+j ^^ (Ovap - Csol) ^^ + ^ (436)

In (436) Aq is the work required to evaporate one gram-molecule at T = 0,

and ^ is a constant of integration about which classical thermodynamics

has nothing to say. Now we have seen in Chapter in that the specific

heats of perfect gases contain a constant part which we will here call

(Cj,)o; this may be the whole of Cyap over long ranges of temperature. In

addition there may be a variable part which we will call (Cj,)i . The constant

term can be integrated and gives rise to a term {{C^)q log T)IR. Classical

thermodynamics has nothing to say concerning the convergence of the

remaining integrals over the range (0, T), but in fact they do so converge,

since the variable energy content of sohds is (T^) and of the vibrations

and rotations of molecules {e~^!^^). Thus we may write this equation in

the precise form

\ogp^-^^ +^° log T -f
\l^,Jl

{{OA - Csoi} dT + i.

(437)

The constant i defined by this equation is called the chemical constant. It can

be numerically determined from (437), since all the other quantities are

experimentally determinable.* The value of the constant i will differ

according to the value assigned to the constant part {Cj,)^ of Cvap; this

may conveniently be varied according to the temperature range. In all

statements of i {C^)q must be specified.

* In practice both Aq and i must be regarded as constants to be determined by fitting a long

series of measurements.
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In § 5-7 we determined the analogous formula in terms of partition

functions

:

logi> = - ^ + f log T + log ^^1^ + log R (T) V (T) - log K {T),

(438)

in which (Cj,)o is identified with the contribution of the translational energy

to Cvap. It is easy to see that (438) and (437) are equivalent, except that

(438) makes an explicit determination of i. For \IR = xl^^ ^^^ in (437)

f^(C,)i - Csoi} dT ^ [E^ - ^soiJo^

where E^ is the internal and rotational energy of the molecules, and for

a perfect gas is independent of the pressure. In terms of partition functions

this is r ;5 "ir

^ ^ {if log r (^) V {^) - M log h {^)}

or RT^ 1 {log R {T) V (T) - log K (T)},

when, as in § 5*7, the zeros of energy have been so chosen that the first

term in each partition function is a constant. The identity of (438) and
(437) is thus obvious, with * given by the equation

. , {27Tm)^k^ , i?(0)F(0) ,,„^,

In testing the theory here by comparison with experiment, it is immaterial

whether or no we can actually construct partition fmictions which perfectly

represent the specific heats. Ideally they are constructable, and in the

analysis of these equations we can when necessary use observed values.

In view therefore of the general vahdity of thermodynamical laws it

remains only to test the value of i.

With the rules for weights which we have adopted here, we shall have

V (0) = K{0) = 1, but only if we ignore electronic structure and treat atoms
as structureless mass-points. On the same view, for monatomic vapours

there is no i^-factor at aU so that R (T) = 1. For other vapours, collecting

the results of §§ 2-63, 3-3, and 4-5 we shall expect first of all for diatomic

or linear* molecules

R{0) = wja, (440)

where w^ is the weight of the lowest rotational state taken from (91) or

(92). This formula could, however, only.be of value to us at present for

Hg in the region of temperature in which Hg is effectively rotationless,

* By a linear molecule we mean one in which the centres of all the atoms lie in equilibrium

on a straight line, for example possibly, some states of CO2

.

F 10
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with {Cj,)q/R ^ |. Actually, the partition function for Hg is complicated

by the lack of intercombinations (§ 3-4) and cannot be discussed so simply

(see § 7-41). For other diatomic or linear molecules we shall prefer to take

{G^)JR = I and
Sir^AkT

R{T) = S^^^, (441)

where 8 = 1, 2 according as we have to use (91) or (92). For general poly-

atomic molecules we shall prefer to take {C^)qIR = 4 and

j^
Sjn^^^^AmijlcT^

CT/r ^ '

The logarithms of the factors

_ ^TT^Ak 87r2 (87r3v45C)4 k^

CTih^
' a¥

then appear as extra terms added to i.

Theoretically we should be able to go a stage higher yet and find for

a diatomic molecule a temperature range in which the vibrational energy

is classical. In such a range, if simple harmonic oscillations were still a

good enough approximation we should have
kT

log F {T) = - log (1 - e-W^^-) _ log '1::^

,

so that {Cj,)q/R = f and there would be an extra term log k/v in i. Similar

forms should hold at least as rough approximations for polyatomic mole-

cules. If there are / normal modes in the molecule which are effectively

both simple harmonic and fully excited, of energy increments v^, ...,Vf,

then (hTV

Vi ...Vf

and we take {Cj,)q/R = 4 + / and an extra term log [k^/vi ...Vf) in i. The fuU

modification necessary when the electronic structure of the atoms and

molecules is considered will appear in Chapter xiv. We may summarize

this discussion as follows

:

Theoretical values of i and {Cj)q .

A. Structureless atoms, K{0) = 1

(i) Monatomic Vapours

(C,)o = fi?, * = logl^^^|^\ (443)

(ii) Diatomic Vapours

Low temperatures [the only known example, Hg , cannot be discussed in

this ivay]

(CA=iJg, i = log
'''"'>y"'

(444)o¥
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Ordinary temperatures ; vibrations unexcited

{C,)o=iR, * = log|^—^^ .__L__J_| (445)

High temperatures ; vibrations classical {rough approximation only)

(OX - iB, i ^ log |(^^ .

^-'^(WS
^1 ,,,e)

(iii) Polyatomic linear molecules

For loiv and ordinary temperatures see diatomic.

High temperatures ; f vibrations classical {rough approximation only)

(^.)o ={l+f)R,^ = log |-^^ . ^p .

^-—-^^i
. (447)

(iv) Polyatomic {non-linear) molecules

Low temperatures {no known example)

(C.)o=iJ?, »=log <^"^;f"' (447)'

Ordinary temperatures ; vibrations unexcited

(0.)„ ^m.i^ log ii^p^^ ^H^A^i^^
Y

..,,,„.,

High temperatures ; f vibrations classical {rough approximation only)

<n\ <A^fM? 1
l(2^rm)^ Stt^ {^Tr'ABC)^ kf \

(447)'"

B. Atoms and molecules as electronic structures

An additional factor ^

occurs in the argument of every log , where vjg{= K{Q)) is the weight of the

atom or molecule in the solid state, and Wa is the extra weight factor of the

free atom or molecule due to its electronic or nuclear structure.

In certain cases Wa may have even to be replaced by L {T), where L {T) is

the internal partition function for the electronic energy of the free atom or

molecule.

We discuss the numerical values of i in relation to experiment in § 7* 4.

It is to be emphasized again that all the formulae A above are derived

ignoring the electronic structure of atoms and regarding them as structure-

less mass-points.*

* Except perhaps the factor S which only enters when we contemplate the possibility of

axial rotation of linear molecules. Such molecules must therefore be something more than a linear

distribution of mass-points.

IO-2
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§ 7-11. The vapour pressure equation for a partial constituent. It may
sometimes be necessary to suppose that the vapour studied is only one of

the constituents of the crystal with which it is in equilibrium. In that case

it follows from §§ 5-9, 6-5 that equation (367) still holds, but that K (T)

must be replaced by k {T) defined by the equation (380). The strict analogy

between the statistical and thermodynamic theories is still maintained.

For if we start from (412) and write for the entropy of the soUd (C the

specific heat)

•^CdT
T '

8 — Sq ^=

then yiog.(T)=j(dTgp||^^ + 4]'

where a (= dCJdM*) is the variation of the specific heat with constitution.

The notation is suggested by the application to thermoelectric phenomena,

where ct reappears as the specific heat of electricity. It follows that

,
k{T) 1 r^ ,^ [T „dT

l°g^(0)-M^i/^Jo 'T-'

-
1^ -^j^]^ <rdT, (448)

analogous to the foregoing results.

§ 7-2. The reaction-isobar in thermodynamics and statistical mechanics.

The classical formula for the reaction-isobar of a homogeneous gas reaction^

is derived from a combination of van't Hoff's equation and Kirchhofi's

equation as above. We find, if Kp is the equihbrium constant,

logK^ = log{n,^,«4,

==^ + ^J^^lf^ log T +
fJ 1^, f {S,g, {CM dT + /.

(449)

In this equation g< is the number of gram-molecules of the ^th species

reacting, with a negative sign for those that disappear when the reaction

takes place, and pt is the partial pressure of the ^th species. {Q.p)q is the

work which must be done to make the reaction go in this sense at con-

stant pressure at the absolute zero, and (Cj,*)o and {CJ)i are the constant

and variable part of the specific heat at constant pressure of the tth.

species. / is a constant of integration, about which classical thermo-

dynamics has nothing to say.

|" Heterogeneous reactions can also be considered, but we omit them here for simplicity of

exposition.
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The corresponding formula of statistical mechanics is (333), but this

needs expressing in the partial pressure form.

By combining examples of (333) to give Kj, for the reaction here con-

sidered we get n, {v^^t) - n,{i^, {^)fi,

where F as usual denotes the partition function / from which the F-factor

has been extracted. Since 'Pt = v</log Xj^, this becomes

log K, = log {n,:p,«4 = 2, log {F^ (^) log 1/^)^^ (450)

If we convert (449) into partition functions as we converted (437), we find

at once that (450) and (449) are equivalent, but that (450) assigns to

the undetermined / the precise value

I='^tqtit, (451)

where the i^ are the chemical constants of the various gases taldng part in

the reaction, as determined in the last section.

Equation (451), due to Nernst, is of great importance and in fact justifies

the name chemical constantwhich is attached to the i. We have here derived

it as a theorem in pure statistical mechanics, but, it must be noted, on the

hypothesis that, for the crystalline form of any of the gases concerned,

log K (T) -^ as T -^ 0. This hypothesis will be further analysed in a later

section ; what is essential is of course that some such hypothesis is a neces-

sary condition for the truth of (451). The logical positions of this equation,

and also of the third law of thermodynamics, from which (451) was

originally derived by Nernst, are made much clearer by presentation in

this way as theorems in statistical mechanics.

If log jK" (0) 4= in all cases and the i's are still defined by (437) the

general form of (451) will be

I =i:qt{i + log K{0))„ (452)

= ^qti/, (453)

say. These i/ then refer entirely to the gas phase and it is their theoretical

values which are given by equations (443)-(447), or, when electronic

structures are considered, by these formulae with the inclusion of the

factors Wa , and the omission of Wg

.

§ 7*3. Nernsfs heat theorem or the third law of thermodynamics* This

theorem can be enunciated in various ways. The commonest are

:

(a) For any condensed system and any reversible isothermal process,

^->0 as T ->0,

where A is the maximum work that the reaction can be made to do.

* For an account of this theorem see Nernst, Die theoretischen und experimentellen Grundlagen

des neuen Wdrmesatzes (1918). For a more recent analysis, Lewis and Randall, Therinodynamic s,

esp. Chap xxxi (1924).
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(6) For any condensed system and any reversible isothermal process

AS ^ as T ^ 0.

The equivalence of (a) and (6) is a consequence of the laws of Thermo-

dynamics.

(c) (Less precisely.) At T =^ all reactions in condensed systems take

place without change of entropy.

The theorem as thus enunciated is a generahzation from experimental

data on specific heats, heats of combination, and the electromotive force

of reversible cells. The body of evidence in its favour is great, but the

generahzations above have probably been rather too hastily made. A very

careful rediscussion of the law has been given by Lewis and Randall*. They

conclude that its original enunciation, as applying to condensed systems

other than sohds or even rather other than pure crystals is probably

fallacious and that the theorem may be more properly enunciated thus

:

(d) "The entropy of each element in some crystalline state can be taken to

be zero at the absolute zero of temperature. Every substance then has a finite

positive entropy, but at the absolute zero of temperature the entropy may
become zero and does so become zero in the case of perfect crystalline substances,

including compounds."

By this enunciation the behaviour of the entropy of supercooled liquids

and solutions is properly left open. It will be observed that Lewis and

Randall have been careful so to formulate the theorem that the idea of

absolute entropy is not introduced. We can really (if the theorem is true)

leave arbitrary the constant Sq which denotes the entropy of any element

in a specified crystalline form at ?^ = and then the constant S^ for any

compound mil be the sum of the S^s for the elements implicated. The
content of the theorem is rendered more striking and practical convenience

is furthered by putting Sq == for all elements ; so long as this is not taken

to imply the existence of an absolute entropy no harm but only good is

done.

Equation (451) was derived by Nernst from his theorem by considering

the following reversible cycle

:

(i) Condense a unit set of reactants to soUd form isothermally. The
work done and the change of entropy are known in terms of the vapour-

pressure equation and involve the *'s. [For initial temperatures above a

certain limit, a preliminary cooling of the gaseous reactants will be required

involving their specific heats. Prehminary expansions will in general also

be necessary to adjust pressures to equaHty with the vapour pressures of

the sohds.]

* Lewis and Randall, loc. cit.
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(ii) Cool the condensed form to the absolute zero. The entropy change
is again known in terms of the specific heats of the sohds.

(iii) Allow the reaction to proceed completely at the absolute zero. This

may be supposed ideally possible, and by the theorem there is no change of

entropy.

(iv) Heat up the condensed resultants again as in (ii).

(v) Evaporate the resultants to gases again as in (i) and adjust pressures

and temperatures.

(vi) Let the reaction go back again isothermally in the gas phase, so

that the assembly returns to its initial state. The entropy change here will

depend on /.

The change of entropy for the cycle must vanish, and it is easily proved

that the condition for this is (451).

Nernst's Heat Theorem thus formulated rests on a purely empirical

basis. The theoretical position becomes clearest when it is regarded as a

theorem in statistical mechanics. It will be shown to follow at once from
the theorems here proved, with the help of a certain extra hypothesis which
is itself plausible ; namely, that the weights of the lowest quantum states of

all condensed systems {or, more probably, all pure crystals) are the same. If

this condition is fulfilled then it follows that the entropy changes of re-

actions in condensed systems (or at least pure crystals) must tend to zero

as 7^ -> 0, which is the theorem. This extra condition, however, is certainly

not more than plausible for doubt is cast on it by the very example, Hg,

of which we know most.

Consider first, for simphcity, an ideal case in which the partition

function for a single atom in the condensed state, before and after any
chemical reaction, has the forms

All the degrees of freedom of the solid are thought of as of one type in

this ideahzation, and the total number cannot be altered by any reaction.

The entropy contribution to any assembly is, by (397) and the formula

for E, before the reaction

Nk

As ^ ^ this tends to

Nk

log/(^) + logl/^.^^log/(^)

log tfJo^'o + log I/^ . S- ^ log Wq^'o

= Nk log Wq .

After the reaction the entropy contribution tends to Nk log po . If tjjo = /Oq
,

Nernst's theorem follows. This example has the merit of showing just how
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plausible the hypothesis w^ = po is. For structureless atoms nothing else

could well be true. For actual atoms when their possible differences of

electronic structure in two phases are remembered it is not so convincing

a priori that TOo = po» ^^^ it may in fact be untrue. If it is untrue, then

even the restricted enunciation of Lewis and Randall loses its general

vaHdity, though it may still be true of the great majority of examples.

For a more genuine example, say a crystalline solid, we have determined

the partition fvmctions in § 4- 5 by an analysis of the motion of the sohd into

its normal modes, each of which behaves like a hnear harmonic oscillator of

a certain frequency, and obeys, it is presumed, the quantum rules for such

a system. Its lowest quantum state has therefore had attached the weight 1.

This convention of course is unessential, for only relative weights matter.

Taking it as Wq for generahty, it follows at once, from (212) so generalized,

that, as ^ -> 0, _ 7^

logZ(^)~-^^« + 3iV7ilogtao,

log K {^) + log l/'9- . -^^ log K (^) -> ^Nn log w^

,

where N is the number of crystal unit cells and n the number of atoms in

a unit cell. In these considerations we must consistently either ignore or

include the degrees of freedom due to the electronic structure of the atoms,

and we are at present ignoring them. We find of course the same result

by working from the prepared approximate form (218) for K (^). If now
a reaction is supposed to occur near T = between crystals, the entropy

change, as T -> 0, will tend to

i:tqt{^Ntnt log {m^)t).

Since the number of atoms of each sort cannot change, Y^iq^at^N^ni = 0,

where «j^ is the number of atoms of type p in the tih constituent of the

reaction. Therefore the necessary and sufficient conditions that all such

reactions should occur with a vanishing entropy change asT -^ can easily

be shown by the method of undetermined multiphers to be

log {mo)t = ^pKc^t" {edit). (454)

This means of course that the weight of the atom of type p need not be

unity but may have any value (eV) provided every such atom carries this

weight with it into every combination.

When we regard matter purely from the atomic standpoint, ignoring

electronic structures, it seems very difificult to suppose that (454) can be

mitrue. We must presumably attach the same weight to the same systems

(hnear harmonic oscillators) wherever we find them. As before, this is not

so clear when electronic and still more nuclear structures are considered,

and the evidence of § 7-4 suggests that further researches in this direction

may not be without profit. Whether or no Nernst's heat theorem is
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universally true, it is no doubt true in very many cases, and its exact

position as a theorem in statistical mechanics is now clear,* together with

the particular hypothesis which may have to be abandoned, if the uni-

versality of the theorem proves false.

§ 7-31. Basis of comparison between theory and experiment, (i) Use of

diatomic and polyatomic formulae for i. We have already mentioned that

by use of (437) i can be derived almost directly from experimental deter-

minations alone. If we use (437) with {CjX = %R the only theoretical result

which we use is a theoretical extension of the laws of perfect gases down
to the absolute zero.f For the remainder of (Cj,)vap and the other quantities

experimental values can (at least ideally) be used. For monatomic gases

the formula can always be and is always so used, with (Cp)i = 0. For other

gases the monatomic formula can still be used so long as we retain the

whole rotational and vibrational energy in {Cp)^ and use observed values

for it. We could obtain in this way further direct tests of the monatomic i,

unaffected by specific heat theory.

This procedure, however, is often impracticable or inconvenient and

weuse((7j,)o >f with other corresponding forms for i. It must be remembered,

however, in comparing such forms with experiment that they no longer

are independent of specific heat theory and errors in that theory will

reveal themselves as errors in i. Consider, for example, the rotational

term. The formula for log p strictly contains an expression which we may
write

nTm ^rot dT ,

J^J^ .' Jobs

which can be reduced as in § 7*1 to

[log R' {T)IR (O)]obs,

where R' (T) is the true partition function exactly reproducing the observed

specific heats. But when we take the rotations as classical and use a

corresponding formula for i, we replace this by a theoretical expression

which of course varies with T in very nearly the correct manner for large

enough T. When we then compare theory and experiment for i, we adjust

some atomic constant in [R' (T)]theory so as to make

[R' {T)IR (O)]obs = [R' {T)IR' (O)]theory, (455)

assuming for simplicity that the value of i given by the monatomic formula

is correct. For a diatomic gas for example, in comparing the moments of

* W. Schottky, Phys. Zeit. vol. xxu, p. 1 (1921), vol. xxm, p. 9 (1922); Ann. der Phys.

vol. Lxvni, p. 481 (1922), has given independently a similar analysis of the basis of Nemst's

theorem as a theorem in statistical mechanics, and pointed out the dependence of chemical

constants on the weights of the lowest quantum states.

t For the validity of this see Chapter xxi.
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inertia A derived from the chemical constant and band spectra we take

that value of A which solves (455). If however (Crot)theory > (C'rot)obs for

the true value of A, then the value of A from (455) will come out too

small, and conversely. We see that it is now rather specific heat theory

than chemical constant theory that we are testing.

(ii) Changes of phase in the condensed form. Changes of phase in the

condensed form may be regarded as automatically allowed for by equation

(437) when we use proper observed values of Csoi . The general equations

from which (437) arises reduce for perfect gases of large specific volume to

I dp X dX _
pdT^RT^' dT~ ^^^^^^P " ^^^^'°''

which lead at once by integration to (437). When we pass through a

transition point, however, at which the soUd changes to another crystalhne

form, or melts, we must refer back to the precise meaning of (Cj,)soi dT in

this equation. It is of course a quantity of heat supphed to the sohd to

cause a specified change. At an ideal transition point (Cj,)soi dT becomes

illusory and we have instead a latent heat of transformation. In (437),

rT
where the term I (Cj,)soi dT occm-s, the inclusion of such latent heat terms

.'o

must be understood. In terms of what are normally called specific heats,

this integral can be replaced by

r {C^UidT {T<T,),
Jo

A,+ r{C^)soidT {T>T,),
.'0

where Tf is a transition temperature and A^ is the latent heat of transition,

which will usually be positive as written above.

Trouble, however, will arise if we have extrapolated back to zero an

apparently well-determined curve of specific heats through an unknown
transition point. This can of course only happen at low temperatures at

fT
which, apart from changes of phase, (Cj,)soi dT will be given sufficiently

.'

closely by AT"^. If, however, there was really a transition point (A^) at

Tf, then the correct value of the integral for T > T^is not AT^ but

AT^ + Xt+ {A' - A)TtK

In this A'T^ is the form of the integral for T < T^. We may assume that

A^ > and perhaps that A' < A, since the transition is hkely to be to a

more stable and therefore more rigid form. It seems to be the case, however,

that A' and A, or more generally the specific heats on either side of the

transition point are very nearly equal, and therefore that the sign of the
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error, which we will caU /x«, is the same as that of A^. Instead of the

correct value of rT .jji rT

'^2^2
J

i^p) sol dT

we shall therefore be using

The right-hand side of our formula for log p is therefore too large by

\Tt t)
•

The term in 1/T does not matter. It is absorbed in Xq, which is in practice

an adjustable constant. The observed value of i will therefore be too small

by fXt/RTf, which may be expected to be positive.*

(iii) Monatomic chemical constants via dissociation equilibria. In order

to obtain as many examples of monatomic chemical constants as possible,

it is important to recognize that a knowledge of vapour pressures and dis-

sociation equiUbria for diatomic gases such as the halogens provides us at

once with a direct determination of the chemical constant of the atom
into which theoretical uncertainties as to the structure of the molecule do

not enter. Expressed in partition functions we have

^ _ 0^{T) (M/V)^ ^ F^T)
V- K{Ty w;iv ~GATy

and therefore -^ = ^^

—

-j

,

V {K {T))i

an expression into which no reference to the molecular form enters. Since

S {{UlYf T^,„li (K„j>)J

\ NJV
where K^, is the equilibrium constant, and p the vapour pressure, M/V
can be "observed" and the monatomic chemical constant directly deter-

mined. In practice vapour pressures and equihbrium constants are not

observed for the same temperatures and an extrapolation of one or other

is needed by the theoretical formula. This will involve a knowledge of the

specific heats of the molecule over the range of extrapolation, but will

involve the molecule in no other way. The same result can easily be

obtained from the thermod5niamical forms. In practice the analysis will

be carried out separately to determine 2i (X) — i {X2) from log Kj, and

i (Z,) from log p. These are then added together and halved, to give the

entry in the table.

* For this discussion see Cox, Proc. Camb. Phil. Soc. vol. xxi, p. 541 (1923).
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§ 7* 4. Experimental values of i, and the comparison ivith theory.

Monatomic gases. The theoretical formula is (443). It is usual to express

it numerically for the case in which p is measured in atmospheres

{= 1-013 X 10^ dynes per cm. 2) and the log's are logi,,. Then

i = - 1-587 + f logio m* = ^ + f logi m^ .(456)

where m* is the chemical atomic weight, defined by taking the value of

m* for the oxygen atom 16-000. The following table contains all the rehable

determinations of which I am aware.

f

Table 11.

Monatomic chemical constants.

i = io + f logio m*.

The theoretical value of — i^ is given by

- io = 1-587 - logio otJ^s-

Gas
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These values are extremely interesting and suggestive. They indicate,

firstly, that the theoretical value is correct for the first group, and no doubt

for the other inert gases as well. That is to say, for these vapours the chemi-

cal constant is correctly given by (443) and the assumption of equal (unit)

weights for the atom in the solid and vapour phase is Justified. The value

for H2 will be discussed separately in § 7*41.

The accuracy of the results and the agreement of different observers

for Na and K is poor, but they suggest distinctly that — i^ is less than

1-6 for these alkahne vapours, and they are in no way inconsistent with

its being less than 1-6 by 0-3 or logio 2. This is in fact the final conclusion

of Edmonson and Egerton taking account of Zeidler's work with their own.

This, however, is just what we should expect if the weight of the aP^ahne

atom in the condensed form is unity (iT (0) = 1). It is impossible to

retain the conception of structureless mass points for these vapours. We
must recognize the electronic structure, which leads, as we shall see in

Chapter xiv, to a weight 2 for all free alkahne atoms in their normal

state. Only the normal state "^8 will be present at the temperatures in

question and the full atomic partition function need not be introduced.

This would by itself be far from convincing. The interpretation offered

is at least rendered plausible by the similar state of affairs for the halogens.

For these — ^ is smaller than normal by from 0-6 to 0-8, and this again is

just what we should expect for halogen atoms (with X (0) = 1) when the

electronic structure of the free atom is recognized. The deepest term of the

free halogen is an inverted doublet ^P, so that the normal state is a term

^Pgj weight 4, the term ^Pj, weight 2, being only shghtly higher.* The
"weight" of the free atom must therefore here be replaced by two terms

of the partition function
4. _i_ 9 -AP/fcr

Over the small temperature ranges in question this will behave hke a

constant effective weight. We can therefore construct the following

Table 12. On adding 0-7 for CI and 0-6 for Br and I we find for — i^ the

values 1-58, 1-42, 1-53 which are in not at all bad agreement with the

theoretical value, considering the elaborate and difficult experimental data

required.

As a general summary of this discussion we may conclude that the

foregoing results, so far as present accuracy goes, are in full accord with

the theory, taking atomic structure into account, if the proper weights of

Chapter xiv are assigned to the states of the free atoms and the weights

of the atoms in the sohd form near the absolute zero remain unity. The
revived electronic theory of metals necessarily requires a weight unity for

the atom in the crystal of a halogen.

* Empirical generalizations from the theory of Heisenberg and Hund. For a convenient

summary see McLennan, McLay and Smith, Proc. Roy. Soc. A, vol. cxn, p. 76 (1926).
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Table 12.

Effective weights of free halogen atoms.

Atom
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The orientational factors /„ and /« must then be added. This sums to the

expression ,

1 - xU {z) K {z) - x'f, {z) K {z)

'

(^^^)

We then form the usual expression for C which is here

Z ! ZM fjf dxdx'dz exp {xg^ {z) + x'g, (z)}

(27r*)3 }]] X^+lx'^"+l2^+l 1 - {xfa{z) + x'f,{z)}K{z)
^ '

The usual evaluations then give

^-^ + ^^^^°'^' + i-«/fw + r?U.w '^^^>

To these we must add here X = ZX' and note that the last term in (459)

and (460) must be very large, so that effectively

Ua (^) X (^) + f/s (^) X (^) = 1. (461)

Since gr„ (9-)/g's (&^) is by our hypotheses equal to /„ (9^)//^ (^) we must have

^^'°
^/g (^) _ 3

r/s(^) 1*

^^""^
^ ^ *aWm^)' ^' ^

'fs m X m ^^^^^

It follows that _ = 3^_^^ = 3-^. (463)

From (463) it follows at once that the chemical constant of Hg has the

normal value observed, for we find

N + N-' __ gA^) _ {2^rmkTf

This analysis of the observations seems satisfactory in itself and there are

no obvious alternatives. We must accept the two rotational forms of the

Hg molecule as both present in crystals, hquids and vapours ahke,

mixed at random in the proportion 3 : 1 and surviving in this ratio over

periods of time long compared with ordinary observations. We must then

also accept for the mixed Hg crystal a non-unit weight for the lowest

possible state. Due to the orientations f of the molecules have weight 9

and the rest 1. This is equivalent to assigning the value log Wg = ^ log 9

in all formulae, and at once suggests the likelihood of exceptions to Nernst's

heat theorem.

§ 7-42. Diato7nic gases {and linear molecules). The usual formula to use

for i is (445), where A is the moment of inertia of the molecule in its normal

state. A serious comparison of theory and experiment in this region has
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only recently been made possible by the work of Eucken and his col-

laborators,! who have carefully collected all the available material, cor-

rected the observations systematically for deviations from the perfect gas

laws, and tabulated the results. We repeat these in a shghtly different form

with some additions.

Table 13.

Chemical constants of diatomic {linear) molecules.

i = 36-815 + t logio m* + log^o (S^/a)

if the state of lowest energy of the crystal and the molecule both have the same (unit) weight

:

otherwise add



7-43] Cheinlcal Constants of Diatomic Molecules 161

In that case NO must be taken with Og , being the only other paramagnetic

molecule known to occur in ordinary gases at ordinary temperatures. The

normal molecule O2 has a permanent magnetic moment of two Bohr mag-

netons, and probably weight three due to its orientational possibilities.

It corresponds closely to a ^8 atomic state (see Table 41). The theory for

NO is not so simple (§§ 12-61, 12-7). Its normal state appears to corre-

spond to a state ^Pj of magnetic moment zero and weight two ( ? ). The other

state of the doublet ^Pg is higher by 122 in wave number, of magnetic

moment two Bohr magnetons and weight four (?). If this is correct the

normal state of NO must be assigned a partition function

2 + 4e -161/2',

instead of a constant weight. It is assumed that the usual rotational parti-

tion function can be superposed on this. A factor of two probably arises

from similar left- and right-handed spins of the normal molecule (in fact

a case of 8 = 2 included in this part of the specification). At ordinary tem-

peratures this reduces to about 2 + 2-2 = 2 x 2-1. If the crystalhne forms

of O2 and NO are not paramagnetic it is possible for the molecules to

have unit weight in the sohd state. We might then have unit weight for

the O2 molecule and perhaps two for NO preserving its left- and right-

handedness. In that case we should have extra terms + log 3 and -|- log 2-1

in the formula for i in these two cases, and — log A would be increased

to 38-71 for O2 and 38-84 for NO. These values are in satisfactory agree-

ment with the optical ones. In the present state of the theory of these

molecules this explanation can only be regarded at the best as a plausible

speculation*.

§ 7-43. Polyatomic molecules. The few rehable values of chemical con-

stants for polyatomic gases are given below.

Table 14.

Chemical constants of polyatomic molecules.

i = 56-265 + S log m* + log (^J?£I
a

if the state of lowest energy of the crystal and the molecule both have unit (the same) weight.

Gas
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The values of a are very uncertain for NHg and CH4 and all discussion

is premature.

§ 7-5. Gas reactions. Nernsfs equation I = ^t^th- Besides his table of

values of i, Eucken has determined / for a number of reactions in which

gaseous constituents are involved. These are not all homogeneous gas

reactions—a number of them are heterogeneous. The theory, however,

obviously applies as before, the summation ^tqtit being taken over all the

gases concerned in the reaction. Eucken gives the following values. The
ranges of ^t9.th can be derived from the ranges in the preceding tables.

Table 15.

Reactions involving gases. Values of I observed compared with Htqtit.

Condensed forms omitted from 2^ are indicated thus [ ]. The values of if. are in all cases

the observed values given in Tables 12, 13, 14.
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in this 9 it is of course not possible merely to take this value for Hg and try

it in the equations with unit weights for the other substances with any
hope of success. Nuclear weights must pursue H through all its com-
binations. As an experiment we have retained the one weight factor 3 as

possibly peculiar, since it arises from the metastability, and used a con-

stant — 3-32 for gaseous H.^. The values of S^g^*/ given in column 4 of

Table 15 have been derived from Sig<*i by making this single change.

There is now no serious bias in the remaining residuals of the ten reactions

involving Hg. If we take the algebraic mean of any nine of these ten

residuals, arranging the reaction formula so that H2 is always on the positive

side, we find only a trivial mean deviation instead of + 0-68.

If we could properly correct aU the observed i^ as we can for Hg so as

to derive the true gaseous i{ , then of course / and llitqti{ must agree.

Eucken has made various interesting and possible emendations of this

tjrpe on the basis of the residuals of Table 15. It is, however, obviously

impossible to make such emendations in a satisfactory manner, until we
have a much more complete knowledge of the detailed behaviour of

molecules other than Hg, and we shall not discuss them further here.



CHAPTER VIII

THE THEORY OF IMPERFECT GASES

|8'1. General gaseous assemblies with molecules not fully independent.

We have so far only considered assemblies of "isolated "or effectively

isolated systems, which almost never interfere with each other. It is only

in such assemblies that the energy can be assigned to individual systems

rather than to the assembly as a whole, and it is on this partition of the

energy among the systems that the foregoing analysis is based. When this

independence breaks down between the separate atoms as in a molecule

or a crystal, we take the whole complex (molecule or crystal) to be the

system. In the worst case the whole assembly must be one system in this

sense—the analysis will then apply, but progress is difficult (except by
special devices in specially simple cases), unless the djmamical equations

for the whole complex (assembly) can be approximately solved. The

essential step is, as always, to evaluate the partition function.

The assembhes which we are now contemplating differ essentially from

perfect gases only because there is in the energy of the assembly as a whole

a general term W which is a function at least of the positional coordinates

of all the constituent systems. The justification for regarding the extra

energy IF as a potential energy depending only on positional coordinates

merits close scrutiny. Let us suppose that two simple systems (atoms or

molecules) of types a and ^ have energies E^, E^ when they are very far

apart. These energies will then be functions only of the Hamiltonian

coordinates of the systems a and ^ respectively and each will be indepen-

dent of the coordinates of the other. The internal energies will be specified

by quantum conditions. When, however, they approach each other this

independence must sooner or later cease. The energy of the pair will no

longer be E^ + E^ but E^ + E^ + E^p, say, where Eap is a correcting term,

at first small, depending on the coordinates, and perhaps velocities, of both

systems. We assume as a first approximation that the effect of a on any ^
can be expressed by saying that a is surrounded by a constant field of

force. This must of course be derived from the mean fields of the moving

electric charges in a. The electric charges in j8 will then have a mean poten-

tial energy in the field of a depending on the relative positions of a and ^.

This, however, is not the whole of the effect, for the field of a may alter

the internal energy of ^ and ^ that of a. A simple example is polarization

in the field of the other body. Such changes of energy are a proper part

of Eap. If a and ^ approach each other slowly then all the effects must

be adiabatic in Ehrenfest's sense, and will depend only on relative co-

ordinates, being independent of velocities. In this case the complete E^^

,

derived from all the sources specified, may legitimately be expected to
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behave like a potential energy depending only on the relative coordinates,

whose derivates give the forces. Moreover in actual appUcations nearly

all molecular encounters are slow compared "«dth the velocities of electrons

in atoms and molecules, and will therefore be adiabatic in the required

sense. This is the assumption as to the nature of E^^^ tacitly made in all

discussions of molecular interactions.

The function E^^ so specified must in general depend on the quantum
states of the systems a and /3. It is obvious that for atoms and molecules

changes of electronic orbits must affect Ea^ , for they must at least affect

the polarizabiHty. It is usual, however, and not unreasonable to assume

(at least as an approximation) that Eas will be independent of molecular

states of rotation and perhaps vibration*. As it is almost universal in gas

problems for only one electronic state of atom or molecule to be relevant,

the usual approximation should apply. If it does not then, as we shall see,

it is only necessary to treat different electronic or vibrational states of

atom or molecule as different systems.

§ 8-2. Partition functions for' the poteritial energy of the ivhole gas. We
can at once proceed to construct a partition function for the potential

energy of the whole gas, which in conjunction with previous results will

determine all the equilibrium properties.

Let us start by considering a perfect gas mixture and examine how to

construct a partition function for the whole classical energy of translation

of its molecules. The internal energies of the molecules are independent of

their translations and wiU be accounted for as usual by separate partition

functions. Let there be Na,Np, ... free atoms and molecules of types

a, ^, ..., internal partition functions ja (^) , jp {^), • • • , and masses ?w„ , ?/i^ , , .
,

,

supposed for the moment not to dissociate or combine. In accordance with

the general principles of § 2-2, the phase space of the whole gas must then

be cut up into elements of extension

{mj^'^m^^^^ ...)3 n {dxa ... dw^)r U {dx^ ... dwp)g ...,

r=l s=l
and prepared weight

A^„ N.

ft '^ P j. = i s = l

The classical partition function H {^) for the translatory motion is therefore

given by

X n (dxa ... dwa)r n {dxp ... dwp)g— (466)
r=l s=l

* If this is not true then of course £„^ is a mean value taken in a way not yet specified.



166 The Theory of Imj)erfect Gases [8-2

It is assumed that there are no external fields of force except local boundary-

fields. All the space and velocity integrations in (466) are independent and

can be carried out one by one, and we find

Hm=^
.vp

(
277m,)tF

Ji^ (log l/a-)tj Ih^ (log l/^)^.

[Aa(^)F«[/i^(^)r^.... (467)

In equation (467) ha (^), hp {^), ... are the ordinary partition functions for

the translatory motion of single molecules of types a, ^, ... , and we recover,

as we must, the ordinary result. For the complete partition function we
have of course to add to H (^) the factor

[ia(^)F»D>(^)r^.... (468)

The extension to an imperfect gas is immediate. Under the specified

conditions J„ (^), j^ {^), ... are still separable factors. The function H (^)

is altered only by the addition of a term W to the index of •8-, where W
is the potential energy of the whole assembly, a function of all the

positional coordinates {Xa, ya, Za)r, {x^, yp, zp)s, ..., built up to a first

approximation out of the functions Eap which we have already specified.

The addition of W wiU not affect the velocity integrations, which can be

carried out as before. We therefore find in general

H{^) = (277m„)^ {^TTm^f

Ji^ (log 1/-^)^J Ui^ (log l/^)i

Np
...xB{^), ...(469)

where B (^) - L.U^ rf {dx^ ... dza)r n {dx^ ... dzp)s (470)
J J r=l s=l

The integrals in B {^) are extended over the whole positional phase space

accessible to the gas. It is therefore assumed that in no case can W -^ — co,

but that ultimately there must be repulsive fields between any two particles

for which TF ^ + oo when they approach sufficiently closely. No other

assumption would be physically consistent with the continued existence

of ordinary matter*. When W = 0,B{^)= F^»+^P+-, and H (^) reduces

to (467).

From the form of (469) it is clear that classical potential and kinetic

energies in a gas can always be handled with separate partition functions.

The kinetic energy can be dealt with in the ordinary way, as if the gas were

perfect, by ordinary partition functions without the F-factor. The potential

energy is accounted for by B (d-). It should be observed also that (469)

and (470) are perfectly general, so long as aU the particles are free to move

* But always only so long as degeneracy effects can be neglected. See Chapter xxi.
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individually, and apply to assemblies in which the imperfections are of

any degree and the intermolecular forces of any range, and whether or no

there are external fields of force*. It is not, of course, true for higher

degrees of imperfection that W can be regarded as built up entirely of

terms such as E^fi, that is, terms arising from binary encounters. Ternary

encounters must next be considered in which three molecules are concerned

with a total energy (E^ + E^ + Ey + E^y + Ey^ + E^p) + E^^y, where

Ea^y depends essentially on the coordinates of all three systems. At higher

concentrations encoimters of all orders must be successively taken into

account. But, assuming W can be constructed, equation (470) continues

to give B {^). If there are no external fields of force, W wiU be a function

only of the relative coordinates of the molecules. If there are local boundary

fields representing walls of the enclosure, this will still be true in the hmit

when the whole volume is very large compared with the volume affected

by the local fields.

The partition function B (d-) refers to what is strictly a single system,

the whole gas. It therefore appears by itself, not raised to a high power,

in the complex integrals which give the properties of the equihbrium state,

resembhng thereby the partition functions for radiation and for crystals.

Some average values derived in the usual way from B (^) may be small;

they will none the less be true averages, but will merely be subject to

relatively large fluctuations. But any derived average number of mole-

cules which is itself large, Hke the average values of the theory of the perfect

gas, wiU have its usual validity and its usual insignificant fluctuation which

guarantees normahty.

In specifying, for example, a statistical state of the assembly in order

to derive average values from B (^) it is necessary strictly to specify the

positions of all molecules. There is also only one system, the whole gas.

In Chapter ii, for example, we proved with the help of a partition function

/ (d-) that the average number a of systems satisfying certain conditions

represented by part of/ (^), 8/ (^) say, was given by

a = iV8/(^)//(^). (471)

Here, however, iV = 1; the meaning of (471) is unaltered, but is better

appreciated if we say that 8/ (9-)// {^) is the fraction of time during which

the gas is in the specified state, or if we hke thefrequency ratio or probability

of that state. Equation (471) still describes a genuine equihbrium property

of the assembly, but only those mean values derived from (471), which have

insignificant fluctuations, are physically significant.

The potential energy W will contain terms which depend on the values

of the parameters which fix the positions of bodies producing external

* But always only so long as degeneracy effects can be neglected. See Chapter xxi.
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fields. The generalized reaction Y^ of the whole gas arising from W in any

configuration is therefore — dW/dy, and

(472)

= ^log5(.^)/logl/&. (473)

The average value of the potential energy is

ir=^^log5(^). (474)

The former result is, of course, the exact analogue of § 2-74. From it, it

follows at once, as in Chapter vi, that the more general assembhes here

contemplated obey the laws of Thermodynamics, and that J5 (^) contributes

k log B (^)

to the characteristic function T, and

k (log B(d-)- W log ^)

to the entropy.

It is, of course, necessarily true, and becomes particularly obvious in

this section, that the partition functions of our theory are identical with

the separable factors in the phase integrals of Gibbs. The further develop-

ments will therefore hardly differ at all, whether one starts from the

canonical ensemble of Gibbs or the conservative dynamical system of

Boltzmann. We shall continue for consistency and practical convenience

to use the terminology of partition functions.

In appHcations it is convenient to use an abbreviated notation. We
write dojar for {dXadyadZa)r and contract

n dcOar n doj^s ...

r=l s=l

into n„ ((7aj„)^«.

Thus B (^) = [...[^^Ha (f/co„)^« = l...je-^l^^n, {doj^)''- (475)

We shall similarly write SaiV'o for Na + Np -{- —
§8-3. A first approximation for imperfect gases. Short range forces. We

shall now suppose that the field of an a or /3, in which Eap is sensible, is of

strictly limited range, so that there is a certain smaU volume Va,^ round

a in which /3 (or round ^ in which a) must lie so that Ea^ ^ 0. Otherwise

Eafi == 0. For the present we neglect external fields of force. We suppose

also that ternary and higher complexes may be neglected, so that W
consists only of terms such as Ea^. It can be shown that in so doing we
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neglect terms in log B (^) of order at most 'N^ (ZpNpVa^lV)^. We therefore

suppose that Y^^N^v^^jV is small and that terms of higher order than the

first in this ratio are to be neglected compared with unity. The terms to

be neglected m. any step require, however, the most careful scrutiny*.

To evaluate B (^) retaining only binary complexes we consider first

an assembly with only one type of molecule. The argument extends at

once to any number of types, but the algebra is comphcated enough to

postpone for the moment. If one a, a pair lies in v^a. (shortly v) then

W = E^a (more shortly E) and is otherwise zero. Let us first take W =
everywhere. We obtain the contribution F^. The rest of B {^) comes from

integrating ^^ — 1 over the whole phase space. This is zero unless at least

one V is occupied. Let us put W = E and integrate for the relative

coordinates of one pair over v and for the other coordinates over V. We
obtain

s[ (^^- l)daj[ ...\{doj)^-\
Jv J (V) J

where S is the sum over all pairs. This reduces to

F^-i. ^N (iV^ - 1) [
(^^ - 1) dw.

This contribution is exact so long as only one v is occupied. If two are

occupied simultaneously the proper contribution to B {^) — V^ comes

from integrating -9-
^'^^' — 1 over vv' for two sets of relative coordinates,

and the others over V. The integrand we have actually used above is,

however, (^-^ — 1) + (^' — 1). It remains, therefore, to integrate in this

manner
O^+E' _ 1 _ (^£ _ 1) _ (^£' - 1) = {^E _

1)
(^£' _ 1).

Using this integrand the next contribution is

The numerical coefficient is the number of sets of two pairs. This con-

tribution is again exact so long as there are no sets of three pairs. The correct

integrand is then ^e+e'+e" _ i taken over vv'v" for three sets of relative

coordinates and the others over V. The complete integrand we have used

so far is

2 i^E - 1) (a^' - 1) + 2 (^^ - 1),

and there remains

i^E+E'+E" _ 1) _ 2 (^^ - 1)
(8-^' - 1) - s (a^ - 1) = n (8-^ - 1).

* The following presentation is due to Ursell, Proc. Camb. Phil. Soc. vol. xxin, p. 685 (1927).

Many current analyses of this type are completely fallacious, e.g. Jeans, Dynamical Theory of

Gases, ed. 2, § 218; Fowler, Proc. Camb. Phil. Soc. vol. xxii, p. 861 (1925).
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Using this integrand the contribution is

^''"<^)
%!(#-6)! |l<^^-"'^r-

The generahty of the method may be estabhshed by a simple induction,

and the full form of B (^) is therefore

where x = ^\ {^ - I) doj, (477)

and is therefore small.

It is obvious that the form of B {%-), at least for the earher terms, is

approximately given by
N N ^

and one is led to expect (as is in fact true) that

B{^)^ V^ {1 + X+ {x^)}"^, (478)

which is an approximation of the desired order. It is not sufficient, in order

to derive (478), to retain only the first two terms in (476), as is commonly

done, and assume that the second is small compared with the first and so

on. For the ratio of the first two terms is {N — I) x, and it is only x which

we are entitled to assume small ! We proceed, therefore, as follows, using

an argument adapted to the generaHzations required in § 8-31.

Consider the function F {x, y) defined by the equation

F(x,y)= 2
, ,,, OS. i.Tr

^'y'''^' (479)

By partial differentiation this function obviously satisfies the equation

'^fAm^ <-»'

Put F = e^K

Then this equation reduces to

dx \dy) Ndy^'

and g is uniquely defined as that solution of (481) which is equal to log y
for a; = 0. Since N is very large the last term can be neglected. Since also

F=y^f{xly%
dF 1 dF 1 ,^.T^

or y ^ = \ - 2x ~.
oy ox
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Substituting this in (481) we find the approximate equation for g

dx y^ \ dxj

The actual value of g required is g {x, 1 ) ; which is that solution of

which is for x = 0, terms of order 1/N being neglected. This is easily-

verified directly without the introduction of the auxihary variable y.

Equation (482) can be solved in finite terms, but of course no physical

importance attaches to any terms other than the lowest in x since we have

only hitherto included binary complexes. We find formally

dg _ 1 + 4a;- V(l + 8a;)

dx Sx^
'

, l-V(l + 8a;) 1 + 4a;- V(l + 8:»)
^=^"8

4x 8^
'

and the significant terms

g = X + (x^).

Thus log B{^) = N {log V + X + (x^)}, (483)

which is equivalent to (478) and contains all the relevant information.

Our result therefore is for a simple gas

log5(^) = iV^log{F+ in! {^ - l)doj}, (484)
J V

and for the general mixture, to which we devote part of § 8-31,

log^ (^) ==: l^aNAog (F + iS^i\r^
f

(^»P - 1) doy^), (485)

= S„iV.log V + ^a,^^ \ (^«^ - 1) dc^^. ...(486)

In this equation a^^ = 1 (a
=t=

jS), cr„<, = 2, and Sa^ means summation over

every pair of types a and ^. In every case the terms omitted are of order

smaller by the factor UNfiVafi/V than those retained.

The other partition functions for our assembly are normal, those for

the translatory motion being without their F-factors. When therefore we

add log B (^) to Y/k we restore the F-factors to the translatory partition

functions and add to T/A; the new term

S„,^^
f

{e -^a^/^^' .i}d<o,. (487)

The integral in (487) is more commonly expressed in polar coordinates,

for by ignoring coordinates defining the orientation of molecules we have
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tacitly assumed that E^^ is a function of r alone, or may be replaced by
a mean value for all orientations. Expressed thus (487) becomes

2,3:^^^47rf {e-^o-^I^T _^r^^r. (488)

The method can easily be extended to systems for which orientations are

relevant, and the potential a general function of relative position, but we
shall not take up such extensions here.

We have hitherto assumed that Eap is due to forces of finite range. It

is more usual and convenient in practice to represent molecular forces by

forces which fall off like some inverse sth power of the distance. If 5 > 4

the integral in (477) will converge when extended over all space. Any such

integral, if sufficiently rapidly convergent, can be substituted for the finite

integral in (477) and elsewhere, without modification of the argument, for

the integral over all space differs neghgibly from the integral over a Va^

of atomic dimensions. We thus find for the extra terms

^ap ^^^ 47r {e-^'^^I^T - 1} r^dr. (489)
CTaP V Jo

By (474) the average potential energy of the assembly is

TF- S„^^^^47r r E^^e-^-^l^^rHr (490)
(y^^ y Jo

If Fa is the complete partition function for the system of type a without

its F-factor, then the complete YJk is given by

{ VF ) N Nr [""

Y/k = 2„iV. log-^ + 1 + S.^ ^^/ 477 {e-^-P/^2' - 1} r^dr. ...(491)
I

iVa
j

ara^V Jo

Since p = T ^r^, we find at once
ov

p = kT
"S„iV„ 1 ^ N^N^

4-. Sa3 ^^^^ 47r f" {e-^-Pl'^T - 1} r^dr
V CTap JV F2""^ a^p

.(492)

This is the well-known formula of van der Waals, correct to terms in IJV^,

for a mixture of imperfect gases.

In concluding this section let us include an external field of force in

which the potential energy of the molecule of type a is ^^ • This must not

be so large that the approximations we have made become invahd in any

part of the assembly. At the densest point ternary encounters must still

be negligible. The condition for this is, of course, that if the densest element

of the gas in its average state is treated as a separate assembly then

TipN^Vap/V must still be small there.

The extended form of log B (^) is easily written down. Wherever before
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we obtained a factor F by integrating doia. over the whole volume, we now
obtain instead the factor

A^{^) = \ ^^'^doi. (493)

Wherever before we had to deal with an a, j8 pair we integrated their

relative coordinates over v„^ and the coordinates of their centre of mass

over F, obtaining the factors F 1 (S-^«P — 1 ) doi^ . Now, however, we

have instead

[
^«« + "^^co.[ {^^-^-\)doi^.

In place of the old F in this connection we obtain now the factor

A,p{^)^\ ^""-^""Pdco. (494)

There are no other alterations and the argument is unaffected. Therefore

log B (^) = S.^„ log |^„ id-) + li:,N, ^^^
J^^^

(^^»P - 1) dcofs^

,

(495)

= S,i\r„ log A. (^) + S„, ^f' f-^ f\^ f

(^^a^- l)dc.,.
Gap Aa{^)Ap{^}jv^p

(496)

§ 8-31. The general theory of B (0-)*. In attempting a more general

theory than that expounded in § 8-3, it is best to make a fresh start with

assemblies of N molecules represented by rigid elastic spheres of one type.

For such assembhes B (^) is independent of % and is the volume of 3iV-

dimensional space, contained in F^ for which no one of a set of conditions

in number \N (^ — 1), of the form

{X, - x,Y + iVr - VsY + (2r - z,Y>D\ (497)

is violated. Suppose we choose a set of these conditions in number k and

calculate the volume of that part of V^ in which they are all violated,

and then let Bj^ denote the sum of these volumes for all possible sets of

k conditions. Then

B (^) ^B,-B,+ B,- ... + {-)^B^ + (498)

This identity follows from the fact that an element of 3iV^-space in which

s conditions are violated is counted ^C^ times in 5^ if < ^ < 5 and other-

wise not counted; and

i (-)^c',= (l- iY = o {s>o),
fc =

= 1 {s= 0).

* Ursell, loc. cit.
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Thus the sum on the right of (498) is precisely that part of 3iV-space in

which no conditions are violated, that is, B (S-). The approximation of

§ 8-3 follows immediately.

To evaluate B (^) in general we must expand each Bj,. Consider a

group of t molecules whose positions can be represented in S^space. At

any particular point of this space a certain set of conditions (497) are

violated, and there is a surrounding region in which the same conditions

are all broken. We can enumerate all the sets of broken conditions (497)

in such a way that each set binds the molecules it involves into a single

connected group, the connecting links being the broken conditions (497).

For any such group there is a symmetry number o- which is defined as the

number of permutations of the molecules among themselves which leave

the set of defining conditions unaltered. In S^space there is a definite

region in which these conditions (and possibly others as well) are violated

;

by permuting the molecules among themselves we get t Ifa such regions,

which may of course overlap. We now enumerate the types of such sets

of conditions in any convenient order, and specify the rth type as follows

:

the number of molecules involved is t^ with a symmetry number a^ , and

the number of conditions violated is p^ 5 the extension of 3^^-space corre-

sponding to these conditions is 17^ . We find it convenient later on to use a

symbol 1^ defined by the equation

^,= (-)^.iVV-ir?,/(P.CT,).

Following the definition of Bj, we now choose any conditions (497) and

calculate the volume of 3iV-space in which they at least are violated. Any
such set resolves into a number of sets of the tj^es defined above, the

corresponding groups of molecules being disconnected and mutually

exclusive. Let there be v^. sets of the rth type so that

k^'LrVrPr- (^99)

The number of sets of conditions for which the v^ have assigned values is

N\
(iV- S^^^j^^)! Uriv^l a/r)'

Hence 5^=2 j^ ^^—VTrTl—i

—

^\ ^rVr"''^

the summation being over all positive integral values of the v^ satisfying

(499). Thus on introducing the ^^

the summation being over all positive integral v^. It is obvious that if b

is four times the volume of aU the molecules (van der Waals' b),
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We have now to find a means of summing (500). Write

and F is defined completely by these equations together with the condition

that it is regular in the ^^ at the origin and takes the value y^ there.

Further, if t^. = tg, that is, if the number of molecules concerned in the rth

and 5th type of connected group is the same, then

dF _dF

and F is therefore a function of the sums

only. We therefore have

^ {yN)^---sS''sUAXsNysNlN-^
^ = ^ (iv-s.^vjin,.,! '

^^^^^

Let us now write i/ = e*, S = SsSx^ p—

.

Then from (501) (^ + SW = N^F, (503)

and from (502)

Ndx, \Ndz N J'"\Ndz NjNdz '

On substituting from (503) we find

I dF /, 5- 1 S\ /, 1 S\ /, 8— sz 1-%^-^ ... 1-^-^ 1-^ U'
Ndx,~ V N NJ '"

V N NJ V A

Let us now write, as before,

F = e^^

and put y = 1 or 2 = 0. Then after reduction

in which the free S's are to operate on everything to the right of them

This is exact. Making iV ^ oo we get

^^={l-8gr. (504)

If we write h for I — 8g, then in virtue of the definition of 8

h= 1- i:,sx,h^ (505)
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The summation begins for s = 2. It is easily verified that subject to (505)

the partial differential equations

|^ = /i« (506)

are integrable. The method of evaluating g in series is now clear. We solve

(505) for h in series and so form g from (506), putting gr = for a^^ = 0. We
then have ^ ^^^ _ V^e^'^.

The method extends at once to a gas of any number of kinds of mole-

cules; it is sufficient to discuss a mixture of two kinds only, in number

No, and N^. We must now define the i^ so that the volume of 3 {t^ + t/)-

space corresponding to the rth type of group, composed of t^ molecules of

the first kind and t/ of the second, is

Here N^ is supposed to be a number of the order of magnitude of N^ and

Np] it may with advantage be taken to be an absolute constant such as

Loschmidt's number, or else proportional to V. We now find

B{^)= V^'^^^PFii,, 1,1), (507)

where

^ ^^-^'^^ ^(i\^„-S,^,v,)!(i\^^-S,^/0!n,v,! "
INa.lV^..

From this it follows that

I dF / I dVr / I d \V

We therefore put x^^^ = (^QDtq=r,tq'=s,

so that i^ is a function of the x^^g only, and F = e^o^ , We find eventually,

by the same reduction and approximation as before,

where ha = Va — Sag = Va — 'Lj.^s'^x^^shjh^^, (510)

h^ = vp — S^g = vp — H^^gSXr^shjhp^. (511)

We have written Va and v^ here for NJNq and N^/Nq, and have to solve

these equations for g with the boundary condition g = for a:^ <, = 0. It

should be noted that the summations lack the terms r = 1, s = and r = 0,

5=1. These terms are precisely the ha and h^ on the left of the equations,

which take a fully symmetrical form if transposed. But they must be used

in the form in which they are written.

We shall now calculate the terms of the first three orders in h and g,
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remembering that Xj. is {b/Vy-'^. For a pm-e gas we obtain successively

from (505) and (506)

h= 1,

= 1 - 2x2,

giving 9 -x^, 1

= ^2 - 2a:2^ + 0^3, ,'- (512)

= X2 -\- [X^ — ZX2 ) + (^4 — bX^X^ + '^'•^2 )•}

For a mixture

= V,. (1 - 2^2,0 Va - Xi,lVp), = Vfi{l - 2X0^2^^ - Xj^^V^),

K = Va- 2a:o,o'^a" (1 - 4^2,0 »^<i
- 2xi^-^v^)

- ^'1,1 VaVfi ( 1 - 2a:2,oJ^a - a^i,! [j^a + V^] - 2^0,21^/3) - ^Xs^qvJ - 2x2^iVj Vp - Xi^2 ^aV^",

with a corresponding last formula for h^ . The terms in g of the first two
orders are therefore

g = {vjx^^o + VaVpXi^j_ + v^^XoJ + Va=^ {x^^q - 2x2^} + v^^ {^0,3 - 2a;o,2^}

+ vjv^ {0:2,1 - 2x'2,oa;i,i - |a:;i,i^} + v^v^'^ {x^^2 - 2x^^2^^^-y - \x^^^).

(513)

For the terms of the next higher order the coefficients of v^^ and v^* can be

written down from those for a pure gas. The coefficient of v^^v^ is

'^3,1 "^ (4:^2,0 ~r ^1,1) *^2,1 "r 3^1,1 + '^'^2.0'*'1,1 ^~ "''^2,0 "^l,! ("14)

The coefficient of VaV^^ can be written down from this by symmetry. The
coefficient of v^-v^^ is

**'2,2 "•^2,1 V*^0,2 ~r ^1,1) ^'^\,1 \^%,Q ~r ^1,1) + ("''^2,0 "^ '''I,! ~l~ "•^0,2) '^l.l

"^ 4^2,0''^1,1''^0,2- (515)

We shall now calculate the x^^^ required for the terms of the first two
orders, for hard spherical molecules. For X2 or 0:2,0 we have a single f and

^ = 1, CT = 2. Hence

^2 = - 2^-2 . F . f 7ri)3 = - INr^B^lY, (516)

D being the diameter of the molecule. Similarly,

^2,0 = - W^-nD^^lV, Xo,2 = - IN,7tD^^/V, Xi,i = - iNo7TD,,'IV, ...(517)

Da , Dp being the respective diameters, and Da^ the sum of the radii.

Again, x^ is the sum of two different |'s. For one ^ one molecule over-

laps two others, but these do not necessarily overlap. Hence ^ = 2, o- = 2,

and 2PV^
-|^ = F (|7ri)3)2, I = 20:2^.

F 12
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For the other | each pair of molecules must overlap and p = 3, a = 6.

When the first two have their centres at a distance r less than D, the

volume in which the centre of the third molecule must lie is

Z (r) = 2
f

77 (i)2 - x^) dx = 277 (f i)3
- IDV + ^l ^3)_

J ir

Hence
_6d]73 rD
"i; = F I 477^2 ^(r) dr,

I = ^' 8772 pr2 (|X)3 _ 1X>2^ + _1_^3) ^^^

Thus
"" '

0:3 = (2 - -\) a^a^, (518)

and for a mixture X30 = (2 — f^g) a;2,o^- (519)

The next x, rrg^i, is the sum of three terms. For the first one the jS-

molecule overlaps each of the a-molecules which do not themselves neces-

sarily overlap. We have p = 2, a = 2, and therefore

^: _ 1^ 2
b — 2'^l,l •

For the second, one of the a-molecules overlaps each of the others and

For the third each pair of molecules must overlap and^ = 3, cr = 2. When
the a-centres are at a distance r, less than Da , the centre of the j8-molecule

must he in a volume

K{r)= 2I "^^ {D,^^ - x"-) dx.
J ir

_ Xf 2 fDa
Hence | = -^yf

J
477^2^ (r) dr,

4._2 \r 2T) 3
•±77 XV j^a^ r2 n ,3 _ 1 n n ^2 I 1 n 31

72

On substituting in gf the second order terms simplify very greatly and we

find

g = - jVa^ ^

y
+ VaV^ -^

y
+ Vp^

y

/2„Ar r),3\2 A/" 2 n„3
-

f^e
-^' (^^^^) - 477V.V,2 ^^^A (2 2)„^3 _ 1X>„,2X>, + ^i),3}.

(520)

The value of log B (^) is then, with this g,

{N, + Np) log F + iV^ofl'.
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In terms of N^ and N^ only we therefore have

log B (^) = {N^ + N,) logF-^ {N^^ ilrrDJ) + N^N, (f ttD..^) + N,^ UttD,^)}

(521)

The method of calculating B (^) for a gas of rigid spheres extends at

once to any gas, B {^) being given formally by (475). In the integrand

-9-'^, W is of course the complete potential energy of the gaseous assembly,

which will, speaking roughly, be a sum of terms corresponding to the

various groups of molecules enga^ged in the various elements of 3^-space

in a close encounter. We can make successive approximations to W in

any element of 3iV^-space by making the groups of molecules which we
regard as independent more and more all-inclusive. We shall still obtain

for a pure gas in the absence of an external field of force

B{^) = Y^e^\ (522)

where g is the same function of the x^ as before, but the x^ are now defined

so that x^Y'^r l/N^-'^ is the integral taken over 3?'-space of a certain quantity

which we shall denote by Uj. . These quantities u^ must be such that Wi = 1

and that u^., together with all the contributions from preceding u^.. (r' < r),

builds up the correct integrand ^^i2...r, or ^^ for short, for the group of

r molecules considered by themselves. This u^ is then to be integrated over

3r-space. It is obvious that

-8-2 = ^2 + UiUi, Wg = ^2 "~ Ij

in which S is the sum over all pairs selected from the three molecules. Thus

u^ = ^^- 2^2 + 2.

In general we must have
^„ = SnW(,,,, (523)

where the suffixes {%,.) denote any partition of the group of n molecules

into (say) s subgroups containing ^^ , *2 , . .
.

, is molecules respectively, and

the summation is taken over all possible distinct partitions into any

number s of subgroups. If we fix attention on a particular molecule, the

nth., we can sum first in (523) all the terms in which the group containing

this molecule is the same. This leads to

K= Un+ ^Un-x^l + 2it„_2^2 + •••» (524)

where the -m's refer to the various possible subgroups which include the

nth molecule and the B^'s to the complementary subgroups, with {^j = 1.

If, then, we denote by , • •

.

V'ly *2 3 • • • J *s;
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the coefficient of ^i^^i^ ... -9-,:, in u^ we find by equating coefficients in (524),

when the nth. molecule is in the 5th group,

= (*X5 *2 5 •••!*«) + (*2> *3' '"J *s) + (*lj *3 5 •••?*«) + ••• + (*1J •••3 *s-2' *s)-

In the special case of one group this fails and is replaced by

1 = in).

By varying the group in which the nth. molecule lies we show at once that,

for example, . • •

i \- (i i i \UU ''2' •••' ''s-ll — V''2j ''3> •••5 ''s/5

SO that all the (<s — 1) group coefficients must be equal. Thence by induction

(H,»2,...,g = {-y-Hs- 1)!.

Therefore, finally,

w„ = 2 (-)-i {s-\)\ ^,,^,, ... ^,„ (525)

the summation being taken over every distinct partition of the n molecules

into subgroups. For example,

W4 = -^4 - (2^3 - SO-2^2,) + 22^2 - 6, (526)

in which SS-g = -S-^ias + ^^231 + ^^sa + ^^412,

2^2 ^2' = -^^12+ ^34 + ^^13+ -^24 + a-^14+ -E23,

20-2 = ^^^^ + ^^^' + ^^^1 + ^^^' + ^^^^ + •^^^*-

When the gas is in a field of force, (525) remains true, but
•9'i

is no

longer 1, and the first term of the series is no longer V^ but [A {^)Y > where

A {^) =
[[

[^"fZco,

n being the potential energy of a single molecule in the external field. It

is necessary to redefine x^ using A {%) in place of V. For a mixture we
have a Va and V^ in general different and

B (^) = VJ"- Vp^H^oa,

where, in g, x^^g is such that

x^.VjVp'rlsl [

]^ s+r-l = j^(r+ s) a^r

The formal connection of the u's with the O-'s is unchanged by distinctions

between molecules of different tjrpes, but the ^'s themselves are changed.

In this extended theory we no longer can say positively a priori what
the relative orders of x^ and Xj.^s must be; we can only say that x^. varies as

the rth power of the molecular density and that in the general case rc^ s

occurs in g with a coefficient {Na/VaY {Np/V^Y.

§ 8-4. Molecular distribution laws. The ordinary uniform space dis-

tribution law may be derived at once for a gas of any degree of imperfection

when there are no external fields, and no long range forces. The frequency
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ratio for the presence of a selected a molecule in a given element hV is

hB {^)jB (^), where

85 (^) - f
dojj ... f^^^n/ ((7a>«)^^'s (527)

hv J (V) J

just one doja integration over V being omitted. If there are no long range

forces or external fields, then W depends only on the relative coordinates

of the molecules, and

• (r) J

must be a constant Q independent of the coordinates of the selected a.

Therefore SB (d-) = Q8V, and obviously B (d-) = QV. Hence the frequency

ratio is 8V/V, and since there are N^, such as

^=iV„SF/F, (528)

which is the usual formula. If there are long range forces these may, as

we shall see, build up the equivalent of external fields from the point of

view of any specified element of the assembly. If there are any external

fields Q,, then of course (528) is no longer true of the whole assembly but

only of an elementary part of it over which the variation of Q. is neghgible.

In accordance with Gibbs' analysis showing that the laws of thermo-

dynamics include the laws of mechanical equilibrium it is possible to

deduce from (495) the distribution law in the field of force and the existence

of mechanical equihbrium—the equation dp = — vdQ. being satisfied to

the accuracy of the formulae. The investigation, however, is not elegant,

and it is better in handhng imperfect gases in external fields to apply the

laws of statistical mechanics only to elements of the gas, and supplement

these by the laws of mechanical equihbrium, or general thermodynamic

theorems. Since these mechanical laws can be derived from the character-

istic function for the whole assembly and lead by themselves to a unique

equihbrium state for an assembly at uniform temperature, they must,

together mth the characteristic functions for the volume elements, be

equivalent to the characteristic functions for the complete assembly.

By a similar argument we see that the average number a^^ of a, ^
pairs simultaneously present in selected doja, dco^ must be given by the

formula

— ^IW^^f _f^,rn/(rfa;.)-v< (529)

When no effective long range* or external forces are present the integral

in (529) must be a function only of the relative coordinates of the selected

dcDa and dcj^ . We may then write it in the form

Q^^-^ (530)

* We shall see that this allows of the consideration of electrostatic forces in ionic media of

zero space charge.
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where Wa^ is defined so that Wa.» -^ at infinite separation and Q is a con-

stant. So defined, Wap may he called the average potential energy of ^ in the

specified position in the field of a. It may depend on the average positions

of a large number of other molecules and may therefore itself be a function

of ^. Again,

provided only that Wa^ -> rapidly for large separations, as in practice it

always does. Thus the average number of pairs is

a^= N^Npe-^-Pl^^ da),dcof,/V\ (531)

After integration with respect to doja the average number of j8's in a selected

region near any a anywhere in the assembly is

N^e-^-Pl^^dcop/V. (532)

The factor l/dap is not required in the formulae until we integrate dcop

over the whole of Va^ round a. It is not until we do this that we count

twice over each a, a pair.

Formulae (531) and (532) are forms of Boltzmann's theorem. It is

important to reaUze, however, the precise meaning of Wa^ for which the

theorem is true. In accordance with the discussion in § 6-9 Wa^ may be

loosely called the free energy of a ^ in the field of an a, and it may be that

Wap =1= Eap . In the case of short range forces with ternary and higher

complexes neglected it is, however, true that Wap = Ea^ to the first

approximation. For

and it is obvious that the first approximation to the coefficient of ^^"^ is

unity. Thus for short range forces in assembhes of not too high concentra-

tion (531) and (532) take the more famihar forms

^ = N^N^e-^-^/'^'^dco^do^pIV^ (533)

and N^e-^-Pl^^dco^/V. (534)

It is clear, however, that Wa^ =|= Eap even for short range forces at higher

concentrations as in a liquid, and that the distribution may then be more

uniform than is indicated by Boltzmann's law (534).

§ 8-5. Generalities on dissociative equilibria in imperfect gases, and the

use of the thermodynamic functionW . We can construct a general theory of

dissociating imperfect gases as a direct extension of the theory of Chapter v.

We will consider for simpficity the theory of § 5- 3 which we wiU here extend

to imperfect gases. We there started (for perfect gases) by constructing

the generating function (303)

y , y ,
^ {w,^x,z^i')^' ... (tni^XaZ-i^)^ ... {p^x,x^z^i)h ...

^^•^^- ^«.^
a,^\...a,^\...b,\...

•
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This can be partially summed to the form

X,\X,\ S,,, —^ —^
^j

, ...(5^5)

a summation which will still be vaHd here. When the gases are perfect,

(535) sums again, of course, to the famihar form (304)

Zi ! Zg ! exp [xiF#i {z) + x^VF^ (z) + x^x^VG (z)].

When, however, the gases are imperfect the factor V'h+<^2+^ in the terms

of (535) must be replaced by B (z) which of course can be put in the

approximate form

Ya,+a,+b |i + «^ ^a^^ a^, 6)}«i {1 + a^ (%, a^, 6)}«2 {1 + ^ (aj, a^, b)f.

(536)

The correcting terms cci, a,^, ^ are also functions of z and are, of course, the

extra terms of (485). They are supposed small, and only their first powers

retained. We therefore replace the generating fimction (304) by Z say,

whose approximate form is

X.
,
... V {x,VFAz){\ + a,)Y^ {x^VF^{z){\ + a,)}<^ {x.x^VG {z) (1 + ^)Y

^1 -^' ^«'^ V ^^- b~\
'

(537)

and operate with Z throughout. Thus, nearly enough,

C = 4^l^[ff-xt''^\t..i ^ (538)
(277^)2 JjJ Xj^l+^X2^^+^Z^+^

The critical point of the integrand is determined as usual by the equations

Xi = x^d log Z/dx^, X^ = x^d log Z/dx^, E = zdlog Z/dz, ...(539)

which will have a unique root /^i, /xg, ^. The equihbrium state is specified

by equations like ^^ ^^^^ 1^^ Z/dF,],^,,,,^, (540)

and similar equations. The proof that the assembly obeys the laws of

thermodynamics remains vahd.

By comparison with the case of a perfect gas the root /^i ,
;u,2 , ^ is such

that the arguments, ^iVF^ {^), etc., of Z are all large. We therefore study

the asymptotic forms of the function

{^, (1 + a^)}^{A, (1 + a,)p{B (1 + ^)}^

for large A, B, the a, jS being functions of the a, b which are small compared

with unity. To this end we pick out the maximum term of the multiple

series by making the first order partial differential coefficients of

(, ^1 (1 + ai) ) L A^{l + a^) )
, f, ^5(1+^8), J

«i jlog^ " + ij + «2 jlog -^^^ + l| + 6 jlog
^

+ 1|

with respect to a^, a2,b vanish. It can easily be shown by the argument

used in Theorem 2-5 that the value of the complete multiple series is
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practically determined by the maximum term, and that the summations

may be replaced by integrations formally from - co to + go on either side

of the maximum term. We find after simple reductions that, to the first

order in a, ^,

log Z ~ ^1 {1 + «! (^1, A^, B)} + ^2 {1 + «2 (A, A, S)}

+ B{\+^{A„A„B)} (541)

We find also that this asymptotic relation can be differentiated. The equi-

Hbrium conditions such as (540) are therefore

^1 = A^d log ZjdA^,

etc., in which ^i, ... are to be replaced by fiiVF-^, ... after differentiation.

Thus

iv^= A (1 + «x) + aIaI^ + A^^^ + ^a|)'
^'^^^

3^1

= liiVF,[l + a,{N„N„M)]

.(543)

to the approximation to which we are working. The law of mass-action is

obtained, by eliminating j^i ,
[x^, in the form

log
N^Nl ,_F,F,

VM
= log

G +
d_ d 8

{N,a, ^2«2 M^}.

,(544)

A similar formula can be given correcting the vapour-pressure equation

for imperfection of the vapour phase. We obtain obviously in place of

(544)

log
N

1 ^log^
d ,^. .^.

.(545)

where K or K {T) is the partition function for the crystal. At the same

time

|. = f + g^i*«W}.

so that the equihbrium vapour-pressure is given by

{Na (N)}.
, kTF

logp = \og-j^ +
'd_ V d_'

.(546)

In the usual first approximation

Na (N) = ^' 277 r {e-^«P/^^ - 1} r^dr,
V Jo

sothat logp = log^f+j27TJ {e-^-P/^2'- l}r2^r- (547)

The foregoing arguments could easily be generaHzed, but the general

method for imperfect gases in problems of dissociation or of external
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fields is not particularly convenient. It is of interest to have shown that

the complete laws are given as they should be by the properties of C. In

practice a more convenient worldng method can be developed based on

the fact that our assembhes are thermodynamic systems, so that thermo-

dynamic theorems may be appHed.

Consider an assembly in which the dissociation is fixed, so that it con-

tains i\\, ^^2 ^"^^ ^ fr^6 atoms and molecules. For such an assembly we
can at once constructs. By (491) it has the form

-¥\k = iV, (log ^' + l) + ^^ (log-1^' + 1
) + ilf (log^ + l)

-f i\^iai -f i\^2«2 + il^^, (548)

the a, j8 bemg the same functions of the iV, M as in the foregoing argument.

This must hold for anj^ fixed values of Nj_, N^, M, whether or not they

happen to agree with the true equihbrium values when dissociation is able

to occur. Now suppose that the dissociation, temporarily fixed, is again

allowed to proceed in either direction. It is a general thermodynamical

principle* that in the final equihbrium state AT = for any variation of

the dissociation (or any other variation consistent with the given tempera-

ture and volume). Thus the condition of dissociative equihbrium can be

at once obtained from the equation

' 8 J a_'

or

,
VF^ , F#2

1
VG

log-,,^' + log^-log^ +

Y = 0, (549)

_a_ J ^

which is equation (544) as obtained before.

The foregoing paragraph shows clearly the advantage to be gained in

brevity by using thermodynamic arguments at suitable places for these

more comphcated assembhes. There is the same advantage in discussing

imperfect gases in a field of force in this way, as compared with the general

statistical method. We apply the general statistical arguments only to

construct §T for each volume element hV and determine the complete

equilibrium by making
A (28T) =

for all relevant variations of numbers of particles between the different

volume elements.

§8-6. Dissociative equilibria for molecules of finite extension. The for-

mulae of this chapter take a specially simple form when the constituent

* See, for example, Planck, Thermodynamik, ed. 6, § 151.
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systems are of a definite size, without further fields of force. In such a

case Ea^ -> + oo inside Va^ and is zero elsewhere, and

T/^^ = Sa^ajlog ^« + l| - I i:^,^^^^^ (550)

Equation (550) forms the best starting point for discussing the equihbrium

state of an assembly in which one of the systems has a sequence of possible

states of definite sizes which differ from state to state.

Suppose there are present in the assembly systems of a certain type in

a number of different stationary states of different sizes; these will be

initially regarded as distinct systems, specified by different a's. Systems

not belonging to this set will be specified by yet other a's. To determine

the complete equihbrium state, we constructT as above and vary the N„,

among the states of the special systems until d^ = for all such possible

variations. A typical variation is to increase Nq and decrease Ny by equal

amounts. We must therefore have

dN^ dNyj
T= 0,

or, in equilibrium, ~ = ^ == . (551)
iVo F,e-^pNpv,^iv

The necessary and sufficient conditions for d^F = for all possible variations

of this kind is that (551) should hold for all y's which specify the different

states of the special systems. Now if we were to ignore the differences in

size of the various states of the special systems we should treat them all

together and construct a partition function

to take account of the distribution of their internal energy. Here we
temporarily treat each state separately and their separate partition

functions are connected by the equations

FyjFo = Wy^'yjwo^^o. (552)

Inserting this ratio in (551) and putting N = SyiVy for the total number
of special systems we have*

Ify = Nwy^'ye-^p'^^yP/yju (^), (553)

where u (^) = Syta^^^ye-^^^^y^/f'. (554)

The y-summation is of course only over all states of the special systems.

In all calculations we have therefore only to replace b (d-) and its terms

by u (8-) and its terms in order to take full account of the excluded volumes.

* Special cases of (553) and (554) were first given in discussions of higli temperature atmo-

spheres by Urey, Astroph. Jour. vol. lix, p. 1 (1924), and independently by Fermi, Zeit.filr PhuS'

vol. XXVI, p. 54 (1924).
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If we use u {^^) so, we may group all the separate states of the special

systems together as before. To reconstruct Y/k in terms of u (^) we have

w; ~ N - N '

where VF (^) is the complete modified partition function. The terms under

Sa in (550) which belong to the special systems become

N jlog ^^J^ + l} + I Sy^v (^^^ ^v^)-

When every system has been treated in this way we find

TA-= S.^.|log ^--- + 1| +^S.,—^^--, (555)

where S^ is a summation over the separate systems and Sa^ as before a

summation over every pair of states of all the separate systems. It can be

verified at once that in the equiHbrium state

= =0 (ally). (556)

Thus the Ny of the separate states are only apparent variables in W/k.

They do not affect the determination of dissociative equilibrium, which is

to be carried out by varying the N^ in (555), without explicit notice of the

Ny . The usual equilibrium laws will be at once obtained in terms of F^ {d-)

or (u {^)h{^))r.

It must be remembered that all the foregoing formulae are necessarily

only correct to the first power of l/V, so that the exponential correcting

factors are largely illusory. At the same time the use of the formulae

seems to be justifiable for rough quantitative work, right outside the range

in which the corrections are small, in fact for all orders. It will be remem-

bered that states for which the correcting factors are large will ipso facto

be scarce and therefore affect but httle the equiHbrium state. A closer

examination of this point will, moreover, explain a numerical discrepancy

from Urey's work*. Equation (550) may equally well be written in the form

Wlk = X.N. jlog
(y-'M^:.)^^ + lj_ (557)

which has exactly the same vahdity so far as terms to the order l/V are

concerned. Equation (557), however, is the exact form oi^V/k for a mixture

of gases which obeys exactly van der Waals' equation in the form|

p^kTll^j^ (6„=iS,A^,M (558)

* Urey, loc. cit.

f See equation (631) of Chapter ix, of which this is an obvious generalization-
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If now we work out the equilibrium state by varying the T/yJ; of (557)

we find

iV Q iV y

which to the first order in bJV reduces to (551). If the differences between

F — 6o and the V — by are ignored we can cast (559) into Urey's form

where t'o* and Vy* are mean excluded volumes for the states and y, and

p is the total pressure. This form, as we have seen, is. incorrect (by the

factor I in the exponential) for small values of b/V. This difference is of

no importance as the formulae cannot anyhow be exact. What is im-

portant is that the approximate agreement of (560) and (551) justifies to

some extent the use of the latter for all values of b/ V in rough numerical

calculations.

It may be noted in conclusion that formulae of exactly the same
vahdity can be obtained for the general assembly in whichT is given by

(491), so that the excluded volumes are functions of the temperature and
may in fact be negative.

§ 8-7. Inverse square laiv forces. Large scale effects. The only important

long range forces {s < 4) which appear to act between actual atoms and
molecules are gravitational and electrostatic forces, following the inverse

square law {s = 2). When such forces or external fields are acting the

analysis of § 8-4 must be revised. In equation (527) W must be held to

include the long range forces and external fields, and is no longer a function

only of the relative coordinates of the systems. Thus

is no longer necessarily a constant Q independent of the coordinates of the

selected a. Instead, we must define a function w by the equation

l^^n/ {dco,)^<, (561)
' (r) .'

where Q is a constant adjusted so that w takes any convenient value at

an assigned point. We then have

a, = NaQ^^8VIB{^), (562)

where q[ ^^dV = B (^).

Thus (562) reduces at once to

i5j = j^^e-K-u'oV^r, (563)

Q^^=-
\
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where P^ and vq are the average concentrations of the «-molecules in

different volume elements hVt and SFq. The average potential energy

defined by (561) is the potential energy for which alone Boltzmann's theorem

(563) is strictly true. The boundary field of an imperfect gas, which is

investigated by a special method in § 9-8, is an example of a field such as

is considered here—effectively equivalent to an external field though built

up from short range forces.

It is desirable to investigate more closely the average potential energy

w of this section and the W^^ of § 8-4, for it does not follow without further

investigation that they agree with their values calculated when the rest

of the assembly is in its average state. For most purposes of calcula-

tion it is almost essential to make this identification owing to the extreme

complication of (561). It can easily be seen that the method of § 9-8 for

boundary fields is based on this identification.

If we differentiate (561) with respect to the coordinates x,y,z oi hV
we find

l"i,
•>""«' c^-*"' -

/,.,
-/'^ *""<' <''-'''" <^«*>

and two similar equations. In (564) W is of course the total potential

energy of the gas phase in any configuration, and therefore — dWjdx, etc.,

are the force components acting on the selected a-molecule in SF. The

function iv has therefore been so defined that its partial derivatives are

the average values with a fixed of the partial derivatives of W, or

—-^ ^565^

and two similar equations. Thus if lu is derived by calculating dw/dx as

the average value of the forces acting on the a-molecule—that is, as the

force acting on the a-molecule when the rest of the assembly is in its

average distribution—such a. w is identical with the w of (561). This is

the method to be used in § 9-8, which is hereby justified.

In (564) or (565) it is sometimes convenient to distinguish between the

parts of dW/dx which arise from forces of long and short range. If these

are distinguished by suffixes I and s so that W ^ Wi + Wgit may happen

that

't=f-«- (-)

This will always hold except near a boundary when Wi = 0, and will

continue to hold with the same exception when IT^ 4" so long as the

alterations in Vi introduced by W i are insufficient to affect the perfection

of the gas laws. When these imperfections begin to matter, W^ must
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make just such a contribution as to account for the difference between

dw
(563), which may be written

OS ds'
.(567)

and the laws of hydrostatic equiUbrium,

dp

ds ds
,(568)

It is an interesting and easy exercise to check the equivalence of (567) and

(568) for first order deviations from the perfect gas laws.

Returning to conditions in which (566) is true, we find that

s[,, - h'^n/ (d^^r- - 1^ ...j1' »- n/ (rf..)-v« (669)

If we differentiate (569) we find

+ log ^ I ^- I

dx^ dxj J .' (F)

-' (F)

+ log ^ (^-^y ^^n/ {daj,)^<, (570)

and two similar expressions*. By addition

V-» + log»s(|)-
J Hv)

=
j ...j V-IF, -f log^S (^') ^^n/(rfa>,)^« (571)

In (571) we shall take Wi to be a potential energy due to inverse square

law forces, and obeying Poisson's equation

W^Wi= iJLv, (572)

where v is the smoothed local concentration of systems in SF in any con-

figuration. The value of jx will depend on the precise mixture of gravita-

tional and electrostatic forces concerned. We find therefore that w satisfies

the equation

V^.-,.. = log..{(fy-(||)] ,573,

The right-hand side is the mean square fluctuation of the resultant force

on the system in SF, divided by (— JcT). The mean density v^ is an

average of v for all configurations in which the a-molecule is fixed at the

point concerned (but not counted in v). The suffix is inserted to distinguish

Va from V of equation (563), which is an average for all positions of the

* It is assumed that not only is bW,/dx = but also dWJdx . dWi/dx=0.
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«-molecule as well as of the others. In practice, we replace Va by v and
omit the fluctuation terms, so that (573) reduces to

V^it;- ixv= 0. (574)

The equilibrium state of the assembly may then be calculated by the

combined use of Boltzmann's and Poisson's equations, (563) and (574), a

fertile procedure in frequent use.

There are, however, three points which require critical examination:

the smoothing employed in (572), the replacement of Va by v, and the neglect

of the fluctuation terms on the right-hand side of (573).

In dealing with point chargesf smoothing of some sort is essential to

mathematical simphcity; if the charges are spread over finite volumes,

each defined in position by the coordinates of its centre, the "smoothing"
is automatic and inevitable. Thus for point charges we define the smoothed
density at any point by some such formula as

V (a:) = 2ea/(x - rCa), (575)

where x is short for x, y, z, e^ is the charge on an a-molecule, / {x)

diminishes rapidly with increasing distance from the origin, and

I

f{x)dco = 1. (576)
.' (F)

In the case of charges spread over finite volumes, (575) necessarily holds

good, and €af (x) is the actual density in a single particle with its centre

at the origin. The possibihty of interpenetration is not excluded. The
corresponding smoothed function F^ {x), derived from any function of

position F (x), is

F* (x) = I F {x')f{x - x') d<o'. (577)

If F (Xi, Xg, ...) is a function of many points, the smoothing is to be carried

out for all of them, so that

i^*(a;i,a;2,...)=
f

... \F {x^ ,x,;:

,

...) f {x^- x^') f {x^- x^') ... do,{do^^ ....
J (V) J

(578)

In the case of charged particles of finite size, this smoothing is again auto-
matic, provided that F is hnear in each of the charges concerned—e.g. a
potential, or a mutual potential energy.

Equation (572) requires that Wi shall be equal to IF*, the smoothed
electrostatic potential energy. It appears to be simplest to replace W by
W* throughout the argument. Thus iv would be defined by

Q^^ =
J

... |^^^*n/ {dco^)^< (579)

t It is convenient to write in the language of electrostatics, but other fields of force are not
excluded.
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(compare (561)); and in (563)

v{x) = i:nA\ ...\^'^*n: {dco.r<'\ l\ ...W^'Vi,{d<^:f<.
VKv) J Jxa-x/ J{v) J

(580)

This is not our ordinary equation for the average density; nor is it pre-

cisely the smoothed average density, nor even the average smoothed

density. In all probability, however, it does not differ considerably from

any of these. The difficulties introduced by smoothing are mostly of this

kind, and are not likely to be important.

On the other hand, thorough smoothing, when it can be employed,

gives the greatest assistance in answering the other two points of criticism.

Consider first the relation between v^ and v. Their difference depends on

the difference between the value of v at the position of the a-molecule and

its more normal values. Now the a-molecule induces a considerable excess

or deficiency of charge in its immediate neighbourhood; but its effect at

some httle distance is neghgible. If the smoothing function / {x) is

appreciable only at very small distances, the effect of the a-molecule's

field is an important feature in v. If, however, / (x) is appreciable also in

a considerable volume in which the field of the a-molecule is neghgible,

the local excess or deficiency has comparatively little effect upon v. In

other words, slight smoothing retains a large part of the difference between

Va and V , but a more thorough smoothing decreases the divergence.

So long, then, as we are concerned only with smoothed space charges

(as in the problem, mentioned below, of a gravitating gas and in the

theory of an electron atmosphere, developed in § 11-4), it is permissible

and advantageous to smooth thoroughly, with a function which is effective

over a volume large compared with molecular dimensions. Va may then

be replaced by v. When, however, our whole concern is with concentrations

on a molecular scale, as in formula (530) and the Debye-Hiickel theory

described below, any but the shghtest smoothing is impossible, and v^ and

V may be widely different.

For the validity of the neglect of the fluctuation terms no general

conditions have yet been obtained. At present it seems possible to proceed

only by verification a posteriori.

As an example, consider the equihbrium state of an isothermal gravi-

tating gas of which each smaU element is effectively perfect*. This is of

course a special case of the equihbria of such gaseous masses handled by

* In order to discuss such an assembly completely from the point of view of statistical

mechanics it is necessary to idealize the problem so that the mass of gas is contained in a reflecting

enclosure so large that molecular impacts on the walls do not effectively alter the position of the

centre of gravity of the mass of gas or its total momentum which must be fixed by the conditions

of the problem. This is not strictly realizable. Such conditions can be formally accounted for by

additional selector variables both for momenta and positional coordinates.
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Emden*. There is no explicit solution for w or for p, the mass density at

any point, but it is found that if r is the distance from the centre of the

gravitating mass
2 fh'V\ 1

where G is the constant of gravitation. It follows that to the same
approximation o/rm , 4.^^ w = 2kT log r + const.

If we then compare one of the ignored terms (dwjdrYJkT wdth a term retained

such as dhv/dr'^ we find that the numerical ratio is 2. If therefore the

fluctuation in the resultant force at any point is small compared with the

force itseK the neglect of all the terms on the right in (573) is at once justified.

A similar example is the electron atmosphere in equihbrium with a

metal at high temperature. If the form of the atmosphere is effectively

that of the gap between the parallel plates of an infinite condenser the

problem admits of the exact solution (see (808)),

Bx

where A and B are constants of which B depends on the electron density

at a standard potential. Here again the numerical ratio of the ignored

term {divjdry^jkT to the term retained dhv/dr'^ is less than 2, and the same

conclusions can be drawn if the same hypothesis is admitted.

The problem of the ignorability of the fluctuation term can be formu-

lated as follows: Let — dQ.j./dx be the x-component of the force at x due

to a single molecule in the rth cell of the assembly. Then

dWi_ dOr dw_dWi_ ^ _ aa,

dx " ^'^'
dx ' dx~ dx " ^''''

dx
'

A complete solution requires a knowledge of a^" — («r)^ ^-nd a^^s ~ Ura^ for

these compHcated assembhes. On general grounds, however, it is quite

certain that these quantities will be all positive and very small compared

with {(ir)^ and a^ a^ provided that the cells need 7iot be taken too small, that

is, provided the smoothing is sufficiently macroscopic. It must be remem-
bered that we are deahng with smoothed functions. The appropriate cell

is that volume in which the smoothing function is effective. A thorough

smoothing is again what we require, in order to make the cells conveniently

* Emden, Gaskugeln; see also for this, Milne, Trans. Camb. Phil. Soc. vol. xxii, p. 483 (1923).

F 13
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large. In evaluating long range large scale effects this is possible, and the

above condition can be satisfied. It is not possible to conclude at once that

dx ) -[dx) <[dx)^

for the terms dO-^ldx are not all positive. Their signs depend on the sign

oi X — x'. We can, however, conclude that

dWA^ fdw\^ ^ fdw\^
dx J \dx ) \dx J

'

where div'/dx is the force component at x, y, z due to all the matter in the

assembly on that side of the plane ^ = x which gives the greater value of

dw'/dx. It is therefore sufficient to verify a posteriori that dhvjdx^ and

similar terms are of the same order as {dw'/dx)^/kT and similar terms. The

neglect of the fluctuation terms is then in general justified.

§ 8-8. Inverse square law forces. Effect on molecular distribution laws.

A similar investigation can be made for the local field Wap of formula (530)

so far as it depends effectively on inverse square law forces. In this problem

gravitational forces are so minute from the atomic standpoint that their

local effect in clustering the molecules can be ignored. Electrical forces,

however, are large from the atomic standpoint, and, even when their long

range effects are zero owing to zero or negligible space charges, may exercise

a decisive control over local conditions by establishing a state of polariza-

tion near a selected ion or near the surface of a conducting solid. We
conclude that Wap, like w, satisfies Poisson's equation, at least on the

average in the neighbourhood of a number of ions if not near a single

ion, provided we may ignore the fluctuations. The volume elements

near any one ion to which this process must be appHed are, however, now
small on the molecular scale and it is impossible to conclude with certainty

by the argument used above that the fluctuations are neghgible when

{dWapjdxYJkT is of the same order as terms retained. This may be true,

but the utmost that it is safe to conclude i§ that Poisson's equation may be

used so long as , /PW

hT\ dx

is itself small compared with terms retained. This conclusion may be made
sHghtly less restrictive by remembering that any non-fluctuating part of

Wa^ may be removed before applying this argument.

In illustration of this argument we study here in detail the appHcation

of these equations to ions of negligible size in dilute solution according to

the empirically successful theory of Debye and Hiickel*. This investigation

and others similar will be essential to us in Chapters xi, xiii, and xiv.

* Debye and Hiickel, Phys. Zeit. vol. xxiv, pp. 185, 305 (1923). For later references, see

Chapter xrn.
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Let i/»„ {x) be the average electrostatic potential near an ion of type a.

That is,

^„ {x) I ... f^^n/ (fZcu.)^'< = I ... fiA (x) ^^^U/ {dco,)^< (581)
J{V) J J {V) J

Then evidently, since W is independent of x,

J iv) J J (r) J

\ ... \p{x)^'^Ii: {dco,)^<, (582)

where p (x) is the density of charge at x. Thus

V-i/r. = - 4:7Tpa/D, (583)

where p, {x) = \ ... !p {x) ^^ H/ {doj.)''J[ ... [^"'D/ {doj.y''<,
J ir) J I J iv) J(r) J I J(r)

V
Sz, e^^'^»v, (584)
y

by the argument of § 8-4. Here e is the electronic charge, Zy the valency

of the y-ion—a small positive or negative integer—and Ny/V is the

concentration of these ions in the whole <s^olume.

The equation for W^p, corresponding to (573), is

where

Pap {X)

Vnf„, {X) + ^ z,ep., {X) = log ^ S |(^)' - (^')], (585)

...j p{x)^^ n/ {doj.)^'^ / j ...

I
^"^ n/' {dco.)^<

xp=x

(586)

The p's of (585) and (583) are essentially different ! Thus pa^ (x) is the mean
density with the /S-molecule fixed at the point considered. In fact, p^p is

likely to be determined by ^ rather than a ; and its difference from pa , as

is explained above, cannot be removed by smoothing in this theory. Our

only hope is that this difference may be compensated for by the fluctuation

terms. For log -9- is negative, and the expression under the S is positive

making the right-hand side of (585) negative; and since ^ repels charges

of its own sign, z^e and pap — pa. have opposite signs, and so a negative

product. Thus m passing from (585) to the equation assumed by Debye
and Hiickel,

^2^^^^ ^ ^-nz^ep^lD = 0, (587)

we subtract a negative quantity from each side, and these may chance to

be nearly equal.

Supposing that for some reason (587) is justifiable, we have

Wap = zpei/ja. (588)

13-2
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Since i/fa has spherical symmetry, equations (583), (584) and (588) reduce to

74r{^'f)—i^^yf-'^'*-'- <»««)

The equation satisfied by xjja, does not depend on the choice of a but the

boundary conditions do. They must be ;/(„ -^ as r -> oo, i/fa ~ ZaejDr, r ^ 0,

where D is the dielectric constant of the medium. The difficulties connected

with the idea of D in a molecular problem wiU be postponed for con-

sideration in Chapter xiii.

The first attack on the theory of electrostatic effects in gases or solu-

tions is due to jVIihier*. The various difficulties in the way of a successful

calculation were clearly presented by him, though of course as he did not

attempt to use Poisson's equation he was not troubled with fluctuations.

His method is unexceptionable but prohibitively laborious. More recently

a method of some promise has been proposed by Kramersf, avoiding the

pitfalls of Debye and Hiickel's method, and the tedium of Milner's. It

remains to be seen if this can be developed further. Both Milner and

Kramers seem to confirm the hmiting form of Debye's result at great

dilutions. But the interest of Debye's result hes in regions where theo-

retical basis is lacldng, and we shall develop the theory and make tentative

use of it here in default of anything better.

Equation (589) is soluble in principle as it stands, but requires elaborate

treatment, and an exphcit recognition of the fact that ions have sizes so

that ions of opposite sign cannot really approach indefinitely close {. The

approximation made by Debye and Hiickel which renders (589) soluble

in finite terms is to assume that for all important values of r Zyeipa/kT

is smaU. The equation then becomes

1 ? / ?,l, \ 4.^^2 TV"^ " " (590)K^lffa, K^
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In considering the legitimacy of ignoring the fluctuation term, we
remember that the portion ZaZpe^/Dr of Wa^ is non-fluctuating, being the

energy in the field of the selected a-ion itself. We may be content, therefore,

to consider o i

Pr„/='-^"i(e--l), (593)

and to examine whether {dWa/ldr)^lkT is or is not small compared with

a term retained such as 2 {dW„//dr)lr or d^Wa//dr^ or K-Wa/. The com-

parison with the first of these is simplest. We find a ratio

ZaZ^e^K f 1 — (1 + Kr) e-'

2DkT I KT

Since for all positive x e^ < 1 + a; -|- xe^,

it follows that the term in [ ] never exceeds unity, and the omission of the

fluctuation term is legitimate if

ZaZ^e^K
is small.

2DkT

This condition is equivalent to Wa//kT small.

§ 8-91. Contributions to the ivork function or characteristic function. We
have been studying at some length in the last sections methods of evalu-

ating the distribution laws in various more comphcated cases in which a

direct attack on B (^) seems almost hopeless. It is of the first importance

to be able to combine these calculations with calculations of the corre-

sponding terms in the work function or characteristic function of the

assembly. This is of course equivalent to the calculation of B {^), for

which direct methods fail.

We have seen that our definition of lu or Wa.? is such that their gradients

give the average value of the force at any point when the assembly is in

equilibrium. Let us suppose, therefore, that the fields of force which give

rise to iv or W a^ are gradually built up from zero by differential additions

to the various force centres, the assembly being at a constant temperature

during each successive stage and in the equilibrium state appropriate to the

force centres already present. No external work is done in rearrangement

of the assembly into its equilibrium state at the given temperature in

between the "stages". This is, of course, an ideal process requiring the

treatment of individual molecules, but it is a conceivable isothermal

reversible thermodynamic process, and the work done on the assembly in

the process must on general thermodynamical principles be the increase

in A, the work function, due to the estabhshment of the intermolecular

fields. This is an extremely important result. It is analogous to the familiar

method of calculating the contribution of such forces to the energy, when
we suppose the fields of force gradually built up from zero, the various
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systems of the assembly being fixed in their average final positions. This is

the origin of the famihar \lpWdV in the theory of attractions. A direct

statistical proof may be given as follows.

Suppose that every intermolecular energy term is at a fraction a of

its final value. Then the partition function is B„ {^), say, given by

.' (F) J

em in equihbrium

.' (F) J

(F)

and the energy of the force system in equihbrium

a , ^ ... Hv^^\ogBA^) =

(F)

Keeping the distribution laws unaltered and increasing each energy term

from CT to CT + da requires an increase in the energy of the force system of

' (F) •'

(F) J

This increase of energy must therefore be the work necessary to strengthen

the force centres from a fraction or to a + ^cr of their final values. The total

work required to build up the final force system by a reversible isothermal

process is therefore

r\ f ;rOog ^^ (^)} ^^ = !«§ ^^ (^)/F2'c^«}/log ^ (594)
log XT / aa

But this expression is just exactly

or — TcT times the increase in T/A; due to the estabUshment of the inter-

molecular fields, and — TY = A.

An obvious extension of this theorem leads to the same result when

only the forces of one type, e.g. electrostatic forces, are considered, other

forces such as those which give molecules their sizes being left unaltered

throughout.

The most important apphcation of this theorem is that it enables us

to calculate the change in Y/k due to the establishment of the electrostatic

charges of the ions in the theory of Debye and Hiickel. This change we

will callT,/^^ By (593) the final potential of the electrostatic field at the

centre of an cc-ion is

— KZae/D.

If all charges are reduced to the fraction ct then this potential is reduced
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to the fraction o-^ since k varies as e. The work done on the assembly in

bringing up a charge z^eda is

(_ KZah'-ID) aHa.

Summed over all ions this gives a work term

Therefore

(- ^ ^.N^zA a^da.

^e/A; = 3^ (2a^a2«2), (595)

which is the standard result. It can, however, hardly be logically reached

by any argument less deep than the foregoing. It will be observed that

all questions of temperature variation of D and so on are irrelevant in

forming the contribution to T^/^;. But to deduce U^ the extra internal

energy from Te/A* the temperature variation of D is relevant and important,

and the value of U^ was wrongly given in the earHer work on this theory.



CHAPTER IX

THE THEORY OF IMPERFECT GASES (continued)

§ 9-1. Applications of the theory to simple imperfect gases and binary

mixtures. The number of empirical or semi-empirical equations of state in

common use as interpolation formulae or as working digests of tabulated

data is very large*. It is only possible here to discuss three of the simplest in

relation to the theoretical results of the last chapter. For the purposes of

this chapter readers who do not wish to follow the general theory of

Chapter viii in detail can be content with any one of the three elementary

discussions given in §§ 9-6, 9-7, 9-8. Any one of these methods gives for

a simple gas, correct to terms in 1/F,

pV = NkT - f {T)jV
, f{T) = 27TN^kT r r^e-^I^T - I) dr (596)

Jo

The best known practical equation of state is that of van der Waals,

namely,

[P+ y,){V-b) = NkT, (597)

where a and 6 are constants. To the first power of 1/F this is equivalent to

pV = NkT -i y
. (598)

It is therefore equivalent, as a first order equation, to the approximation

/ {T) = 27TN^kT r r2 [e-^T _ i) ^^ = _ ^j^jif^ + ^ (599)
JO

Though obviously incomplete this is useful from its simpUcity and a

sufficient analogy to the true form. For if the molecules are almost rigid

volumes without external fields, then E = +co {r < a), and E = (r > cr),

so that
f{T) = - lirN^kTaK

Thus for such a model 6 = IttNcj^ (four times the volume of all the mole-

cules) and a = 0. Historically, van der Waals' formula was derived by
superposing on this volume effect b the independent effect of weak attrac-

tive fields in creating a boumdary field (see § 9-8) and thereby diminishing

the pressiu-e. In asserting that the effect of this boundary field could be

represented by a constant a added as in (598) to the unaltered volume
effect, two mistakes are made. One is that the boundary field is calculated

* See, for example, Partington and Shilling, The specific heats of gooses (1924); Kamerlingh-

Onnes and Keeson, "Die Zustandsgleichungen", Encyk. Math. Wiss. Bd. v, No. 10; Jeans,

loc. cit. chaps, vi, vn.
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ignoring the effects of the intermolecular attractions on the distribution

of molecular pairs, which is equivalent to replacing (e"^/^^ — 1) by — ElkT
in (599). The other is that the effect of the attractions on the volume effect

itself is forgotten. When these mistakes are corrected, formulae (596) and

(599) are recovered*. The value of (597) as a substitute for (598) rests

entirely on its simplicity in applications, but its success is strictly limited.

The equation of state of D. Berthelot has an appreciably greater range

of validity since it gives a closer representation of the theoretical first

order terms. It is used empirically in either of the forms

j,F^«.T|l-^(^'^,-6)j. (600)

a' \
[v + ^){V-b) = NkT, (601)

where a' and 6 are constants. Either of these is equivalent to the first order

^^"^"^
T7 ^71 m NkTb-a'/T ,.„^,pV = NkT ^ y

'—

,

(602)

so that they are based on the approximation

f{T) = - NkTb + a'IT. (603)

If we contemplate a molecular model of an elastic sphere surrounded by

an attractive field of force, of potential energy — P, we have

/ {T) = 27TN^kT

Thus as before 6 = ^nNa^, and

^(^3 + r ^2 |gP/fcr - ijdr (604)
J rr

2TrN^kT-^
["^

r2 (eP/fcT _ i) ^j^.^ (605)

The assumption that a' is independent of T may be expected to be fairly

near the truth in suitable regions of temperature. For the extra T-factor

makes it possible for da'JdT = for some T, whereas for a we have always

dajdT < 0. It would perhaps be better still to use a'/T^ instead of a'/T

in (600) with the corresponding changes elsewhere, and adjust s to bring

the zero of da'/dT into the most important temperature range.

Another equation of state of considerable importance is that of Dieterici.

It is used empirically in the forms

p{V - b) = NkTe-'^I^^T^, (606)

p{V - b) = NkTe-'^'l^^'^'^, (607)

in which a, a', 6 and s are constants. The value of s (other than 1) most

often used is f . To the first order in l/V these equations have still the

same form ^, ^, _ ^nrps-i

pV = NkT +
^^"^^ ^^/^

, (608)

* Fowler, Phil. Mag. vol. xliii, p. 785 (1922).
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and the same first order validity. They are, however, empirically very

much more successful at reproducing observed facts, and this is un-

doubtedly due to the exponential instead of the additive form of the

a-correction. Though we have really only studied first order corrections

here, it is not difficult to see that Dieterici's form ought theoretically to

be successful over a wider range than van der Waals' or Berthelot's. For

we shall show in § 9*8, by a discussion of the boundary field, that approxi-

mately
pV = NkTexp j^ r2{e-mT - i}dr

V Jo
(609)

The discussion on which this is based is admittedly inadequate, since only

first order accuracy was aimed at in the intermolecular distribution law,

and there are other approximations. But we may expect quahtative

accuracy in the form of these approximations, and the rest of the argument

inevitably leads to an equation of the form (609). Dieterici's form is derived

by approximating to

y .'0

with the usual - b/V + a/NkT'V, and replacing Fe-*/^ by F - 6.

For practical use the a, a' and h of these and similar equations are

adjusted to give the best fit with the facts over some particular temperature

and pressure range, or to reproduce exactly some particular phenomenon

such as the critical conditions (see below). It must be remembered that

the constants so determined have no direct connection with the inter-

atomic fields of force and cannot be used for anything more than a rough

quahtative estimate of these fields or of the sizes of molecules. The mistake

of using data from the critical point, for example, for quantitative estimates

of molecular diameters has frequently been made. The only correct course

is to reduce the observed equation of state to the form*

'pY = iV^yfcT - / {T)\Y + (1/F2), (610)

and thus determine the observational value of/ (T), often called the second

virial coefficient. Thus determined, / {T) can be directly equated to its

theoretical value. We give an account in the next chapter of the latest

work of this nature which has succeeded in coordinating into one con-

sistent scheme the requirements of interatomic fields both in gases and in

crystals.

§ 9-2. Critical points and reduced equations of state. The semi-empirical

equations of this section agree in predicting the existence of two types of

isothermal separated by a critical isothermal for which T = T^. When
T> T,, dp/dV < for all F. When T <T,, dp/dV vanishes twice and is

* This is the method followed by Kamerlingh-Onnes and Keesom and their collaborators at

Leiden, and first correctly applied to the study of atomic fields by Keesom.
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positive between these roots. This behaviour can be regarded as a satis-

factory description of the observed facts that for any substance there

exists a critical temperature above which the substance can exist only in

a single phase—the gaseous state, while below there are two possible

phases, the gaseous or vapour state and the liquid state, which can co-exist

in equihbrium together. Mathematically, the critical isothermal must be

determined by the condition that on it the two roots of dp/dV = which

are real for T <Tc coalesce to form a single double root. This condition is

obviously that the critical isothermal is that on which there exists a point,

called the critical 'point, at which

dpjdV = d'-pjdV^= 0. (611)

Combined with the equation of state these equations suffice in general to

fix the values of p, V and T for the critical point. These values are usually

denoted by Pc , V^ and T^ . At this point the properties of the Uquid and

vapour phase finally become identical and the two phases fuse into one.

The position of the critical point predicted by some of the equations is as

follows

:

van der Waals— V, = 36, p, = aj21b^, T, = Sa/21Nkb (612)

Dieterici— V, = 2b, p, = a/4:e^b\ T, - a/4iVA;6. (613)

Dieterici's equation reproduces the position of the critical point with

considerable success for many gases. The predicted relation

NhT,lpJ,= \e^= 3-695

is particularly successful. The reader should refer to Jeans* for a further

discussion. Some typical isothermals for carbon dioxide are shown in

Fig. 10, reproduced from Partington and Shillingf

.

The equations of state discussed here are ahl^e in possessing only two

adjustable constants. In each case, and in all similar cases, these two

constants and Nk can be eUminated by introducing instead p^ , Vg and T^

.

The equation of state then takes the form

Kh B' '""'p ffV T

where / is a function which is the same for all a and b, that is, to this

approximation the same for all gases. This can easily be verified directly,

or alternatively deduced by a dimensional argument. It is usual to intro-

duce new variables tt,v,^, called reduced variables, defined by the relations

p = 7Tp„ V=vV„ T = ^T,.

* Jeans, loc. cit.

f Partington and Shilling, loc. cit. p. 37.
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The equation of state then takes an absolute form called the reduced

equation of state. As examples

:

van der Waals— (77 + S/u^) (3u - 1) = 8^. (615)

Bertheloi>— (tt + 3/y2^) (Su - 1) = 8&. (616)

llOr

wo-

^
c

2 3 4-5
Vol. in ccm. of Igm.

Fig. 10. Isothermals of CO2. The critical point is at G. The shaded portion represents liquid

states and the part within the dotted curve liquid-vapour mixtures.

Berthelot modified—An empirical equation used in the reduced forms

32
(77 + 16/3i;2^) (v - 1) = — ^, (617)

T^r + i2io;

6^
[618)

These of course do not give the critical point 1 , 1 , 1 as a reduced equation

should, but are more successful in the region of moderate deviations

from the perfect gas laws*.

Dieterici— 77 (2u - 1) = O-e^-^A"^'). (619)

* See also Henning, Temperaturmessung, Braunschweig (1915); Eucken, Zeit. fiir Phys.

vol. XXIX, p. 1 (1924).
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Equal values of the reduced variables are said to be corresponding values

of the ordinary variables for different gases. The suggestion of these equa-

tions that for corresponding temperatures and volumes the pressures have

corresponding values for all substances is called the law of corresponding

states. This law is approximately true over wide ranges of the variables

for not too dissimilar molecules, but is by no means true in general.

§ 9-3. Inversio7i points in the Thomson-Joule effect. The thermodynamic

theory of the Thomson-Joule effect is well known* and need not be repeated

here. Gas is allowed to stream through a valve, porous plug or other

throtthng device under a steady pressure difference which maintains the

flow against frictional resistances. In the steady state there is a tempera-

ture difference on the two sides of the plug or valve for an imperfect gas.

For a differential pressure drop Aj9 this temperature difference AT is

given by
AT -a- "18 <-'

Since necessarily ^p < 0, AT has the sign of F - T (dV/dT)^. The effect

may therefore be either a heating or coohng of the gas. The heating and

cooling regions in the p, V or p, T planes are divided from one another

by the curve of inversion points, whose equation is obtained by eliminating

one variable from the equation of state by means of the equation

In reduced variables the curve of inversion points has the following forms

:

van der Waals— (12^ -j- tt - 81)^ + 216 •(49- + tt - 27) = (622)

2s + 3 _ 4

Dieterici— tt^'^^ = {4. {s + I) - ^'} e''^^ ^\ (623)

A diagrammatic presentation of these curves and observed inversion points

is shown in Fig. 11 taken from Lewisf. It will be seen at once that

Dieterici's equation with 5 = f gives a very faithful representation of

the properties of these gases in the neighbourhood of the curve of inversion

points. This is a somewhat severe test of any practicable equation of

state.

It will be seen on inspection of Fig. 1 1 that the coohng region is limited

in area, the mam portion of the p, T plane being the heating region. At
the same time for the commoner gases the coohng region practically

covers the range of ordinary temperatures and pressures. Hydrogen,

hehum and neon are exceptions. The hmitation of the coohng region is

* W. C. McC. Lewis, A System of Physical Chemistry, vol. ii, Thermodynamics, ed. 2, p. 67;

Planck, Thermodynamik, ed. 6, § 70; Birtwlstle, Thermodyyiamics, chap. viil.

t W. C. M^C. Lewis, loc. cit. p. 71.
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of great importance in liquefaction practice by Linde's process, which

is based on the Thomson-Joule effect to obtain the reduction of tempera-

ture in each cycle. Unless the temperature is low enough for the greater

part of the designed pressure drop to lie in the cooling region, the gas will

not cool but heat and the liquefaction process cannot be carried out. In

the manufacture of hquid hydrogen and helium by Linde's process efficient

cooling will not occur unless the hydrogen used has been already cooled

with liquid air, and the helium used with hquid hydrogen.

All these aspects of the theory of simple gases have long been fully

appreciated, except the precise determination of intermolecular forces to

which we devote the following chapter. It therefore seems unnecessary to

give further space to them here.

7-

D_
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quadratic function of x, and it is obvious without explicit calculation that

the nth. virial coefficient must in general be a polynomial of the nth degree

in X. The condition for linearity of the second virial coefficient in x is

Pn + P22= 2pi2. (627)

There is obviously no reason why this should be satisfied in general, but

it is clear that it is likely to be true or nearly true when the molecular

fields are very closely similar, for the condition states in a sense that the

intermolecular forces between molecules 1 and 2 are the mean of those

between 1 and 1 and between 2 and 2. This appears to hold for oxygen-

nitrogen mixtures with very considerable accuracy*, and was once assumed
to hold for hehum-neon mixtures for the purpose of deducing the isotherms

of pure neon, an assumption shown to be invahd by later work on pure

neon.

Bp.io^

Theoretical Curve

Observed Values

100%H,

Fig. 12. Variation of the second virial coefficient with composition in

hydrogen-nitrogen mixtures.

* Holborn and Otto, Zeit. fiir Phy.s. vol. x, p. 367 (1922); vol. xxm, p. 77 (1924).
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In an interesting paper, Verschoyle* has established a case of marked

failure of (627) by the study of hydrogen-nitrogen mixtures, which has

been discussed theoretically by Lennard-Jones and Cookf. Fig. 12 is taken

from their paper and shows the variation with composition of the second

virial coefficient, proportional to their B^. The observed points can be

fitted reasonably well by a parabola of the theoretical form, though the

fit is hardly as good as might have been expected. These mixture curves

may be taken as determining p-^^ when p^^ and P22 ^^^ already known, and

therefore as determinmg E^^^ that is, the law of force between unlike

molecules. A detailed experimental study of inert gas mixtures in various

proportions would provide information of great value in the further

development of the theories of Chapter x.

§ 9-5. The construction ofW/Jc. For the logical completion of the ele-

mentary methods of §§ 9-7 and 9-8 for the study of imperfect gases it is

necessary to have a means of deriving the correction to^/k corresponding

to the directly calculated correction to the pressure. Such a method is

also apphca.ble to the semi-empirical pressure corrections of the preceding

sections.

We start from the thermodynamic relation

p= TdT/dV. (628)

In general a knowledge of the equation of state, p, does not suffice to

determined by integration, for the integration constant, which is unfixed,

is an unknown function of N and T. But if we already know completely

the exact form Too ofT in the hmit V -^ao, then (628) is sufficient; and in

fact Too is known, for the assembly becomes a perfect gas. Owing to the

linear form of (628) the corresponding corrections to p and T must be

additive. If we denote the imperfect gas correction to p by p^j and to T
by T^, we obtain from (628)

T,„ = T - Too = - j^^^dV. (629)

By (596) the general correction is

^ = _ 1 il^ 477 r2 (e-^/^^ - 1) dr.

Therefore ^=t^^4„ r^ (e-£/fcT _ i) ^r, (630)

which agrees with (491).

In connection with any semi-empirical equation of state we use this

method to determine T^, and so T, and to deduce from T by the usual

thermodynamic equations the corrections to C\ and Cp. In this way
observed values of p, C^ and C^ can be corrected for deviations from the

* Verschoyle, Proc. Roy. Soc. A, vol. cxi, p. 552 (1926).

f Lennard-Jones and Cook, Proc. Roy. Soc. A, vol. cxv, p. 334 (1927).
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perfect gas laws, and the corresponding ip^, {C^)^, and {C^)^ determined.

For the foregoing empirical equations we have

van der Waals— T = Nk jlog ^-^-^^ + ll +^ (631)

Berthelot ( F-form)— T = Nk jlog^^^ + l|+^ (632)

Berthelot (i?-form)— T = Nk llog
(^- b + a//NkT^) F

^ ^

(633)

Dieterici— "¥ = Y^ - Nk
f"' ( ^^, - -\ dx ib' = NkT'bla').

(634)

The last formula cannot be given in finite terms. Equation (633) is of

greater value when we form the other characteristic fmiction O in terms of^
and T* based on the free energy instead of the work function. The
relation is

a)=T'-j)F/T, (635)

and we find

Berthelot (j>-form)

—

= «{log^ +^(^-6)} (636)

From T we can at once deduce C^ and so the correction to {C^)^ by the

equation

dT\ dTj V

and, similarly, from O Cj, = ^ ( T^ j

.(637;

.(638)

§ 9-6. Alternative metJiods of calculation. Method (i). As a problem in

dissociation. The results of this chapter can be reached in a variety of other

ways, some of which will be considered in the following sections. Since we
need no longer attempt maximum generahty we shall be content to con-

sider the case of a simple imperfect gas of N molecules.

The results for a perfect gas can be extended at once to an imperfect

gas (short range forces) by the devicef of regarding any pair of molecules

within each other's field of force as a system to be discussed as a whole.

Any single molecule outside the fields of force remains a system as before.

* Planck, Thermodynamik, ed. 6, § 283 (1922).

t Jeans, loc. cit. p. 91. The discussion of dissociation and aggregation there given on a classicaj

basis is inadmissible in general. The phenomena are essentially phenomena of the quantum
theory. The device is, however, admirably adapted to the discussion of classical systems required

here. It is essentially equivalent to Boltzmann's discussion of dissociation, Vorlesungen uber

Gastheorie, n, Abschnitt vi.

F 14
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The equilibrium state of the assembly can then at once be studied as a

problem in the dissociation of perfect gases. We consider only interactions

in pairs. Let/ (0-), equal to h {^) j {^), as before be the partition function

for the free systems of average number iV^. Let g {^) be the partition

function for systems which are pairs of molecules in interaction, of average

number IV^. The function g (&) will contain the factor j'^ (S-) deahng with

the internal energies. It remains to construct the classical part. The

element of phase space for the pair is

mHxi ... dw^dx^ ... dw^

in rectangular Cartesian coordinates and velocities. This can be trans-

formed to coordinates and velocities of the centre of gravity of the pair

X*, ...,w* and coordinates and velocities of 1 relative to 2, ^, ...,w. The

Jacobian of the transformation is 1 and the element of phase space is

mHx* ... dw*d^ ... dw,

of prepared weight
_ . dx* ... dw*di ... dw
8t=m^ 2p ' (^^^)

the symmetry number being 2. The corresponding energy is

e;= 1 (2m) (2^**2) + 1 (im) (llu^) + E (f, rj, (640)

Thus in the classical limit this factor of the partition function is

^f... l^^dx* ... dw*d^ ... dw, (641)

where e is given by (640). This reduces at once to

. (2.im)l A
(^)

' ^ ^ h^ (log l/d-)^

where h^ (^) is the ordinary partition function for the motion of the aggre-

gate as a whole of mass 2m, and

^ (^) = 1
[

^E[^,r,,i) d^drjdl (643)
J V

A (^) is obviously the partition function for the potential energy of the pair,

and V is the volume in which E is sensible.

The gas here considered of "free" molecules and aggregates obeys the

dissociation theory and in particular equation (333). We therefore find

^2 _ i^ (^) K m (27r|m)^ A {^)l{h^ (log 1/^)^}

To the first approximation the F-factors are just V in both h (^) and

^2 {^), so that approximately

n;i(n;)^ = a{^)/v. (644)
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In calculating first order corrections vjV and therefore A (^)/F will be

small, so that N^j{Ny)^ will be small and (644) is correct to the order

required. iV^ will differ from N only by first order terms. If we ask for

(aa)^, the average number of aggregates with given ranges of relative

positional coordinates, we find at once by (332)

and therefore to a sufficient approximation

(^*= i(X)'e-^/^-^ {didrjdOtlV. (645)

The velocity distribution laws can similarly be shown to be unaltered by

the forces.

We can derive at once any of the laws previously estabhshed, but it

will suffice as an example to calculate the form of T/^^ By Theorem 6-31

Y/k = N[ (log-^ +l) + N, (log ^^ + l) (646)

We require here a more exact evaluation of the F-factor in/ {^). It is no

longer V exactly, because if any one molecule is in the field of another the

pair rank as a system and not as free molecules. Thus in/ {^) the F-factor

is approximately apparentlv
V - Nv. (647)

This, however, would not be correct, as it would lead to counting the whole

of each excluded volume twice over, once for each member of the pair.

Thus in/ (9-) the F-factor should be taken to be F — ^Nv, and to a sufficient

approximation

T/.

=

N, {log (y-if)^(^) +
1}
+ ^, jiogm +

1

This is most satisfactorily expressed as perfect gas terms plus corrections.

Remembering that Ni = N — 2N2 we find after an easy reduction that

Y/k = N (log ^ + 1) + ^{A (^) - ^v}, (648)

which agrees exactly with (491).

This method is really much simpler to handle than the general method
and easily extended to mixtures. It might extend conveniently to the

calculation of higher order corrections, though hardly so effectively as t he

general method of § 8-31.

§ 9-7. MetJiod (ii). The use of the *virial of Clausius. The general

method and the method of aggregations evaluate the complete equihbrium

laws without the aid of additional theorems. Two other methods of some
importance can be used to obtain the equation of state with the aid of

the distribution law (534). The first of these to be considered is the use o

14-2
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the virial of Clausius. We give the underlying theorem in a general form

due to Milne*.

The equations of motion of a particle of mass m at x, y, z, moving under

a force whose components are X, Y, Z and subject to frictional resistances

of the form — k {x, y, z), are

mx = X — kx (649)

and two similar equations. When this is multiphed by ^x it may be written

1^2 (»^^') + Iji (x^^) - 1^^' = 2XX (650)

Hence, adding three similar equations,

J ^2 (mr2) + i|^ (Kr2) = Imv^ + 1 {Xx + Yy + Zz) (651)

Now sum this expression over all the systems in an assembly, and integrate

over a long time t. We find

I -J-
(Smr^) + iS/cr |Swv2 + 1 ^xx + Yy + Zz (652)

The bars denote time averages from to t. Now if the state of the assembly

is steady, the values of the expression in [ ] must be of the same order at

and T, and will at least display no secular change with t. Hence the left-

hand side of (652) is effectively zero, and we have

Pmv^ _ _ i^Za; + Yy + Zz. (653)

This is the theorem of Clausius, who named the expression on the right

the virial. Provided frictional forces permit of an effectively steady state

they do not alter the form of the theorem. We may note also that,

provided the forces in the virial include all stresses due to bodies other

than the systems to which S refers, the theorem is true for any collection

of systems not necessarily the whole assembly.

Let us now apply (653) to an assembly consisting of an imperfect gas

or to any portion of such assembly enclosed by an imaginary geometrical

boundary. In either case the virial is made up of the forces between the

molecules and the stresses across the physical or geometrical boundary.

This stress per unit area is of course the pressure, and we may insist once

again that the pressures on any boundary or across any internal sm'face

are always equal in the absence of surface tension and external fields of

force. If dS is a surface element of the boundary and I, m, n the direction

cosines of its outward normal, the stress components are — Ip dS, — mp dS,

— npdS, which contribute to the virial

^p n {Ix + my + nz) dS.

* MUne, Phil. Mag. vol. l, p. 409 (1925).
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By Green's theorem this is equal to

We have supposed above that the force between two molecules is radial

and equal to — dE/dr. Continuing on this basis, if the centres of a pair of

molecules are at x, y, z, x'
,
y', z' and the force components are X, Y , Z,

X', Y', Z\ then
dEx-x' ,., dEx'-xA = —5

, A
or r

xX + x'X' =

dr r ' dr r

dE {x - xy
dr r

dE

Thus the contribution of the force between this pair of molecules to the

virial is

^^ dr

and the total contributions of all intermolecular forces

dE
l^r'g, (655)

summed over all pairs of molecules. Combining (654) and (655) with (653)

we obtain finally yV3*'— dE
pV = lUmv^ - lUr^

.

(656)

This is the general form of the equation of state derived from the virial.

To interpret it further we need to use distribution laws. For the mean

kinetic energy of translation we have

li:7nv^ = NkT. (657)

For the average number of pairs of molecules at a distance apart between

r and r + dr y^e find by (534)

ij\^2e-£/fcr ^^^^^
^ (658)

The factor | must be introduced when (534) is integrated over all relative

directions. Using (657) and (658) we find

ATS roo gs;
pV ^NhT ~l^^7:\ r^-^e-^l^'^dr.

On integrating this by parts in such a way that the conditions of conver-

gence at infinity are satisfied we find

pV = NkT [l - 1 ^ 477 r r2 {e-^l^^- 1) dr
y Jo

,(659)

which agrees with (492).

The argument must be completed by an appeal to (629) to derive T.
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§ 9-8. Method (iii). A direct calculation of the stress per unit area. It is

easily seen that the main conchisions of the calculation of stress in § 5-71

are unaffected by intermolecular forces. The internal stress is necessarily

an isotropic pressure, everywhere equal in the absence of external fields

to the boundary pressure. It consists of a term arising from the rate of

transfer of momentum, which is absolutely unaltered by the forces, together

with a new term the average stress per unit area due to the intermolecular

forces themselves. To calculate this extra term we
have merely to calculate the average force per unit

area exerted by all the molecules on one side of a

geometrical interface on those on the other. This

requires a use of the distribution law (534).

Let us consider an infinite plane slab of thick-

ness df and calculate the average force dF exerted

by all the molecules in this slab on a molecule at

P, distant z from the slab. Our molecules are of

course regarded here as point centres of force. The
calculation is a generalization of the classical

calculation in Laplace's theory of surface tension,

generahzed so as to apply directly to a molecular structure*. The average

number of molecules in the slab per unit area at a distance r from P isf

It is safer in this section to show exphcitly the argument of E. The average

number in the annulus at distances between r and r + dr from P is

Fis. 13.

277r sin d.
dr N

-Q.jdfe-^(r)i,T^
sm

and their resultant repulsion along PO is

27T^rZdf(-~]e-E^')I^Tdr.
V dr

.(660)

To obtain the average repulsion of the whole slab we must integrate (660)

for all values of r from z to infinity. This gives

27TNkT
dF = - zdf{e-^^'y^T- 1}. ,(661)

The average repulsion per unit area on the molecules in a slab of thickness

dz is therefore, since there are Ndz/ V such molecules,

27TN^kT

F2
zdzdfie-^^^y^T _ ly .(662)

* See Rayleigh, Scientific Papers, vol. m, pp. 397, 513 (1890, 1892).

t More generally E (r) must of course be replaced by the mean W^^ {r) of formula (530).
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We now replace z by 2 + /, the distance apart of any two slabs, and in-

tegrate with respect to both z and / from zero to infinity. We thus obtain

the total stress per unit area due to the molecular forces, that is,

72

' roo Too

(2+/){e-^<'+^^'^'^- l}^2cZ/, (663)
i Jo

or
=f^
— x{e-^H'^-2^ - Ij^^x dtj,

y Jo Jo

27TN^kT r*
or - .,,, x^e-^^^y^-^ - l}dx, (664)

y Jo

which agrees with (659).

The differential formulae (661) and (662) can also be used in a number
of other ways. To obtain the work dw (/) done by the repulsions when a

molecule is removed from a distance / from the slab to infinity we have to

integrate (661) wdth respect to z. Thus

dw (/) =: - ' df z{e-^^^y^T - l}dz (665)
V J f

The work iv (/) done when the molecule is removed from a distance / from

the plane boundary of a large mass of gas to infinity is

27TNkT

Jf

or

^V if)
=

y

Wkr f^ T""

^1 dfj z{e-^^^)l^^- l}dz,

(666)

The average work done when one molecule is taken from the plane boundary

to infinity is w (0).

Again, it is obvious that dw (— /) = dw (/), for the work done in taking

the molecule from a distance / on one side of the slab to a distance / on

the other is zero. Hence the work w {— f) done by the repulsions when a

molecule is removed to infinity from a depth / inside the plane boundary

is equal to iv (0) together with the work done by the repulsions when the

molecule leaves the surface of a finite slab of thickness /. This latter part

is of course w (0) — w (/). Thus

w{-f)=2w{0)-w{f), (667)

IV (- (X)) = 2m; (0). (668)

The work done when the molecule comes from right inside to the surface

is therefore equal to w {— od) — lu (0) or iv (0), which is also the work done

when the molecule goes from the surface to infinity. These calculations of

work terms are of course all ivork done in reversible isothermal processes in

which equilibrium conditions are maintained throughout.

The foregoing formulae take no account of changes of the average
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density of the molecules near the boundary of the gas. There must in fact

be such changes, as a consequence of Boltzmann's theorem. The reversible

isothermal work done by the forces on a molecule when it is brought from

deep in the gas to a depth /is by the preceding argument w {-co) — w {— f),

or w if) as given in (666). Hence by (529) and the following paragraphs

— w (f) is just exactly the energy term to be inserted in Boltzmann's

theorem, and

^(/) = ^e'-W^^ (669)

where v (f) is the equilibrium density at a depth / inside the boundary.

A more accurate investigation must proceed by constructing an integral

equation for w (/) instead of using (666)*.

This calculation of the boundary density and the boundary field can

be made to give at once the value of the boundary pressure, and is in fact

the correct form of the classical calculations by which van der Waals

derived his famous equation. For by (669) the density at the boundary

itself is

v (0) = ^ e^'^ioVkT^

N= pexp
27tN

z2^Q-Elz)/kT _ l}c?2 .(670)

and by the usual bombardment argument the pressure is kTv (0). Therefore

pV = NkTex^
2ttN

V
z2{e-E(^)/fc2'- \}dz .(671]

which to the order of accuracy agrees with (659).

Further developments of these ideas belong more properly to the theory

of surface tension.

* Fowler, Phil. Mag. vol. xliii, p. 785 (1922).



CHAPTER X

INTERATOMIC FORCES*

§ 10-1. Classification of forces. The work of the two previous chapters

proceeds on the assumption that the forces between molecules and there-

fore such functions as E„,^ are known, but little is as yet known theoretically

about the magnitude of these forces, though their nature is already fairly

clear. It will no doubt be possible one day, probably soon, to calculate

the forces between atoms in terms of their electronic structure, and thus to

bridge one of the gaps which still separate molar physics from atomic

physicst- At present we have to rely entirely on indirect methods for such

knowledge as we have of intermolecular fields.

The tendency of all molecules to aggregate at low temperatures is

sufficient indication of the existence of forces of cohesion between mole-

cules, and the very existence of matter leads of necessity to the conclusion

that the forces between molecules become repulsive at short distances.

Any adequate representation of intermolecular fields must therefore satisfy

these two elementary requirements, that it gives an attractive field at large

distances and a repulsive at small. The simplest picture of this kind is that

molecules consist of hard, impenetrable surfaces surrounded by an attrac-

tive field. This picture we owe to van der Waals. It leads to the equation

of state discussed in Chapter ix and has also had other successes. It is, how-

ever, inadequate to explain the observed compressibihty of matter, and

for this and other reasons must be discarded. It is convenient, if somewhat

artificial, to represent atomic fields by the superposition of two fields, one

attractive and the other repulsive, such that the former predominates at

large distances. The former of these we shall refer to as the van der Waals

attractive field, and the latter as the intrinsic repulsive field. It is convenient

to label the fields in this way as they are thus more easily differentiated

from the attractive and repulsive electrostatic forces of the Coulomb type

between ions with net charges. All interatomic forces are ultimately of

electrostatic or electromagnetic origin, but it is best to reserve the name

electrostatic for the familiar forces between charged bodies.

Where atoms in matter exist permanently in an ionized state, and the

work of Arrhenius, of Kossel and others has shown that they often do,

the electrostatic forces play an important part in determining the physical

properties of the matter in bulk. Such fields are to be regarded as super-

* This chapter has been contributed by J. E. Lennard-Jones.

t The work of Heitler and London, Zeit.filr Phys. vol. XLiv, p. 455 (1927), makes perhaps the

first secure step in this direction, but even this has oversimplified the discussion so that the atoms

do not exhibit as they should the van der Waals attractions.
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imposed on the other attractive and repulsive fields already discussed,

though not without modification. Owing to the deformation of the elec-

tronic systems of the atoms and ions in the presence of charged ions or in

any other electric field, certain other forces are introduced which may be

termed 'primary polarization forces. We use this description because it is

becoming clear that the van der Waals attractive forces are really due to

the polarization of one (neutral) atom by the electric field of the other

(neutral), so that these may be called secondary polarization forces . Finally,

some molecules are known to possess a permanent electric moment, even

in the absence of an electric field. The magnitudes of these can often

be deduced from a study of the dielectric properties of gases and perhaps

liquids (see Chapter xii), and the corresponding forces between the two

molecules are then known.

We may thus summarize our classification of interatomic forces under

the following headings, arranged in order of simplicity and probably of

range

:

(1) Electrostatic forces between atoms (or ions) with net charges.

(2) Electrostatic forces between permanent dipoles.

(3) Forces due to primary polarization.

(4) Forces due to secondary polarization (or van der Waals' attractive

forces).

(5) Intrinsic repulsive forces.

We shall not, however, discuss the forces in this (the natural) order,

as it is more convenient to deal first with the forces of more complex

origin but shorter range.

§ 10-2. Intrinsic repulsive and van der Waals' attractivefields. In general,

the forces between molecules depend on their relative orientation as well

as on their distance apart, but the mathematical difficulties of deahng with

such laws of force in theories of the properties of matter are considerable.

Keesom has given a method of deriving the equation of state of a gas of

unsymmetrical molecules, though he has only applied it to solid ellipsoids

of revolution*, and the expression obtained is not in very good agreement

with observation. He has made no attempt to deduce any information of

a quantitative character from a comparison of theoretical and observed

results. The general method given by Ursellf (see Chapter viii) is applicable,

but has never yet been applied to an unsymmetrical model. RankineJ has

tried to represent the fields of polyatomic gases by aggregates of over-

* Keesom, Proc. Sect. Sci. Amsterdam, vol. xv (1), p. 240 (1912).

t Ursell, loc. cit.

X Rankine, Phil. Mag. vol. xl, p. 516 (1920); Roy. Soc. Proc. A, vol. xcvm, pp. 360, 369

(1921); Proc. Lond. Phijs. Soc. vol. xxxiii, p. 362 (1921); Phil. Mag. vol. XLn, pp. 601, 615

(1921); Trans. Far. Soc. vol. xvn, p. 1 (1922).
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lapping spheres, the sizes of which are fixed by observations of the viscosity

of simple gases, but it is difficult to verify these proposed structures from

observations of the viscosity of the polyatomic gas, as Rankine has tried

to do, seeing that no theoretical formula has yet been produced for the

viscosity of an assembly of unsymmetrical molecules.

We shall, therefore, confine our attention to those structures which may
with reason be regarded as spherically symmetrical, that is, the inert gas

atoms, and ions of similar structure. It is natural that such structures

should at first have been represented by rigid spheres, for the field (apart

from the attractive field) is completely determined so soon as one parameter,

the diameter, is known, and this simphcity undoubtedly accounts for its

popularity as a molecular model*. But a conglomeration of closely packed,

rigid spheres would be incompressible and would not therefore possess the

observed properties of ordinary sohds.

This objection can be met by supposing the intrinsic repulsive field to

be of the type Ar~'*. This is a more general representation than the elastic

sphere, as its complete determination requires two parameters, A and n,

instead of one. Probably it is the simplest type of force which possesses

this characteristic. It includes also the simpler model as a special case,

since a rigid sphere is the hmit of Xr-'^ as n tends to infinity, with a suitable

corresponding variation in A.

It is convenient to represent attractive fields by a similar fiuiction

ixr-'^, as Keesom was the first to do, though he superimposed it on the rigid

sphere model. If we represent both repulsive and attractive fields by inverse

powerlaws as Xr-^ — /xr-™, then the complete specification of the field requires

a knowledge of four parameters. In order that the field may be effectively

attractive at large distances, it is necessary that n> m. It is unlikely

that such a simple function of the distance adequately represents actual

interatomic forces over all distances, but it is the most general that has

as yet yielded to mathematical treatment. The methods of determining the

constants which have proved most successful are based on the physical

properties of matter in the gaseous state, and these we shall now proceed

to consider. We shall deal first with the equation of state of a gas and then

with its viscosity.

§ 10-31. The equation of state of gases. The empirical representation of

observed isothermals. In Chapter ix it has been shown that for gases of

moderately large dilution

^F=iVA:^|l + | + 0(l)|, (672)

* For a discussion of the diameters of such model molecules, determined by a variety of

methods, see Jeans, loc. cit; Herzfeld, Kinetische Theorie der Warme (Braunschweig, 1925);

"Grosse u. Bau der Molekiile", Handbuch der Physik, vol. xxu (Berlin, 1926).
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where 5 is a function of the temperature and of the interatomic forces.

KamerUngh-Onnes* has shown that the observations require in general a

similar expansion, and he has expressed the results in the form of an

empirical equation of state of the type

py=A^ + y + %+Y^ + Yi^% (673)

where the coefficients A, B, ... are functions of the temperature, usually

called ^irs^, second, ... virial coefficients.

There is some divergence in the units used in the observational equation

(673). Kamerhngh-Onnes and other workers at Leiden have adopted the

international atmosphere as the unit of pressure, the volume being regarded

as unity under this unit pressure at 0° C. When this system of units is

employed, we shall distinguish the coefficients of (673) by writing them

A^, B^, .... Workers at Berhnf, on the other hand, have taken the unit

of pressure to be equivalent to a column of mercury 1 metre long (under

standard conditions) with a corresponding change in the unit of volume.

In this case we shall write %„, 33„, ....%

Again, it has proved convenient both at Leiden and at Berlin to express

the value of ^F, not in powers of 1/F, but in powers of p, so that then we

^^^^ pV=^A, + B,p+G,p'+..., (674)

and pV=^i^+^^p+(S^p'+..., (675)

respectively. The various coefficients are easily related to each other. Thus

we have or

A — A — r^ f676'>^"^
(2Uo+(S.)o?+(e.)o^^' ^ ^

r> _ -^ '' ^g
C677^^^ A, {%)o+{'^,)ol+{^.)ol" ^

^

where I is the pressure of one atmosphere in the Berhn units, and the

suffix refers to the isothermal 0° C. It is thus possible without difficulty

to pass from one system of units to another.

For comparison with the theoretical work, the Leiden method of pre-

senting the results is preferable, as the units refer to the normal conditions

under which Avogadro's number for the molecular concentration is

apphcable. We shall regard the Leiden equations, therefore, as the standard

experimental equations to which all others are convertible.

* Kamerlingh-Onnes, Comm. Phys. Lab. Leiden, No. 71, or Proc. Sect. Set. Amsterdam, vol. iv,

p. 125 (1902).

t Holborn and Otto, Ze.it. fur Phys. vol. xxm, p. 77, vol. xxx, p. 320(1924), vol. xxxm, p. 1

(1925), vol. xxxvni, p. 359 (1926).

I Another method of presenting the results has been given by Smith and Taylor, Journ.

Amer. Chem. Soc. vol. xlv, p. 2107 (1923), though not in a form suitable for comparison with

theory.
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§ 10-32. Theoretical expressions for the second virial coefficient. If we
write equation (672) in terms of molecular concentration, thus

^ = vkT {\ + B'v), (678)

we have* v^kT = A^, v^B' = BJA^, (679)

where, for a spherically symmetrical field, by (659)

^' = 277
C'"

r2 {
1 - e-£(r)/A:T} dr^ (ggQ)

^' - 3kT
27r r~ „ / dE

r '"' (~'^) e--^'"*/^^^^- (68i;

The condition that B' shall remain finite places a restriction on the mole-

cular models which are possible. For instance, if

dE „ , , .

the condition requires that n > 4, m> 4. Equation (679) provides a cri-

terion for any assumed law of atomic interaction.

Although equation (680) gives a formal solution for B^ for any field of

a spherically symmetrical type, the actual evaluation of the integral has

been effected in only three cases, viz. (1) molecules which repel according

to the law Ar-"; (2) molecules which behave as rigid spheres of diameter a,

surrounded by an attractive field /xr-"*; (3) molecules whose fields can be

represented by Ar-" — ^r-"*. The first of these has been given by Jeansf

,

the second by Keesom J . For the third it is found that §

/ X m — l\3/(n-m)

where F (y) = y^n^-"') \r (^-~~-^] - i: Cr^A

,

(683)

and y is a, function of temperature given by

y~{m-\)kT\ A }
^^^^^

The coefficients c^ are written for

/r{m-l}+ w-4\ /r{m-l}-3\

r !(»{»(- 1}- 3) r !(»-!) ' '

* On the Leiden conventions Vq is a standard concentration equal to Avogadro's number,
2-70 X 1019.

f Jeans, loc. cit. p. 134.

% Keesom, Comm. Phys. Lab. Leiden, Suppl. 24 b, p. 32 (1912).

§ Lennard-Jones, Proc. Boy. Soc. A, vol. cvi, p. 463 (1924). For the case w = 10, m = 9, see

Zwicky, Phys. Zeit. vol. xxn, p. 449 (1921), but the integrals were evaluated only by quadrature.
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The formulae for the first two models can be deduced as special cases.

Thus for Ar-" and no attractive field,

/ -^ \3/{n-l) A^ _ 4\

For the sphere with an attracting field /u,r~*",

B'=l7TaA\-Y. ,, , ^
,, ^vfT^Tl' (687)

•^

{ ,.=!>" ! (r{m— 1} — 3) V^^y J

where ' u ^ -. ^^r -,

,

(688)
(m - 1) ct"*-i' ^

'

so that u is the potential energy of two molecules in contact.

Keesom* has also evaluated B' for molecules which can be represented

as rigid spheres with a permanent electric dipole at their centre. For this

model, he finds

m, 2

where u = —^, (690)
a

so that u is thus the potential energy of two molecules in contact with the

axes of their doublets parallel and at the same time perpendicular to the

line joining their centres.

Another model which has been worked out consists of rigid spheres

with permanent quadrupolesf at their centres J. The appropriate formula

for B' proves to be

B' = §77(73 |l - (1-0667) (^)' + (0-1741) (^j' -
...| , (691)

where u ^ f ^

,

so that u is the potential energy of two molecules in contact with the axes

of the quadrupoles perpendicular to one another and to the line of centres.

Keesom § has also generahzed this case somewhat by supposing that the

atoms are in addition polarized in the presence of each other in a manner
suggested by Debyey.

* Keesom, Proc. Sect. Sci. Amsterdam, vol. xv (1), p. 256 (1912); Comm. Phys.. Lab. Leiden,

Suppl. No. 24 b; Phys. Zeit. vol. xxn, pp. 129, 643 (1921).

t A quadrupole consists of two equal and parallel doublets at a small distance apart pointing

in opposite directions. (The strength of a quadrupole has therefore the dimensions of a charge

multiplied by the square of a length.)

X Keesom, Phys. Zeit., loc. cit.

§ Keesom, Phys. Zeit. vol. xxn, p. 129 (1921).

II
Debye, Phys. Zeit. vol. xxi, p. 178 (1920).
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§ 10-33. Comparison of theory and observation. Equations (682), (686),

(687), (689) and (691) express B' in various ways as a function of the

temperature, ready for comparison with the observed variation of B^/A„,

equation (679). The comparison may be carried out as follows*: Plot on

transparent paper log (B^/A^) as a function of log T, and on squared paper

plot log
\
F (y) \

SbS Si function of log y, the scale of log
\

F (y) \
being the

same as that of log (B^/A^), while the scale of log y is taken to be

(n — l)/{n — m) times that of log T, and to increase in the opposite

direction. This has the effect of making log y + {{n — m)/{n — 1)} log T
invariant for any corresponding values of y and T. The experimental curve

is moved over the theoretical curve (keeping always the two sets of axes

parallel) until the best agreement is obtained between the two. The degree

of closeness between the two curves is a measure of the suitabihty of the

molecular model chosen. If, for instance, values of n and m can be found

for which the log
\
F (y) \

curve is a sufficiently close representation of the

observed curve, then the law Xr~^ — fxr-'^ may be regarded as a suitable

representation of the molecular fields in the gas, at least at those distances

apart for which the intermolecular forces are then important. It is then

only necessary to determine the numerical values of A and /x to complete

the determination of the field. This can be done by noting the parallel

transformation {X, Y) necessary to effect coincidence between the two

curves, so that

logy+l^logT = X, (692)

log BJA,- log F{y)= Y, (693)

from which we have, on substituting the theoretical expressions for y and

F (y) from equations (682) and (684) and using (679),

, A n ~ I ^ n — I ^^ n — 1 ^ ^^rvn , , /^r^^x

, a n — 1 ^ m— 1„ m— 1, ^TTV^ , , ,nr^r-\n — 1 ^^ m — 1 ^^ m— 1, 27TVn

fn

In order to illustrate the difference in the theoretical curves for various

values of n and m, four curves are given in Fig. 14f for the same m and

different values of n, and in Fig. 15 for the same n and different values of

m. The curves have been superimposed (with their axes parallel) so that

the left-hand portions of the curves, corresponding to negative values of

F (y), are as nearly as possible in coincidence. These portions are clustered

* We consider only equation (682). The method can easily be adapted to the other simpler

cases. It is a modification of the one first used by Keesom, loc. cit.

f In this and other figures, the left-hand portion of the curve corresponds to negative values

of F iy); \og\F {y)\ is plotted.



Fig. 14. Theoretical forms of the second virial coefficient for m = 5 and

(1) n= 00, (2) w = 14J, (3) 71 = 11, (4) Ji = 9.
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about the line shown in the figure, and are too near together to be dis-

tinguished in a diagram. (This method of superposition is virtually the

same as making the "Boyle points" coincide, that is, the points for which

B' = F (y) = 0.)

It is to be noted that all the curves show a maximum except that for

n =oo, which corresponds to the rigid sphere, and this curve tends to an

asymptote for infinite y. The physical interpretation of this is that for hard

impenetrable molecules, there is always an "excluded volume" however

high the temperature, whereas for "compressible" molecules (A*—") there

is an ever-growing interpenetration of the molecular fields as the tempera-

ture increases, and since the forces at any given stage are finite, the gas

tends to become more and more hke an ideal gas. Again all the curves

shown cross the log y axis and also have a Boyle point. This is not true,

however, of the curve corresponding to equation (686) (for a repulsive field

alone). For this reason, the latter curve need not be further considered,

as all gases show a reversal in sign of B^jA^ at low temperatures.

The curve for the rigid sphere plus permanent electric dipole, hke the

curves for all models which comprise hard impenetrable shells, does not

possess a maximum. As will be shown presently, the observations of

B^jA^ for hehum and neon do exhibit a maximum and thus discount any

rigid molecular model. It may be regarded as certain that all other gases

would show the same maximum property if the observations could be

carried to a high enough temperature.

§ 10-34. The observed values of the second virial coefficient: forces

between molecules. Although observations on the isothermals of gases

have been accumulating since the classical experiments of Andrews on

carbon dioxide*, a strict comparison of theory and experiment has only

been possible since the elaborate analysis of the observational material

made by Kamerhngh-Onnes"]". His method, or shght modifications of it,

has fortunately been adopted by many subsequent workers, and especially

by Holborn and Otto}, who have recently carried out a series of accurate

observations on the inert gases and have presented their results in a form

comparable with theory. Their experiments cover a wide range of tempera-

ture, as is shown in the following table where their results for several gases

are summarized. The values of B^jA^ , or rather of log (B^/A^), are given after

the conversion of the results to the standard form (673) in the usual units.

Three sets of results for helium are given in adjacent columns, one set due

* For a full account of the earlier literature on equations of state, see Kamerlingh-Onnes and

Keesom, "Die Zustandsgleichung," Encyk. der math. Wiss. vol. v, p. 615 (1912).

f Kamerlingh-Onnes, Comm. Phys. Lab. Leiden, No. 71, or Proc. Sect. Sci. Amsterdam, vol. iv,

p. 125 (1902).

J Holborn and Otto, ZeiLfiir Phys. vol. xxm, p. 77 (1924); vol. xxx, p. 320 (1924); vol. xxxra,

p. 1 (1925); vol. xxxvin, p. 359 (1926).

F 15
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to Kamerlingh-Oimes and the other two to Holborn and Otto, deduced
from their observations by different methods. The results of Kamerlingh-

Table 16.

Tlie observed values of log {B^/A^).

Temp.
°c
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is as nearly perfect as can be hoped for (see Fig. 16). The appropriate values

for the force constants for the first two and the last of these models are

given in Table 17 below. Here, too, are collected the results for other gases

obtained by the same method.

4-8

4-4

4-0

— Theoretical

Q Experimental (Holborns^Otto)

oo " (KamerlinghOnnes)

1-0
I

Logy 2-6
,

L

1-2 1-6 2-0 2^ LogT 2-8

Fig. 16. Observed and theoretical values of the second virial coefficient for helium.

Table 17.

The force constants of gases (A and yc) from the equation of state.

(The figures in brackets are the "diameters" in Angstrom units as defined below.)
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For details, the reader is referred to the original papers*. As a con-

venient method of comparing the A's which are of different orders of

magnitude (10"^" about), a quantity o-„ is calculated from the formula

A \ 1/(^-1)

(696)

This is the distance at which the potential energy of two atoms is eqaal

to an arbitrary amount W . It is easy to see that this quantity becomes

the diameter of the atom when ?^ -^oo.f For purposes of comparison, any
value of W may be chosen. Here it is taken to be \]c, the average kinetic

energy of an atom at 1° K. The numbers thus calculated are included in

Table 17 in brackets, the unit being the Angstrom.

§ 10-35. Gaseous mixtures. The force constants just given apply to the

field between two atoms of the same kind. To extend the work to atoms

of different kinds, it is necessary to consider gaseous mixtures. With the

same vaUdity as the equation of state of a single gas, we have for a mixture

p = kT{{v, + V,) + v,^B,,' + 2v,v,B,^' + v./B^^% (697)

where B,/ = £77
f

°°

r^ 1
1 _ g-£„(r)/fcr| ^^_ (698)

Jo

The observed isothermals are to be expressed as before by

pV = A, + ^, pV = A^ + B^p, (699)

and then by comparison we have

A, = v,kT, (700)

?/ = B^=vo (^uV + 2B,^\^, + B^.,%^), (701)

or ^iia^i^ ^ 2B^^x^X2 + ^223^2' = BvIA- (702)

In (701) Vq refers to the concentration of the mixture under standard

conditions and

B^, = VqB^/, Xy = vjv, x.^ = v^lv, Xi + a;2 = 1 (703)

The dependence of B^/A^ on the relative concentrations has been

studied experimentally by VerschoyleJ at temperatures of 0° and 20° C.

for mixtures of hydrogen and nitrogen, and his values are plotted in

Fig. 12. That figure shows two curves, quadratic in J^i/vg, which are

drawn so that the mean square of the distances of the observed points

from them is a minimum. It is clear that a quadratic fmiction of this kind

* Lennard-Jones, Proc. Roy. Soc. A, vol. cvi, p. 463 (1924); vol. cvn, p. 157 (1925); vol. cxn,

p 214 (1926).

t Cf. ibid. vol. cix, p. 481 (1925).

i Verschoyle, Proc. Hoy. Soc. A, vol. cxi, p. 552 (1926).
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satisfactorily accounts for the facts, and hence we may deduce from the

observations the numerical values of each of the coefficients B^^, B^^ ^^'^

B22 in equation (702).

This process, if continued for a number of temperatures, would deter-

mine the variation of ^n, B^2 ^^^ -^22 with temperature. Each of these

functions could then be dealt with separately, just as the B^jA^ for a single

gas, leading to the evaluation of the four constants of the fields between

like and unUke atoms. Unfortunately, there does not appear to be any
experimental data so extensive as this for any pair of gases. The work of

Verschoyle refers only to two temperatures 0° and 20° C. and is thus

scarcely adequate. Tentative calculations have been carried out on the

basis of this work, but the results cannot be regarded as final*.

A series of experiments has been carried out by Holborn and Ottof on

a mixture of heUum and neon of fixed concentration (72-39 per cent, neon

and 27-61 per cent, helium) as well as on the single gases, over a tempera-

ture range 0° to 400° C. This provides just the minimum information

necessary for the determination of B^^ , B^^. ^^^ -^22 ^^ functions of tempera-

ture and so of the interatomic fields*. An extension of this work to lower

temperatures and to mixtures of other concentrations is desirable. The
numerical results suggest a simple relation between the repulsive force

constants of the fields between like and unHke atoms. It appears that

0-12^"^ = l(V^ + cT.a^'^^), (704)

approximately, so that
1 1 1

\r'-i{K'"'' + K:~\ (705)

This means physically that the closest distance of approach of two unlike

atoms in a direct encounter with a given energy is equal to the mean of

the corresponding distances in the encounter of two pairs of like atoms with

the same energy.

§ 10-41. The viscosity of a gas. Theoretical formulae. Another method
of determining interatomic fields is by a comparison of the observed and
calculated variation of the viscosity of a gas with temperature. The theory

of viscosity hes outside the range of this monograph, but mention must be

made of the results in so far as they provide information on interatomic

forces. Unfortunately, the calculations involv^ed in the theoretical work
are so complicated that progress has been made only in the case of spheri-

cally symmetrical fields, and then only in certain special cases. The original

investigation by MaxwellJ applied only to atoms repelHng as an inverse

* Lennard-Jones and Cook, Proc. Roy. Soc. A, vol. cxv, p. 334 (1927).

t Holborn and Otto, Zeit. filr Phys. vol. xxm, p. 77 (1924).

X Maxwell, Scientific Papers, vol. n, p. 26.
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fifth power of the distance. This has since been generaHzed by Chapman*

and Enskogt to any inverse power law. These authors have also given

rigorous calculations for atoms behaving on collision like rigid elastic

spheres with a weak attractive field surrounding them. They have confirmed

the general form of the formula first given by Sutherland on this assmnption

.

Another law of force for which calculations can be made is a repulsion

according to an inverse n\h power law to which is added an attraction

according to an inverse third powerJ. This special attractive law does not

possess any physical significance and cannot continue to represent the

forces at great distances. Its advantage is purely mathematical. For this

case, the coefficient of viscosity varies with temperature according to the

law
M- 3

,rn ^±^l + S>Sf,To
' '^~^

( 1 \2{n-\) r=\ m(\CK\/^=/^o(y) ;rr, (706)

l + ES.T ""-^

where Tq is a standard temperature and S^ is a function of A3/A„2/(«-i) but

independent of temperature§. If the attractive field is assumed weak (that

is, Ag/A^^/*""!) assumed small), the formula reduces to

n-3

rpn-l _^g

When there is no attractive field, S vanishes and the formula reduces

to that given by Chapman 1|
and Enskogt for a gas in which the atoms repel

according to the inverse nth. power law. This formula in full is

n + 3

where m is the mass of the molecule, and Cg and B^ are numbers, depending

* Chapman, Phil. Trans. A, vol. ccxvi, p. 279 (1915).

f Enskog, Kinetische Theorie der Vorgdnge in massig verdiinnten Gasen, Inaug. Diss. (UiJpsala,

1917).

X Lennard-Jones, Proc. Roy. Soc. A, vol. cvi, p. 441 (1924).

§ Ibid. p. 450, equation (4-21).

II
Chapman, loc. cit., equations (183) and (251); cf. also Phil. Trans. A, vol. ccxi, p. 433 (1912);

Jeans, loc. cit. p. 287; and again Chapman, Memoirs Manchester Lit. and Phil. Soc. vol. LXVi, p. 7

(Appendix), 1922. In the first paper cited it should be noted that A^m^ is used as the force

constant instead of A„ (although the contrary is stated, p. 321), and in the other papers the formulae

should all be multiplied by a factor (2/{n - l})2/(«-i).

^ Enskog, loc. cit.
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only on n, the former lying between the narrow limits 1-000 and 1-016*,

and the latter being given by

5 -iA,(n + 3)/2(n-l)

Bn = ^P 2— (709)

4/., {n)VU —^j
2(«-3)/("-i)

In this expression, h is the usual gas constant, and /g (*^) is a function of

n which has been tabulated^.

In the same notation the more general formula is

f^-xfin^l) n-S
• ^^^^)

The well-known Sutherland formula is obtained from this by letting n

tend to infinity, while A„i/<"~i' tends to a, the molecular diameter. We then

find

f^
a^ T + S'

.(711)

where ^- = t|^,. (712)
48/2 (go)

All the above formulae are, however, restricted to weak attractive

fields. This restriction has recently been removed in one special case J,

where the repulsive field is represented by a rigid sphere and the attractive

field varies as the inverse fifth power of the distance. The analysis is similar

to the theory of diffusion given by Langevin § to account for the mobihties

of ions in gases. In this case it is not possible to give the viscosity as an

exphcit function of temperature. It is found that

5 fkmT\if{x) , ON

where x = 2cj^ (—)^ (714)

and/ (x) is computed for x at small intervals from to 4-0 1|.

§ 10-42. Viscosity of a gas. Experimental. The possibihty of obtaining

information of intermolecular fields from a knowledge of the variation of

the viscosity of gases with temperature has long been recognized, and

much experimental data has been accumulated with this object in view.

A review of the important work of Dorn and his school at Halle has been

given by K. Schmidt^, who has also compared the results with those

* Chapman, loc. cit. (1915), p. 273, Table V.

t Chapman, loc. cit. (1922) and Lennard-Jones, Proc. Roy. Sac. A, vol. cvi, p. 456 (1924).

% Hasse and Cook, Phil. Mag. vol. ni, p. 977 (1927).

§ Langevin, Ann. de Chim. et de Phys. (8), vol. v, p. 245 (1905).

II
In the notation of the paper/ (A) = A/Z, where X is computed in terms of A (Table IV, p. 982)

^ Schmidt, Ann. der Phys. vol. xxx, p. 399 (1909).
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calculated by means of the Sutherland formula (711). In the cases where

the viscosity was measured over only a small range of temperature, the

agreement was fairly good, but in other cases, e.g. argon, where the viscosity

was measured at very low temperatures, the agreement is good only at high

temperatures. Later researches by Kamerhngh-Onnes and Weber* on the

viscosity of hydrogen and hehum at low temperatures showed conclusively

that the Sutherland model was inadequate. This conclusion was confirmed

by Vogelf , who carried out much work on viscosity at low temperatures.

The more extensive observations on gases are summarized in the following

table.

Table 18.
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mining the atomic field of helium. It is satisfactory that methods so

different experimentally, as well as theoretically, should lead to such con-

sistent results.

Equally consistent results are obtained by the two methods for hydrogen

and neon. In the former case, >S = again and the only value of n permitted

by viscosity is w = 11. In no case does the viscosity method determine the

attractive field, and for this reason the alternative method is to be pre-

ferred. It is to be noted from Table 17 that the attractive fields of hehum,

neon and molecular hydrogen are all weak and probably satisfy the con-

ditions for which the formula (710) is valid. This cannot be said of argon

and nitrogen, and it is significant that the values of the repulsive force

constants found from viscosity for these two gases do not show the same

consistency with those obtained from the equation of state, as is shown

by the other gases. It suggests that the theoretical formula (710) is not

strictly applicable to these gases. A rigorous theoretical formula for

viscosity, true for attractive fields of any magnitude, might lead to force

constants different from those now found and nearer to the values obtained

from the equation of state.

This conclusion is supported by the work of Cook and Hasse already

referred to. They compare the formula (713) with the experimental results

by graphical methods similar to those used in the equation of state described

above. The main results are given in Table 19, in which are also included

the corresponding values obtained by the use of the Sutherland formula,

and the results found from the equation of state (rigid sphere model).

Table 19.

Diameters and attractive fields {fxr-°) of certain gases.

{Rigid sphere model.)

Gas
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The combined results for the repulsive force constants of the inert gases

together with those of hydrogen and nitrogen are given in Table 20. The

method of arriving at the results for krypton and xenon will be described

below.
Table 20.

Repulsive force constants and ^'diameters'' of gases {in Angstroms).
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§ 10-5. The forces hetiveen ions. The physical properties of certain soHds

indicate that the main forces of attraction between the constituents are

of an entirely different order from those considered in the preceding para-

graph. The difference in the melting points of rock-salt and crystalhne argon

may be quoted as an example. It may now be regarded as certain that a

sohd, such as rock-salt, consists of an array of closed electronic systems of

the inert gas type, formed by the transfer of the valency electrons of the

metal to the halogen, but differing therefore from inert gas atoms by the

possession of a resultant charge. The forces between these electrostatic

charges provide the main cohesion of the crystal. For a full account of the

electron theory of valency, the reader is referred to the treatises of Kossel*,

Vn= -04 -06 -08 -10

Fig. 17. The "diameters" of gases in Angstrom units, (1) from equation of state,

(2) from viscosity, (3) from crystal data.

Lewisf and SidgwickJ. X-ray analysis reveals to us the design on which

large numbers of crystals are built up, and this information, together with

the postulate of electrostatic forces of cohesion, permits of theoretical

calculation of their physical properties which, when compared with

observation, serves to support or discredit the assumption as to the nature

of the cohesion.

The first attempt to interpret the properties of crystals in terms of

electrostatic forces is due to Haber§. Following him, Lindemann|| tried

* Kossel, Ann. der Phys. vol. XLis, p. 229 (1916); Valenzkrdfte und Rontgenspektrum, 2nd ed.

(Berlin, 1924). t G. N. Lewis, Valence (1916).

X Sidgwick, The Electronic Theory of Valency (1927).

§ Haber, Verh. der Deutsch. Phys. Ges. vol. xrn, p. 1117 (1911).

11
Lindemann, Verh. der Deutsch. Phys. Ges. vol. xiii, p. 1107 (1911).



236 Literatomic Forces [10-5

to deduce relations between the interatomic distances, heats of subhmation,

melting points and infra-red frequencies. The analysis did not lay claim to

rigour, but sufficed to produce formulae dimensionally correct. To improve

the theory it was necessary to find out something about the intrinsic

repulsive fields which keep atoms apart in sohds. Born and Lande* first

tried to do this by building up certain simple static atomic models con-

sistent with Bohr's conception of the atom, and in terms of these tried to

explain interatomic distances and compressibilities of crystals. This and

other subsequent attempts by Bornf, LandeJ, Haber§, Smekal|| and others^

naturally met with only a partial success, and the repulsive forces still

await calculation in terms of electronic structure.

Born was therefore led to represent the repulsive field empirically by

a spherically symmetrical force of the type Ar-", The interatomic distance

of a crystal is then regarded as the equilibrium position of ions under the

joint influence of electrostatic and intrinsic repulsive fields. The crystals

discussed are simplified by being regarded as devoid of heat motion.

As we saw in § 4-9, the mathematical function which is of paramount

importance is the potential energy of a unit cell cj), which we may here

regard as made up of two parts </>*''' and ^*"', the respective contributions

of the electrostatic and intrinsic repulsive fields,

<^ = ^('') + (/.("). (715)

For a crystal like rock-salt, which consists of two interpenetrating face-

centred lattices, only one parameter a (the closest distance between atoms)

appears in (;6<^> and ^''^^ and the equiUbrium value is determined by the

equation .^^ ,,

Assuming the value of a to be known, either from density measurements

or X-ray measurements, this equation can be used to determine A (the

repulsive force constant) in terms of known quantities. There remains then

only one unknown n. This Born determined from measurements of the com-

pressibility K, equations (244), (245), or

K dV dV^' ^ ^

* Born and Lande, Berl. Ber. p. 1048 (1918).

t Born, Verh. der Deutsch. Phys. Ges. vol. xx, p. 230 (1918).

$ Lande, Verh. der Deutsch. Phys. Ges. vol. xxi, pp. 2, 644, 653 (1919); Zeit. fur Phys. vol. I,

p. 191 (1920); vol. ii, pp. 83, 87, 380 (1920).

§ Haber, Verh. der Deutsch. Phys. Ges. vol. xxi, p. 750 (1919).

i!
Smekal, Zeit. fur Phys. vol. i, p. 309 (1920).

Tj Rella, Zeit. fur Phys. vol. iii, p. 157 (1920); Schwendenwein, Zeit. fur Phys. vol. iv, p. 73

(1921).
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Writing V in terms of the interatomic distance a, we thus find (for the

rock-salt type)
1 ^ i /(;2^x

~K~^Qa\dr^Jr=a
^^^^^

This equation suffices to determine n. In this way Born* obtained the

numerical values given in Table 21.

Table 21.

Index of repulsive field {Born).
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refer to the average distance of the outer electronic orbits from the nucleus,

these distances depending on the effective nuclear charge. Now the forces

between these electronic systems will clearly depend on the size of the

outer orbits ; and so, when the forces are represented by hard impenetrable

shells, as they often are in applications of the kinetic theory, the dimensions

of the shell may be taken to be directly proportional to the scale of the

outer orbits. When the repulsive field is represented by the law A^r-", the

function
1

Jn) ^
1) w_

71 — 1

.(719)

replaces the kinetic theory diameter of the atom
(
W being any convenient

energy value). It therefore seems natural to suppose that this function is

proportional to the size of the outer orbits.

Table 22.

The relative sizes of ions and atoms (Wasastjerna)*

.

p
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natural generalization to take, especially as evidence in favour of it has

already been noted. With this assumption we have

1 J^ 1

n-l
+ Ki )j .(725)

a result which is again independent of W.

A typical set of force constants calculated in this way is given in the

next table.

Table 23.

The repulsive force constants of ions {forces in dynes).

n
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of pattern after a length a). The method consists in replacing the electric

density by a Fourier expansion, and deducing a corresponding Fovu-ier ex-

pansion for the potential at a point outside it. (The potential must have the

same periodicity as the electric density.) This potential expansion must

satisfy Laplace's equation at any point and Gauss' theorem near the line

charge. These conditions, together with the fact that the potential must

vanish at infinity, determine all the constants in the expression for the

potential. For a series of discrete charges ^^^{k =^ \,2, ... s) on the unit

strip at points x^, which on the whole are electrically neutral, the potential

at a point in space distant p from the line proves to be

27rm

<j>{x,p)="-^Y. S.,J^o -^ e
"^

, (729)

where K^ is the function tabulated by Jahnke andEmde* as JtV^o'^' {^^)-

From the potential of a line charge, that of a plane array of charges and

finally that of a space lattice can be deduced.

Improved methods have, however, been given by Ewaldf for dealing

with three-dimensional lattices. In this case the electric density has a

threefold periodicity with respect to the vectors a^ , ag and ag . If ^i , ^2

and p^ be the perpendiculars between consecutive planes containing the

pairs of vectors {a.^, a.^), (ag, a^) and (a^, a^), then the density can be

expressed in terms of a threefold Fourier expansion

p = 8p^e'^^'^\ (730)
I

where r, as usual, is the vector {x, y, z) and

q^=277f^'-f^-^ + ^-^), (731)

= 271 (Zibi + Z.A + ^bg). (732)

In this equation, i, j and k are unit vectors in the directions of i\ , ^^(o and

^3 , and bi , bg ^i^cl bg are vectors in the same directions with magnitudes

1/jPi' l^and 1/^3.

The potential </> must have the same periodicity and must be expressible

in a series similar to p, that is,

(/. = ,9cje^(i'-r). (733)
I

Poisson's equation determines Cj in terms of pi, giving

* Jahnke and Emde, Funktionentafeln, p. 135 (Leipzig, 1909). See also Watson, BesseVs

Functions, p. 78, and Table II, p. 698.

t Ewald, Ann. der Phys. vol. LXiv, p. 253 (1921); see also Born, Atomtheorie des fesfen Zustandes,

2nded. p. 723 (1923).
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If the system is electrically neutral and consists of discrete charges ^y.

{k= \,2, ... s) and positions r^, then

[
pe-i(a'.r)^^,=

j
iSf>j,e^'(«''-«'-r)fZv = /DjA, (735)

J \ J \i'

where the integral is taken over a basic cell of volume A. We then get

Pi=W pe-^(i^-^) dv = ^ 2f^e-^(i'-^i) (736)

We thus find cb = ^ ^'S , ^f,„
e»(i^ •'-'*), (737)

A;

477 o-i (a' • r)

Where
'^ ^^^ = A f fW ^^^^^

The solution of the problem depends on the evaluation of this summation
and therefore of its transformation into a more rapidly converging form.

Since
1 1

e-a,+ e-Uli, (739)

we can write

^^fj^S'
I ,,,
— + >S'e^(«^-r)-fla'i^cZ^ (740)477^

i
I

q^ |2 Jo z

^

The second integral can be transformed in terms of Gauss' error function

G{x) =1- F {x) = -^r e-'^'da, (741)

which is a known tabulated function; in fact, it can be shown that

/ 1 r' — r
j

\

,
477 ^, e'(l'-^)-''l«'l^ ^^V 27^* / 47777 ,„,,,ip=-j^S' —i~r\^~ + S 1, 1

r-^ 742
A ; |q«|2 I

|r«-r| A ^ '

By a suitable choice of 77 the function ip is thus divided into two parts, each

of which is readily calculable. In practice one or two different values of

7] are chosen, and from the resulting values of iJj the actual value can be

inferred to a high degree of accuracy.

In calculating the potential at a lattice point k, the term ej{r — r;,) must
be omitted from the summation, and so we have

</>, = SV^ (r. - r,,) + e^rfj* (0), (743)
k'

where </<* (0) = Lt U (r) - -I, (744)
r = I

r}

F 16
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and this can be shown to be

(\
^'

,-r,IO?|2
V 2'J

In this way Ewald has calculated the potential energy of cubic crystals

Uke NaCl and CaFg.

Modifications of the method have since been made by Bornf and

EmerslebenJ which considerably simplify the calculation of the potential

energy of any crystal of the cubic type. The unit cell of the crystal is

divided by three systems of equidistant planes parallel to the sides of the

cell so that every charge e^ is at one of these sub-lattice points. For

simplicity we suppose the sub-cell to be of unit volume (A = n^), and we

suppose the vectors of each sub-cell to be - a^ , - ag , - ag . The periodicity
Th ih ih

of the charges throughout space is then expressed by

where e^ denotes the charge at the point ki^ajn, ^2^2/*^? ^3^3/^. The charge

density p, consisting as it does of discrete charges arranged at the sub-

lattice points, is expressible as a finite Fourier expansion

p = ^*pje^(4'.r)^ (746)
I

where >S* denotes a finite summation over all integral values of I from

to n — 1 (or 1 to n), and

277 (
'^^ +rl _ 0_ I
hi

,
ki

,

^3^

There are n^ constants pi to determine, but since p is known at n^ points,

there are just enough conditions to determine them. We have, in fact,

'''
A;

= ls.,r-?"^ (747)
''' k

where k, like I, is an integer and

(Ik) = l^ky + kk^ + ^3^3- (748)

We can therefore write

e„ = S*pi e ^

I

t Born, Zeit.fur Phys. vol. vn, p. 124 (1921).

X Emersleben, Phys. Zeit. vol. xxiv, pp. 73 and 97 (1923).
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and substituting this expansion for e^ in (743), we find

<|>, = S*p^e'' n^j, (749)

where ny = ^* (0) + S'e '' ^ (r,). (750)

The function 11 {l/n) , thus defined in terms of Ewald's functions, deter-

mines the potential at any sub-lattice point k. It is clear that

n (2 + 1) = n (z), n (- z) = n (z), (751)

and so when 11 (l/n) is plotted for values of I between the hmits and
n — 1 (0 < Zi, ^2, ?3 <'^ — 1), the main problem in the evaluation of

(f)^.
is

solved. Emersleben has given a table of values for IT (l/n) for all the sub-

lattice points of a cubic ceU for which n = 12.

The potential energy of a whole cell is easily deduced, since

cl>,^^) = W,cf>,. (752)
A: =

When the smallest coordinate distance between the ions is a, the potential

energy can be calculated in the following way : the potential energy is

a summation over a cube of side na, I being a vector {l^a, l^a, l^a), f{ being

connected with the distribution of charges (e^) in the cell by the relations

^(^)^S..cos2.(^-),

£(,^)
= 2.,sta2„(|). (764,

Emersleben has apphed his work to the calculation of ^0 for several

types of crystals. The main results are summarized in the amiexed table.

We propose to write, for brevity,

g = .S*6n(i), (755)

2

so that </,^W=^g, (756)
a

with a equal to the smallest coordinate distance between two ions. The
mutual potential energy of N cells is then

N^
0(<') = ii^</>o(^)=itl^6. (757)

16-2
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Table 24.

Values of g for various types of crystal.

[10-61

NaCl
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For a body-centred cubic [k = 1, 2),

Ki - 1) ^o'^"-^ K2 - 1) ^o'^--''
^

^

where r,, is the length of the edge of the unit cube and

b: = s{{i, + D' + ik + ir + ih + ir}-^' (ves)

For a body-centred cubic crystal consisting of ions of only one kind so that

'^ii — ^^12 J %i = "^12) we have

^ {n - l)a"-i' ^ '

with B, = (^^Ja, + (^^Jb; ^ {^JiA + 5/), (765)

where we have used a to denote the closest distance between atoms.

For a face-centred cubic,

</,(")= ^^;-i
(766)^

(^ — 1) a"~^

where C, = (-)'.§' {{l, + k)^ + (^3 + h? + (^1 + hY)'^', (767)

and Tq is the smallest coordinate distance between atoms, and a the closest

distance between atoms. For two interpenetrating face-centred cubics, as

in NaCl, we have

(^11- l)a"u-i (^12- 1) a"i2-i (7122 - l)a"22-i' ^'" -*

with ^/= iS {h^ + h^ + hT^\ (769)

odd

A;^ 8' (l^^ + l^^ + l^^)-i% (770)
ll + h + h

even

the summations being over all values of l^ , l^ and l^ , for which l-^-ir 1^ + I3

are respectively odd and even. Clearly A^ = A/ + A/.
The functions A/, AJ', Bg and C^ have been evaluated for integral

values from s = 4 to 5 = 30. A few values are given in Table 25.

With the help of this table it has been shown that atoms, whose field

can be represented by the law Ar-" — jj.r-'^, will set in the form of a face-

centred cubic lattice in preference to a body-centred, and in a body-

centred in preference to a simple cubic*.

* Lennard-Jones and Ingham, loc. cit. p. 641.
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Table 25.

Potential constants for cubic crystals.

s



10-7] GalGulation of Interatomic Distances

Table 26.

Calculated and observed interatomic distances in certain crystals.

247

n
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These laws of force are held to be true also of ions of the same electronic

structure. Those of ions of different structure are obtained from the above

by interpolation, leading to the following scheme.

Table 27.

The laws of force of atoms and ions {the values of n in Ar-").
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be that determined by observation. The formula corresponding to (771)

is deduced from equations (756) and (762) to be

2n-l
(4-070) e^a^ia-a = 2Ai 3(n-l)/2^w-l A.

.(772)

the appropriate value of g being 2-035 (Table 24).

Using the force constants and indices given in Tables 27 and 28, we find

the following values for the crystal constants

:

Table 29.

Calculated and observed interatomic distances in crystals*.

a. 108
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compressibility so obtained are a direct consequence of the force constants

given in Table 28.

Table 30.

Calculated and observed compressibilities of crystals.

K.1012
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The following values have been calculated

:

NaF NaCl KF KCl MgO MgS CaO CaS

Cn. 10-11 13.60 3-60 6-71 2-37 64-8 16-11 42-70 13-02

The only two observations with which they can be compared are those

of NaCl and KCl by Voigt*, who finds

NaCl Cn= 4-68x1011,

KCl Cii = 3-68 X 1011.

The reverse process of obtaining information about interatomic forces

from the elastic constants seems promising if the latter could be measured

with sufficient accuracy for a number of crystals, particularly at low tem-

peratures.

§ 10-84. Crystal energies. A further apphcation of the force constants

can be made to calculate the work required to separate to infinite dis-

persion all the ions contained in one gram molecule of the salt. In terms

of ^, it is given by
U = — lN(f> in mechanical units,

N= —
—J cf) in thermal units.

For the face-centred cubic, we thus find

N
(
(3-495) e^Z^ Kl^"n^,-1 K2^"n,^-1 2K2^'n,,-x ]

2j\ a (Till - 1) a"ii-i (^22 - 1) «"22"^ (^12 - 1) a"i2-ij '

(776)

and for the body-centred cubic

N i;{2-0S5)e^z^ Aii^.„_i A22^.,,_i

J \ a 2 (rill - 1) a«ii-i 2 {71^2 - 1) ^"^a-i

A12 / 2-
fj/,5„_i-^„_i)| (777)

(7ii2- 1) a"i2-U3("-i)/2

The calculated values, given in Table 31, may be compared with the values

deduced from observed heats of formation and other chemical quantities

by a method due to Bornf described in § 10-9.

The values of the surface energy and edge energy of several crystals

have also been calculated:]:, thus providing quantitative information of

crystal properties which have not been observed. The surface energy is

defined as being the mutual potential energy of the parts of a crystal

* Voigt, Lehrbuch der Kristallphysik, §373, p. 744; Born, Atomtheorie des festen Zustandes,

p. 739.

t Born, Verh. des Deutsch. Phys. Oes. vol. xxi, p. 679 (1919).

X Lennard-Jones and Taylor, Proc. Boy. Soc. A, vol. cix, p. 495 (1925).
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separated by a plane, divided by twice the area of the bounding plane.

Thus

A few results for the (100) plane are appended.

Table 31.

Calculated and observed crystal energies in 1000 calories

(kilo-calories) per gram molecule.
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crystal constant for CaClg can be calculated, but this has not yet been

observed.

Another class of crystals which has been considered is the series of

carbonate crystals of the calcite type. These crystals have an interesting

feature in that they all possess a rhombohedral angle of approximately the

same magnitude. That of calcite is 101° 55', while the rest range between

this value and 103° 28', the value for ZnCOg. Bragg and Chapman* first

proposed a theoretical explanation of this feature in terms of electrostatic

forces, a special device being adopted to eliminate the intrinsic repulsive

forces. This amounted to a neglect of the repulsive fields between the

ions of neighbouring CO3 groups, an assumption which proves on further

examination to be unjustified. If, however, the information about repulsive

fields given earher in this chapter is used, the special assumption men-

tioned above is unnecessary. The potential energy of the crystal can be

calculated for aU possible configurations (subject to the necessary conditions

of symmetry), and its minimum determines the most stable arrangement.

Considerations such as these lead to values for the size and shape of the

rhombohedral cells of MgCOg and CaCOg in close agreement with observa-

tion, provided the size of the CO3 group is regarded as an adjustable para-

meter. The indication is that the force centres of the and C ions in CO3

are 1-08 A. apartf.

Topping and ChapmanJ have discussed NaNOg, a crystal of the same

structure as calcite, in the same way, and have shown that the size and

shape of the unit ceU are accounted for, provided the force centres of the

and N ions in NO3" are 0-96 A. apart.

The results of these investigations are given in the following table,

which also includes a theoretical estimate of the energy required to separate

to infinite dispersion the metal ions and the CO3 or NO3 groups, a quantity

not yet determined by any other method.

Table 33.

Calculated and observed values of crystal parameters.

(Distance C to O in CO3 = 1-08 A.; and N to O in NO3 = 0-96 A.)
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In a later investigation of the other carbonates, ZnCOg, FeCOg, MnCOg
and CdCOg, methods have been given of determining the forces between
the divalent positive ions of Zn, Fe, Mn and Cd and the divalent negative
ion of O*.

A crystal of a different type which can be considered theoretically is

crystalhne argon, in which the forces of attraction are not of the Coulomb
type but are of the van der Waals type. Recent observations! have
shown that this is a face-centred cubic lattice, in which the shortest dis-

tance between atomic centres is 3-84 A. For a law of force Ar~" — ^u,?—™,

the potential of one atom of a face-centred cubic lattice due to the rest is

^ (7i-l)a"-i (m-l)a"»-i'

where a is the closest distance between atoms and C^ has been given
above. The theoretical value of a is therefore

The work described above has suggested that argon atoms repel according

to an inverse 9th power law. Corresponding to a repulsion of this type, we
found (§ 10-3 above) an attraction ^r-^ with ^i = 1-625 .

10-*^. For this

model the value a = 4-21 A. is obtained, a result which is 10 per cent,

greater than the observed value. Various suggestions can be made to

accoimt for this discrepancy J. It is hkely that a repulsive force of the type
considered can only represent actual fields over a smaU range, so that while

\r-^ is a sufficiently good representation of the repulsive field of an argon-

hke core at distances of about 3 A.( as in KCl, CaS), at greater distances

(such as 3-84 A. in crystalhne argon) a different law of force is necessary.

It appears that if n is taken to be 15 (and m = 5) the calculated value of

a is 3-86 A., in excellent agreement with observation. Moreover, the calcu-

lated heat of evaporation for the same law of force is 1772 cals., while the

value deduced from observation is about 1835 cals.§, which is as good an
agreement as can be hoped for from integral values of n and m.

§ 10-9. Crystal energies. The Born cycle. There is no direct method of

measuring the crystal energies calculated in the previous paragraph, but
Born] I

has shown how they can be related to observable thermo-chemical

* Lennard-Jones and Dent, Proc. Boy. Soc. A, vol. cxin, p. 690 (1927). Cf. also Born and
BoUnow, Naturwiss. vol. xm, p. 559 (1925), Bolkiow, Zeit. fur Phys. vol. xxxm, p. 741

(1925), Lennard-Jones and Dent, Phil. Mag. vol. ni, p. 1204 (1927), where another group of

crystals of the same type (the rutile group) has been considered.

t Simon und Simson, Zeit. fur Phys. vol. xxi, p. 168 (1924); vol. xxv, p. 160 (1924).

X Lennard-Jones and Taylor, Proc. Roy. Soc. A, vol. cix, p. 506 (1925).

§ F. Born, Ann. der Phys. vol. LXix, p. 473 (1922).

II
Born, Verh. der Deutsch. Phys. Ges. vol. xxi, pp. 13, 679 (1919).



256 Interatomic Forces [10-9

quantities. The relations between these quantities are best expressed by

a diagram such as that of Fig. 18, first given by Haber*.

In this figure [if] denotes one gram atom of sohd metal, {X^) one gram

molecule of gaseous halogen. Beginning with a state 1 in which there is

[if] + I (X2), we pass'successively to states 2, 3 and 4, in which there is

1 gram molecule of the salt, 1 gram atom each of the ionized metalhc

vapour and the ionic halogen X~, and then 1 gram atom each of metallic

vapour and atomic halogen respectively. From this state we pass back to

the original state, so that on the whole the change of energy is zero. To

this simple cycle (the Born cycle) two other subsidiary cycles have been

added, that indicated by 5 by Haberj and that indicated by 6 by FajansJ.

(m)+(x)
-Ex

(M*)+(X-)

Fig. 18. The Bfivn cycle.

Heat is given out in the processes indicated by the direction of the arrow

in the figure and is then regarded (conventionally) as positive. In the first

transformation Q denotes the heat of formation of the salt, in the second

E denotes the crystal energy as already considered above. /^^ is the work

of ionization of 1 gram atom of metal, and E^ is the heat of formation of

an halogen ion from the atom and electron (otherwise, the electron affinity).

Sjf^j^ is the heat of evaporation of 1 gram atom of metal and D^ the heat of

dissociation of the diatomic halogen. We have then the relation

E = Q+ {Im + S,,) + (A^ - E^), (778)

and all the quantities on the right have been measured. These are sum-

marized in the annexed table. The values of Q are given by Landolt-

Bornstein, those of / are known from the atomic spectra. /S^ is determined

by direct measurement or by observing the vapour-pressure as a function

of temperature and using (437) or (438). The heats of dissociation are deter-

mined by the use of (449) or (450) and observed equihbria§. Finally,

* Haber, Verh. der Deutsch. Phys. Ges. vol. xxi, p. 750 (1919); cf. also Fajans, ibid. pp. 539, 549,

709, 714 (1919). t Haber, loc. cit.

% Fajans, loc. cit. § See Table 11 for sources for this information.



10-9] The Born Cycle 257

Angerer and Miillerf, following an idea of Franck'sJ, have observed in the

halogen gases at high temperature a continuous spectrum with a sharp

hmit on the long-wave side, which they attribute to X~, and have thus

determined E^ . The values of E determined by this indirect process are

to be comjDared with the calculated values given in Table 31 above. The
agreement is surprisingly good.

Table 34.

Crystal energies in kilo-cals. per gram molecule (observed).
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hydration of one ion, K+, and so is able to infer the absolute values of the

rest of the series, A few such values are given in Table 35, though they

are only to be regarded as approximate. The values for the kations are

uncertain to an extent of 3 or 4 per cent. ; those for the anions give the

order of magnitude only, as they may be in error by as much as 10,000

calories.

Table 35.

Heats of hydration of ions (Fajans).

(1000 calories per gram atom.)

Na+
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series of ions on the basis of the experimental data and the assumption

that the ionic refractivity of the hydrogen ion, even in aqueous solution, is

zero. Fajans and Joos* have cast doubts on this assumption, as they beheve

that the hydrogen ion in an aqueous solution exists in the form of H3O+.

They have therefore proposed another method of estimating the ionic

refractivities from the experimental results of Heydweiler, that of Na+
being fixed as 0-50 for the determination of the rest from the molecular

refractivities. The method by which this figure is derived, however, leaves

much to be desired and it is doubtful whether the results can be regarded

as more rehable than those of Wasastjerna. The two sets of results are

reproduced in Table 36.

Table 36.

Ionic refractivities.
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the theoretical values with the constants computed by A. Fowler or by

Paschen and Gotze, an evaluation of a is possible. The corresponding

values of a for the halogen ions are then obtained from the molecular

refractivities of the alkah halogen salts. The values of a for the inert gases

are calculated from the Lorentz-Lorenz formula already given, but the

limiting value of the refractive index for infinitely long wave lengths is

calculated by extrapolation from the dispersion formula

a
nx = n + ^^.

The final results are given in Table 37.

Table 37.

The polarizabilities of atoms and ions {Born and Heisenberg).

a 10-^1
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the observations can in many cases be explained on the supposition that a

molecule possesses a permanent electric moment, which tends to set in the

direction of an applied field, and that in addition an induced dipole is set

up by the presence of the field. The theoretical formula for the dielectric

constant e is then

- NAa+^\, (780)

where a is the polarizabiUty as defined above and ^ is proportional to the

square of the electric moment /x. Both a and ^ (and therefore /x) can be

deduced from the observations. For instance, for ammonia*

^^N,a= 5-45, ^iV^oi8= 15250,

whence a = 2-24 .
10"^^ and /x = 1-56 .

10-^^. The values of [x are given in

Chapter xii, so that all that need be pointed out here is that the values of

a are available by the same method.

§ 10-92. Surface forces. In earlier paragraphs apphcations of inter-

atomic forces have been made to the calculation of the internal properties

of solids. It is equally important that the conditions at a surface should

be considered, especially as the action of surfaces is now known to be of

great importance in many chemical phenomena. One point of interest is

the order of magnitude and extent of the forces outside a crystal, as this

has a bearing on theories of adsorption and adhesion. For this purpose

the forces outside the (100) plane of a crystal of the rock-salt type have

been considered! with the hope that the results might indicate the surface

forces in other more comphcated cases. This problem is interesting in that

it provides an illustration of the forces due to primary polarization as well

as of the other forces already considered.

The electrostatic potential of the semi-infinite array of the net positive

and negative charges of the ions of valency ^; in a crystal at a point out-

side a (100) plane and at a distance of z from it may be shown to be

2?;e ^, (- l)^<^+"'> /Ix my I -\- m\ e ^

d> =- S -Tjjf ^ cos TT — H ^ i,

summed over all odd values of I andm positive and negative ; a is the distance

between consecutive planes. The axes of x and y are taken to coincide with

* Debye, Handbuch der Badiologie, vol. vi, p. 619 (1925). The more recent experiments

quoted in Chap, xii, Table 40, give somewhat smaller values of fi.

t Lennard-Jones and Dent, Trans. Faraday Soc. vol. xxiv, p. 92 (1928). The electrostatic

forces have also been considered independently by Bliih and Stark (Zeit. fiir Phys. vol. xon,

p. 575 (1927)), though not in the same detail.
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the cubic axes. The electrostatic force on a unit charge in a direction normal

to the surface is easily deduced to be

(781)

For a fixed value of z, this is a maximum above the lattice points of the

crystal (being alternately positive and negative) and is zero at all points

midway between them.

Numerical calculations of the value of this force outside KCl are given

in Table 37 a below. It will be observed that the force is reduced by 1/100

by increasing zja from 1 to 2, that is, increasing z from 3-14 to 6-28 A.

These forces apply, of course, only to a charged ion in the neighbour-

hood of the crystal surface. In the case of a neutral atom, forces of attrac-

tion arise from primary and secondary polarization. The former may be

calculated in terms of the coefficient of polarizabihty a. The potential

energy of the induced dipole at the centre of the atom in an electric field

F is |a-F^, or, using the potential function </> already given above,

The force on the dipole perpendicular to the crystal face is then given by

^
dz \dx dxdz dydydz dz dz^

_ 64V27r3e^a e"^"^^"^/"-
^5 (1 + Q-,J2nyJ V^' y)

(very nearly), where/ {x, y) represents the variation with respect to x and

y. The function / {x, y) is equal to unity over the lattice points and is equal

to zero at such points as a; = \a, y = \a. The variation above a lattice point

is seen from Table 37 a, where the example of argon near the surface of KCl
is considered.

The van der Waals attraction between the electronic systems of the

ions in the crystal and an atom outside it cannot be calculated exactly,

because such attractive forces are not yet known for ions. We can, however,

estimate the order of magnitude by supposing the neon-like ions to attract

like neon, and the argon-hke ions to attract like argon. For argon outside

KCl we then have a force normal to the surface which can be put in the

form

H.= '^-^', (782)

if /xr-« is the attractive force between the argon atom and any ion in the
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crystal. In this expression, /i<*' (2) is a certain summation over all the ions

of the crystal, viz.

the summation extending over all values of I and m, and all positive values

of n. These functions have been evaluated for 5 = 5, s = 6 and a series of

values of z. The numerical values oi H (z) for argon and KCl are given in

Table 37 a.

Table 37 a.

Cohesive forces outside KCl.

(ttKC 3-14 A.)

z/a



CHAPTER XI

APPLICATIONS OF THE EQUILIBRIUM THEORY TO THERMIONICS

§ 11-1. Thermionic 'phenomena. The phenomena of the emission of

electricity from hot bodies are well known*. We cannot enter here into

experimental details. It will be sufficient to record that a great range of

phenomena lend practical certainty to the view that an incandescent body

of metal emits electrons and to a less extent positive ions at a rate

depending primarily on its temperature. The phenomena actually observed

depend in general on these rates of emission, for the system studied is not

in an equihbrium state. But since there must be an equilibrium state for

a similar isolated system, we are led by these phenomena to believe that,

when equilibrium is set up between the metal and its surroundings (gas or

vacuum), the metal is in equilibrium with a vapour of electrons and

perhaps positive ions as well. This is exactly analogous to the equilibrium

between a crystal and its own vapour, or rather between a crystal and a

vapour of one of its own constituents, and can at once be treated by the

formulae of § 5-9 if the long-range effects of the electrical charges are

neglected. These will be included later with the help of the methods of § 8-7.

We propose therefore to develop in some detail the theory of electron

atmospheres in equilibrium with bodies which can emit (and absorb)

electrons. We shall be unable in general to make direct comparisons of the

equilibrium theory with experiments on the equihbrium state. But the

simplest additional considerations of reversible mechanisms of interaction

between the vapour and the crystal will enable us to draw some conclusions

as to rates of emission and so to compare the theory with experiment,

without exceeding the proposed field of this monograph,

§ 11-2. The elementary theory of electron atmospheres. We will suppose

for simplicity in this section that the long-range effects of the electronic

charges in the vapour and the solid (space charge effects) can be neglected,

so that the solid and the evaporated electrons can be treated as independent

systems. Then by (382) _
N = g{^)lK{^), (783)

where N is the average number of electrons in the vapour. We have now
to examine the structure of these partition functions for the electron in

the vapour and in the solid.

* For a general account see 0. W. Richardson, The Emission of Electricity from Hot Bodies,

2nd ed. (1921). The reader should also refer to the work of Langmuir, some of whose more

important papers on Thermionics are:

—

Phys. Rev. vol. ii, p. 450 (1913), vol. xxi, p. 419 (1923),

vol. XXII, p. 347 (1923) (with Miss Blodgett), vol. xxviii, p. 727 (1926) (with Mott-Smith).
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If the electron in the vapour were a structureless mass-point we should

have

_ {27rmkTf V
9o (^) = -ji

•

It is, however, now abundantly clear* that this assumption of absence of

structure would be wrong. The electron has an axis of spin, which makes
it an elementary magnet with two possible orientations in a magnetic field.

In accordance with our general principles it therefore has a weight 2, so

that actually

..(*) = 2 <?!i!f:iii (784)

This form, however, is based on an energy zero which is the energy of an

electron at rest in field-free space at an infinite distance from all other

matter. It is often more convenient, however, as in § 5-7, to define the

zero of energy relative to the interior of the sohd at the absolute zero of

temperature, for it is only if k (9-) tends to a definite hmit k (0) as ^ ^
that K {^) has its simplest thermodynamic form. Relative to the zero used

for (784) the most tightly bound electrons in the metal will have an energy

—
X- Thus X 'is by definition the heat of evaporation per electron at the absolute

zero of temperature, and

^(^) = ^o(^)^^=2e-x/^-i?!^^^^|^ (785)

With the same conventional energy zero, by (448),

, K (S-) (^ clT [T'

where a (= dC/dn) is the increase of specific heat of the metal for the

addition of one electron. It follows that

^__N^ 2 {2nmkT)i (jc, [^ dT'

{-w-Cw-^Jr"'"]- <'''>
V k{0) p

By definition, a is here the increase of specific heat of the metal for the

addition of one electron. Kelvin's definition of the specific heat of electricity,

which we will write o-^ , is such that the heat absorbed reversibly when unit

charge of electricity flows in a conductor of uniform material from a point

of temperature T to temperature T + BT is ot^T. This is not necessarily

strictly conaparable to our a, for the internal electronic state of a metal

conductor carrying a steady current is not necessarily exactly the same as

that of the same metal at the same temperature in thermodynamic equi-

Hbrium, the conditions postulated in the definition of af. At the same time,

* The evidence for this arising from properties of atomic spectra will be summarized in

Chapter xiv.

t This possibility is mentioned by Richardson, loc. cit., and analysed in detail by Schottky,

Zeit.fur Pliys. vol. xxxiv, p. 645 (1925).
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admitting the possibility, there is no a priori reason to expect that any

such change of electronic state between small currents and zero current

will exist, or, if it exists, have any appreciable effect on the thermodynamic

properties of the metal. We shall ignore the possibihty of this distinction

in the rest of this discussion. We then have

a = — eo-j, (788)

^jiere — e is the charge on the electron and e its numerical value*.

It is customary to a first approximation to neglect a altogether. This is

thermodynamically equivalent to assuming that the change of entropy on

addition of an electron to the metal may be neglected. If (788) is correct

we can justify this omission by using observed values of a^ The usual

values are 10^ ergs per electromagnetic unit of chargej. Therefore cr/k is

about yL- At lower temperatures we may be certain on general grounds that

the relative importance of o- will diminish. This is confirmed by the new

theory expounded in Chapter xxi. Since a/k is fairly small compared with

f it is legitimate to neglect ct in (787) while retaining the T^ factor. The

formula then takes the formJ

Inserting numerical values

2 (WT).^.,,,,_
K (0) h^

V = 2-43 X 1015 —J-- Ti e-^l^^. (790)
K (0)

The only novel feature in these formulae is the extra factor 2/k (0), the 2

being the orientational weight of the free electron.

We have so far proceeded quite formally and made no attempt to

evaluate k (0-) or even k (0). It has only recently become possible, thanks

to the work of Sommerfeld§, to make such a calculation of k (5-), or | (see

(380)), on a satisfactory basis. The calculations involve the so-called new

statistics of Fermi-Dirac and wiU therefore be given in Chapter xxi. It

appears to be quite certain that /c (0) == 1. We shall use this result here

and postpone discussion of other details, contenting ourselves otherwise

with formal developments.

It is not possible to observe such densities or the corresponding pres-

sures, p^ (= vkT). The quantity observed is always a current—the maximum

* In comparing these formulae with Richardson, loc. cit., note that he uses e for the electron's

charge, so that his e is negative. It should also be recorded that the new theory of Sommerfeld

makes and evaluates a distinction such as that mentioned in the text.

f A table is given by Richardson, Electron theory of matter, p. 452 (1916 ed.). See also

Chapter xxi.

X These formulae have been given substantially in this form (or with a included) by a number

of authors: e.g. 0. W. Richardson, loc. cit., and Phys. Rev. vol. xxni, p. 153 (1924); Dushman,

ibid. vol. XXI, p. 623 (1923); H. A. Wilson, ibid. vol. xxiv, p. 38 (1924); Schottky, loc. cit., with

other references.

§ Sommerfeld, Naturwiss. p. 825 (1927).
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current that can be drawn from an incandescent wire per square centi-

metre per second, by an external voltage sufficiently large to sweep away
the electrons as fast as they are emitted, but not large enough to produce

marked potential gradients at the surface. Such a saturation current mea-

sures the rate of emission of electrons by the hot soHd. About such rates

of emission neither thermodynamics nor the equiUbrium theory of statistical

mechanics have anything to say. We must appeal to some mechanism,

which, however, and here the equihbrium theory comes in, must be such

as to be consistent with the equihbrium state, when allowed to act in a

normal manner. It must be true, for example, for the equihbrium state

that the rates of emission and return of electrons are equal. The assumption

is then made that, when the external voltage is apphed and the saturation

current measured, the rate of emission of electrons is unaltered. Since this

is determined by the internal state of a conductor and the apphed voltages

are not large this assumption may be accepted*.

Now, though we cannot calculate the rate of emission in any elementary

way, we can calculate very simply the rate of return of electrons in the

equihbrium state in terms of known quantities and a reflection coefficient

r. For the electrons will have the usual equihbrium (Maxwellian) dis-

tribution in velocity and space, and therefore by (99) thenumber of electrons

in a volume dV with velocity between c and c + dc, directed within a solid

angle doj, is

^^^ firTTr)' c^e—^«^/2fcr dcdoi.

The number of electrons which strike unit area in unit time is therefore

obtained by taking

doj = sin 9d9d(f), dV = c cos 9 . I,

and integrating over all c and over a hemisphere. We find

j5 (-^ )

-

dcf> sin 9 cos 9d9 cH-^'^'l^^^ dc,
\2,7tk1 J Jq Jo Jo

or Iv-j ^=i^c- (791)
[TTmp

If in the equilibrium state a fraction r of these is reflected again, the

number of electrons which return to unit surface of the metal in unit time

is (using (789) with k (0) = 1)

(1 - r) 2 —^V-- e-x/^^'. (792)

On the assumptions made, it follows that the saturation current — / flowing

* If the field at the surface of the metal is great enough the rate of emission is affected.

Electrons can be drawn thus from comparatively cold bodies. But the fields necessary are of a

different order from those used to obtain thermionic saturation currents.
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from unit area of the hot body to the collector is given in electrostatic

units by the formula

/ = levc (1 — r) (1-r)
h^

y2e-x/fcT (793)

The numerical value of the absolute constant ^Trmk^ejli^ is 3-60 x 10^^ e.s.u.,

or 120 amperes per square centimetre.

Previous formulae for / have contained a numerical constant of

60 amperes, since the weight 2 of the free electron has been omitted. The
best observations for very pure metals, to which we shall refer further in

a moment, have indicated that if / is expressed in the form

AT^e-^I^T _ AT^e-^olT^ (794)

with A and x iP^ K) constants, then A has a value close to 60. It was

previously argued that this was in satisfactory agreement with the theory,

the factor (1 — r) being tacitly ignored. Now all the direct evidence points

to a value of r not nearly zero, but rather about | for slow electrons*, which

is in excellent agreement with the new value but not with the old. In

simple cases we should now expect an upper limit for / of

120T'-e-x/fc2' amp./cm.2,

the greatest values observed being half this. The best recent observations

have been analysed by determining A and x in (794) to give the best fit

with the observations ; a selection of the more reliable values are given in

Table 38. Sometimes, however, in fixing b^ the value 60 has been assumed

for A, but in view of the newer theory which gives A in the form 120 ( 1 — r),

this should no longer be done.

Table 38.

Thermionic data'f.

Metal
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other metals) it may be very much less, even if the films are mono-
molecular. The only really reliable quantitative values are given in Table 38

for layers of thorium, zirconium and uranium on tungsten. This drop in

A is associated with a corresponding drop in &„ and can be explained at

once as due to a change in the value of r, the reflection coefficient of

electrons, at the more comphcated potential step produced by such a

surface layer. We shall refer in Chapter xxi to the way in which such

reflection coefficients can now be roughly computed and their dependence

on the nature of the surface studied with the help of the new mechanics.

Owing to the dominance of the exponential term, the observations are

not capable of fixing A with high accuracy. In fact it is not observation-

ally possible to distinguish between (794) and a formula

1 = A'TH-^^l"^, (795)

used by Richardson in his earlier work.

As an example of the excellent fit obtainable with good data and (794),

we quote from Dushman the following observations for tungsten. In the

analyses it is assumed that ^ = 60-2 and h^ is then calculated from the

observed /. The values so obtained should be identical and the actual

extreme, variation in Table 39 is 11 parts in 5000.

Table 39.

Emission data for tungsten.

The entries i in the second column are the observed currents from
0-1825 cm.'- hot surface.

Temp. ° K.
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perhaps be allowed to record the result for the sake of completeness. If

we evaporate N average electrons then their extra energj^ in the vapour

phase will be

N<j> = n{x-^'^.^T - \^ GclT

This, however, is not exactlythe coohng effect on the metal, for the electrons

evaporated are not an average equihbrium group distributed according to

Maxwell's law. This can be seen at once if we consider the rates of emission

aad return /or electrons of given velocity. The number of electrons of velocity

between c and c + dc which strike unit area per second in the equihbrium

state is

w
27rkT

c3g-«c2/2fcr^c^

If a fraction r (c) of these is reflected, the number which are re-absorbed

per unit area per second is

{1 - r (c)} 7TV (i^^y c3e-"^«V2fcr dc,

which is therefore also the rate of emission. Owing to the extra factor c

the rates of emission and return are, as it were, higher for the higher

velocities compared with the equihbrium numbers of such electrons present

in the gas. The average kinetic energy of the electrons emitted is

^mT {I - r (c)} c^ e-'»«V2i-2' dc / T {I - r (c)} c3e-'»c'/2fc2' dc

If we may, to a first approximation, ignore the variation of r (c) with c we
have a mean energy

iw a;2e-''W2fcr dx/ I xe-"'"'!'^^'^ dx,

or 2kT.

Thus on these assumptions the cooling effect for the evaporation of N
electrons is

N {cf> + IkT) = N^x-^ 2A;T - \,^ adT

This is in good agreement with direct experiment. Experiments, however,

could hardly fix the coefficient of kT.

§ 11-3. Space variations of the electrostatic jtotential. We proceed next to

include the effects of electrostatic fields due to the charges on the electrons

themselves. The inclusion of these effects does not alter the form of (787)

or (789) but only the physical interpretation of v. These formulae remain

true in the general case if v means the average electron density in the free

electron gas immediately outside the surface of the metal.
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The unaffected validity of (787) and (789) is almost obvious. The metal

is a conductor at constant potential, and the potential of the electron gas

in contact with it will be equal to the potential of the metal, since the

potential is a continuous fimction. Whether electrostatic fields are included

or not there will be no question of potential differences between the metal

and a thin sheet-hke volume element of electron gas in contact with it.

The foregoing arguments then apply, with an unaltered interpretation

of X ^-iid the interpretation of v stated above, and yield the old result*.

In addition to this result, we find, of coin-se, that the electron densities

of different parts of the gas are connected by Boltzmann's equation

- = Q^(v-r,)ikT^ (796)

This is the simplest example of the theorems of § 8-7. The details of the

distribution of electrons must be studied by the help of the combined use

of (796) and Poisson's equation, as there examined. To this we return in

§ 11-4.

We can draw at once some interesting conclusions. Suppose we have an

assembly in equilibrium containing two different metals. Then the density

of the electron gas in equihbrium mth them will not be equal and therefore

the immediate neighbourhoods of the two metals cannot be at the same

potential. The metals themselves must therefore differ in potential—this

is their contact potential difference, for it is obviously immaterial to the

foregoing argument whether the metals in question are in so-called metallic

contact or not. The contact potential difference F^g between metals 1 and 2

can now be related at once to quantities already defined. By considering

elements of electron gas near the two metals we have by (787)

and by (796) log^^ =^^ (798)

[Here F12 is the excess of the potential of metal 1 over that of metal 2 in

isothermal equihbrium.] We find, therefore,

^y.^ = X2 - Xi + ^j^ ^ 1^
(^2 - <y.) dT" - kT log '^-^^ (799)

According to the new theory the last term is always zero.

This equation is complete. It shows that as T ^ the contact potential

difference must tend to the difference of the x's (reckoned in volts), and

over a wide range of temperature these quantities -will be approximately

* This result still holds, but the argument needs a complete restatement when surface effects

are explicitly allowed for. See § ll-S.
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equal. An equation almost equivalent to (799) can be derived thermo-

dynamically and is commonly given in the form

e [V^, - T ^^) = X2 - Xi +
\l

(<^i
- ^2) dT (800)

This can be obtained by differentiating (799). The quantity on the right is

also given as (/)2 — (f)\y
^^^^ difference of the average work required at

te7nperature T to evaporate an electron from the two metals. If we
differentiate (800) we obtain

-eT^=a,-a,. (801)

In terms of a^, Thomson's specific heat of electricity, this reads

T^-^'={o,\-{a,)„ (802)

a familiar thermodynamic equation.

Though of the nature of a digression it may be noted here that it is

natural to see in all thermoelectric phenomena the manifestations of contact

potential differences which vary with the temperature. We have already

obtained nearly all the usual thermodynamic equations ; there remains only

the equation for the Peltier heat reversibly absorbed or emitted at a

junction of two metals which is

U,,= T^-^ (803)

—a theorem in pure thermodynamics, being an example of the Gibbs-

Helmholtz equation. With these equations the electromotive force round

any circuit is correctly given by summing (or integrating) a series of

"contact" potential differences round the circuit, either for contacts

between different metals at the same temperature or the same metal at

different temperatures.

§ 11-4. Space charge effects. Special electron atmospheres. It will now
be of some interest to examine in detail the equihbrium state of some

electron atmospheres in which space charge effects due to the electrons

themselves are important and are included in the calculations. As we have

shown in § 8-7 the laws governing the equihbrium distribution are

V2F=477ei5, ii = ee(F-Fo)/fcr^ (804)

Not many problems of electron distribution are soluble exphcitly in

finite terms. The simplest distribution imaginable is a stratification in

parallel planes. Such a distribution will be set up between the plates of
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a parallel plate condenser, and the equations are then soluble exactly. They
become

^l\-
477ev, V = v^e^l^T^, (805)

if we define Y to be zero in the plane where v =^ Vq. Hence

kT dx vdx' e dx\vdx]'

It will be convenient to introduce a new variable y such that

vdx = dy.

„, d^-V 47762

- 2776^ ,
,

V = -j^ y-+by + c,

where b and c are constants of integration. At the symmetrical plane half-

way between the two plates (of the same material at the same potential)

we shall have by symmetry dV/dx = 0, dv/dy = 0. If this plane is a; =
and we choose y so that

y = vdx,

then dv/dy = for i/ = and 6=0. Since i^ > 0, c> 0, and we write

2776^ ^ „ . „^

so that
^^TX^ = ~W^'''

^ = A tan j^ x,

__ 27762 A^ , 27762 A
"" kT ^^""^ kT ^''

•

We can now determine A, in terms of the electron density vq in the central

plane, by the equation
kTv^\h

which gives v = vq sec2 H '^^m^ \
x\. (807)

For the potential V we have

= -21ogcos(|^y"»}*:.) (808)

With these equations any desired details may be investigated. We may
observe in the first place that if an ideal non-electrical material may be

F l8
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imagined which neither emits, absorbs nor attracts electrons, then, since

dV/dx = for X = and the electric intensity vanishes, the plane x =
may be replaced by an ideal non-electrical wall on which the electrons will

act merely in virtue of their mechanical momenta. The distribution laws

in V and V will be unaltered by this replacement. The plane of symmetry,

or ideal wall, is a locus of equilibrium points which no hnes of force cross.

The stress per unit area at the surface of the emitter due to electrostatic

forces is a negative pressure equal in amount to 27Ta^, where a is the surface

density of the charge on the emitter or the total atmospheric charge per

unit area contained between the emitter and the central plane. If this

distance is a, then

rl vax=€Voj sec^U—jj~j x> ax,

The electrical negative pressure is

motan^K^f ^

or kT {va - vo).

At the same time the positive pressure due to the transport of momentum is

The net pressure on the surface of the conductor is therefore kTv^ , which

is also of course the pressure at the plane of symmetry or ideal wall, as it

must be for mechanical equihbrium.

The distribution of electrons will be unaltered if we suppose the parallel

emitters are finite, equal and similarly situated plates connected by non-

electrical walls which are normal to them. In that case the pressure at

any point on these side walls will be entirely due to the mechanical trans-

port of momentum—there is no electrical stress acting across an element

of the wall surface. The pressure at any point will therefore be simply

kTv^ and in particular close to the emitter kTva . It is of some importance

for thermodynamic arguments to observe that this simple mechanical

pressure kTva acts on a reahzable wall surface. It is therefore possible to

give a simple derivation of the differential form of (787) or (789) by a

thermodynamic cycle without ignoring electrostatic effects and without

exphcit calculation of them.

§ 11-41. Further details of electron atmospheres. If further details of the

distribution are required it is natural to follow a classical exposition by
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von Laue*. We begin by studying the form of the distribution (807) and

(808) near x = a, particularly for large T . Using (790) for the density at

the surface of the metal we have

Va = Vq sec (^^°)* 4 = ^'^^^"'^''^' (809)

where normally A' ^ 4-86 x 10^^. It follows that so long as T is large

enough for e-^/'^'^ not to swamp A' the right-hand side of (809) is a large

number—there are plenty of electrons per unit volume. In order to evaluate

vq for given T we have therefore to solve (809) for vq when the right-hand

side is (usually) numerically large. The nature of the root will depend on

whether or not, as v^^ increases, lire^v^a'-'llcT approaches 77^4 before i^o

approaches the constant on the right of (809). Smce the former condition is

1-04 X 10-2^-^'^^',

it is obvious that this happens first unless T is quite smaU. The first

approximation to the root of (809) is therefore

^o-."".!^., (810)
4a2 27re

^2 y^.J'

and the second v^^ -r^->7.—s — «, (8111
4a^ ZTre^

2a2g2

where v^ cosec^ -p^ a. = A' T^e-^/^'^,

Inserting numerical values for the atomic constants,

TT T _. _ .ttT*

For our immediate purpose the form of F near re = a is more important.

By (808) we have approximately after reduction

|J=-21ogj|.^}, (813)

Inserting numerical values

a' = a\\^ 1-40 X 10-' -—^

* von Laue, Ja^rft. d&r Rod. u. Elektronik, vol. xv, pp. 205, 257 (1918), or Isiter, Handbuch der

Radiologie, vol. vi, p. 452 (1925). This paper is summarized by Richardson, loc. cit., who gives

much additional information. The reader should also refer to Schottky, Jahrb. der Bad. u.

Elektronik (1915), p. 199.

l8-2
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Thus for normal values of T and for all practical purposes except for

regions in the immediate neighbourhood of the metal surface we may
identify a' and a and assert that V behaves as if it had a logarithmic infinity

V f^log{a-x) (815)

as X ^ a. The strict behaviour is that V behaves as if it had a similar

logarithmic infinity as x approaches a surface just inside the actual metal

by an extremely small distance which tends to zero as T -> oo.

The behaviour of V can be exhibited in its most general aspect by

introducing the transformation

'I'^kT^^^'JcT' ^ ^

Then i/f satisfies the differential equation

VV=e*, (817)

and the approximate boundary condition

ifj 2 log (a' - a;) + log 2. (818)

To the accuracy with which a' can be identified with a both the differential

equation and the boundary conditions for ijj are absolute—independent

of the temperature, of atomic constants and potentials and of the dimen-

sions of the apparatus. We have only established this by a study of the

detailed solution for a parallel plate condenser, but it is clear from the

form of the result, which concerns only the immediate neighbourhood of

the metal surface, that this boundary condition will continue to hold for

all metal surfaces plane or curved, so that all electron atmospheres in

enclosures entirely surrounded by metal emitters at a sufficiently high

temperature can be studied by solving (817) for the enclosure subject to

the boundary condition
[^^-21ogS], (819)

where 8 is the normal distance from the boundary.

It does not appear to have been rigorously estabhshed that equations

(817) and (819) suffice to determine ?/» uniquely. For physical reasons one

may guess that they must do so, and we shall assume it in the rest of the

discussion. Some interesting general theorems then follow at once.

Theorem (11-41). In any enclosure entirely surrounded by hot electrodes

all at the same temperature, the electron density at any point not too near the

walls is independent of the material of the walls and proportional to the absolute

temperature provided this temperature is sufficiently high.

The electron density depends of course on the size and shape of the

enclosure. Equation (810) provides an example.
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Theorem (11-42). For two similar enclosures at the same temperature, for

which Theorem (11-41) holds, the electron density at corresponding points is

inversely proportional to the square of the linear dimensions.

Theorem (11-43). The equilibrium state of the electron atmosphere is

characterized by a minimum value of the ratio of the electrostatic energy to the

kinetic energy of translation of the electrons.

The proofs of these theorems are simple and are left to the reader*.

At fairly high temperatures and for not too small a v^ will be very large

compared with vq. In that case near the emitter there is a large normal
electrical stress (tension) and a large mechanical pressm-e which practically

balance since v^ is trivial. Across a plane, however, normal to the emitting

surface there is an electrostatic pressure numerically equal to the tension

along the lines of force which therefore just doubles the usual pressure.

These considerations will of course continue to hold for surfaces of reason-

able curvature, not merely for the plane surfaces of a condenser.

The electron repulsions cause the electron atmosphere to behave near

the surface like a surface film of negative surface tension. To examine this

more exactly it is necessary to cast (817) into curvihnear coordinates

suitable for the discussion of the immediate neighbourhood of the metal.

If the curvature is small it is not difficult to show that equation (817) takes

the form
av / 1 1 \ ^^A

8l +U + S-jl = '*' (820)

which is vahd in the immediate neighbourhood of the surface if S is the

normal distance from the boundary reckoned positive into the enclosure

and ^1 and B^ are the principal radii of curvature of the boundary, reckoned

positive when the centres of curvature he outside the enclosure. Correct

to terms of order (w + d" )
^^^^ equation has a first integral

of the correct form. On writing |?/f = log x this equation is easily integrated

completely and the required solution is

^ ~ - 2 log -7,r-- _-l (821)

With the help of (816) equation (821) determines V and so v in the neigh-

bourhood of any surface of moderate curvature. Equation (821) reduces

* The reader may refer to von Laue, loc. cit., for further information.
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to (818) when ^- + ^- -^ 0. For the further development of the properties

of the quasi surface film of electrons we refer the reader to von Laue.

In all the foregoing discussion we have ignored the effects of the so-

called image forces which will alter the distribution laws near the metal

surface, so that our conclusions are only vahd under conditions and in

regions in which these image forces can be neglected. We return to a

fuller consideration of this effect in § 11-8.

§ 11-5. Thermio7iic phenomena as surface or volume properties of the

emitter. We have so far considered the electrons of the assembly as belong-

ing either to the interior of the hot metal or to the electron gas. From the

point of view of statistical mechanics there are therefore just two sets of

independent systems—free electrons and the metal crystals with a variable

number of electrons ; from the point of view of thermodynamics the assembly

consists of two phases, gas and solid. We could, however, have included

formally a third phase—the metal surface—which is perhaps the most

important phase of all, since the thermionic emission is very sensitive to

the surface properties of the metal and both A and 6o in (794) vary in a

marked manner with the nature of the surface film. We have also seen that

the electron atmosphere builds a quasi-film of electrons in the gas phase.

In view of these facts it therefore perhaps seems somewhat illogical to

ignore the surface phase or statistically the "system" which consists of

the metal surface in our discussion. This illogicaUty is only apparent, but

the treatment remains perhaps physically imsatisfactory. That our pro-

cedure was not really illogical follows at once from the thermodynamic

properties of the |'s as partial potentials. The | of an electron pursues it

through all systems in which it appears and in equihbrium

t solid = & surface = sgas-

Thus we must get formally the correct result from ^soiid = ^gas, although

from a physical point of view the fundamental equation may rather be

f surface = ^gas- A change in the nature of the surface which changes

I surface directly reacts on the state of the electrons in the interior so that

^ solid changes in harmony. The method adopted here is therefore correct

so far as it goes and may be used in default of better and more direct ways

of calculating ^ as ^surface, which are at present entirely lacking. A com-

plete theory of the variation of the thermionic effect with variation of the

surface film can (it is true) only be attempted when we have a rehable

direct method of calculating ^surface*- A satisfactory beginning has, how-

ever, been made by Nordheimf by studying the laws of reflection of

electrons in a film of steep potential gradient.

* This point has recently been made by v. Raschevsky, Zeit. filr Phys. vol. xxxix, p. 159

(1926). t Nordheim, Zeit.fiir Phys. vol. XLVi, p. 833 (1928).
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§ 11-6. The emission of positive ions. In certain cases incandescent

solids have been observed to emit positive ions as well as electrons. It is

therefore necessary to study the equiUbrium theory of an atmosphere of

a mixtm'e of positive and negative ions and neutral atoms in equilibrium

with the hot soHd, which is a simple extension of the work of this chapter*.

Theoretically, we must expect to have, for example, an atmosphere of

electrons, tungsten ions and neutral tungsten atoms in equiUbrium with

the soUd tungsten, and so on in all similar cases. Actually, the atmosphere

in equihbrium with a pure metal will never contain a significant number of

ions of that metal at any temperature (below the melting point of the

metal) at which experiments can be carried out. The effects actually

observed are due to the emission of ions of impurities contained in the

metal. When spurious effects due to surface adsorption of gaseous layers

have been eUminated the remaining effects are generally due to the

emission of singly charged positive ions of the alkaU metals. We will present

the analysis in such a way that the positive ions are exphcitly shown as

due to an impurity. It will be sufficient to contemplate an atmosphere of

electrons, one type of singly charged positive ion, and the corresponding

neutral atom together with the impure sohd. Metal atoms and ions will

be assumed to be absent from the atmosphere. They can be added if

required. In considering an atmosphere of ions, electrons and atoms in

equilibrium we anticipate in a simple case the general discussion of

Chapter xiv. We require here nothing beyond simple reinterpretations of

Chapter v.

The formal expression for the number of weighted complexions of this

assembly will be, generalizing (378),

N\P\Q\ Un dxdydwdz

"(2^n)^jJjJx^+V
X exp{a;/(s) + yg [z) + xyh {z)], (822)

where w and Q refer in the usual way to the metal atoms only present

effectively in the crystal. N refers to electrons and P to positive ions. Then

we have the usual formulae

i^free = ^ (^). ^free = W (^) ^^free = ^r^ h (^), (823)

and from the fact that the electrons and the positive ions are effectively

present in the solid

1= 1K(&), 7^= 1/k,(^). (824)

We shall expect no alteration in formf for k^ (9^) due to the impurity and

only shght alterations in the magnitude of a. We shall therefore still have

* For a general account of the phenomena, see Richardson, loc. cit. The general thermodynamic

theory of such atmospheres has been given by von Laue, Berl. Sitz. (1923), p. 334.

f The surface conditions may of course be such that we have an entirely different numerical

value of X-

N\P\Q\ !fn dxdydwdz
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(787), (789) or (790) for the density of free electrons in the atmosphere in

the immediate neighbourhood of the metal. For /Cg {^) we shall have the

same /orm as for k^^ (^), but the magnitude of a may be entirely different.

In fact, at the temperatures concerned it is reasonable to suppose that the

specific heat of the solid is "normal " and has the value 3k per atom whether

metal or impurity. We may go further in fact and assume with sufficient

accuracy that a^ (T) = Zk over the whole temperature range for T > Tq.

In that case

exp] -
I

j^A adT"[^ con^t. x T-^,

and v^=j^= const. T'^ e-^^l^"^. (825)

The constant is only determinable if more expHcit assumptions can be

made about k^ (^). If we may assume, for example, that adding an atom of

the impurity to the soHd is equivalent to adding a single three-dimensional

harmonic oscillator of frequency of v^, the weight of all its states being

K2 (0), then
K2 (^) == /C2 (0)/(l - e-^^ol^^)\

'-= K^^^^^^^F^^' - e--'^"'fe-^^l-^ (826)

There is httle point in expanding these formulae further in the absence

of exact measurements to compare them with. We note only that if we
measure the current carried by the positive ions, we should expect to find

I+= BT-^e-^2lJcT^ (827)

where 5 is a constant. We may note that the indices of J' in (827) and (793)

add up to 1 and the indices of T in (825) and (789) add up to zero. This

will always be the case so long as we assume that the neutral atom in the

metal has 3 practically classical degrees of freedom yielding 6 square terms

and the ion and electron in the gas also 3 square terms each or 6 in all.

Owing to the fact that we must assume that ionization and recombination

are possible in the sohd the product ^r) or k^ (0-) ^2 (5-) must be the same as

K (^), the corresponding function for the neutral atom in the sohd. This

secures the relation just mentioned.

By eliminating $ and r] between the three equations (823) we obtain

This is a particular case of the formulae for the ionization equihbrium of a

gas at high temperature and is of course independent of properties of the

solid phase. It is mentioned here because some beautiful thermionic

measurements by Langmuir* have established the correctness of the theory

* Langmuir and Kingdom, Proc. Roy. Soc. A, vol. cvn, p. 61 (1925).
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as applied to the equilibrium between caesium atoms, ions, and electrons

The simple form of (828), vaUd in the case to be discussed, is

i^o ^0 F (277 (m++ m) A;T)t

where m^, zu_^ and w^ are the weights of the normal states of free electrons,

positive caesium ions and neutral caesium atoms respectively and xo is the

ionization potential. Since We ^ Wq ^ 2, TD_^. ^ ^^ Xo~ ^'^^ electron volts

and m is neghgible compared with m+, this reduces to

"4?± = <?^^* e- x./*'' = A'„ (830)
Vq II

so that log^oKn = 15-385 + f log^o T - -^ (831)

Langmuir's test of this equation proceeds as follows. He considers an

enclosure in equilibrium with pure tungsten at 1200° K., containing caesium

vapour at a measured pressure (ions plus atoms) of (say) 0-001 bar. The
number of free electrons in equihbrium with tungsten at this temperature

is deduced from the electron emission of pure tungsten by (793), taking

A = 60. The actual value is 9-25 per cm.^ At this temperature K^ = 5340,

so that v+JVq =577 according to theory. This means that practically all

the caesium must be present as ions, which is what is observed, for it is

found that above about 1200° K. the positive saturation current flowing

to a collecting electrode in given caesium vapour is independent of the

temperature of the tungsten, so that presumably above this temperature

the tungsten converts every caesium atom that strikes it into an ion and

emits only caesium ions at a rate naturally depending only on the caesium

vapour density. On the other hand, with thoriated tungsten the equihbrium

electron density is 6-0 x 10'' and v^Jvq = 8-9 x 10~^. This means that only

an insignificant fraction (1 in 1 1,000) of caesium atoms leaving the thoriated

surface is an ion and no positive current should flow. None is observed.

By somewhat different arguments a rough quantitative test of (830) can

be achieved. A pure tungsten filament was raised to 1177° K. in a bulb of

caesium vapour at 70° C. at the vapour pressure of pure caesium for that

temperature. The positive and negative ion currents were measured. The
electron emission from the tungsten at 1177° K. was 2-22 x 10-^ amperes

per cm.^ and the positive ion emission 2-06 x 10~^. The electron emission

is some 10^ times greater than from pure tungsten at this temperature, so

that we are really deahng with a caesiated tungsten surface. This, however,

does not alter the arguments. On raising the filament temperature to

1300° K. or more the positive ion current increased to 2-43 x 10-^ and then

remained independent of the filament temperature. This saturation current

is therefore a measure of the rate at which caesium atoms and ions strike
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(and are emitted as ions from) the surface and corresponds to 1-52 x 10^^

atoms or ions per sec. per cm.^ At the lower filament temperature (1177° K.)

the atoms still strike the filament at the same rate for the conditions in

the vapour are unaltered, but the positive ion current is only 1/1180 of its

saturation value. This means that of the caesium evaporating 1 in 1180

is an ion. The conditions at the surface of the filament are essentially the

same as if it were surrounded by caesium vapour at 1177° K. and at such

a concentration as to provide 1-52 x 10^^ impacts per sec. per cm.^ This

concentration would be

vo = 1-40 X 1012.

If, then, the filament were in an enclosure at 1177° K. in equihbrium with

this concentration of caesium it would emit electrons and caesium ions at

the rates measured 2-22 x 10-^ and 2-06 x 10-« respectively. From these

observed currents the corresponding equihbrium concentrations are

V, = 2-60 X 106, jj^ = M9 x 10^.

From these three values the observed value of the equihbrium constant is

K^ = 2210,

while the value calculated from (831) is

Kr, = 2500.

This is excellent agreement. If we express it by examining what tempera-

ture makes Kn equal to its observed value we find T = 1174° K. instead of

1177° K., a difference within the uncertainties of the temperature scale.

§ 11-7. Space charge effects with positive and negative ions. The equations

so far given for positive ions refer to assembhes of neghgible space charge

or to the immediate neighbourhood of the emitting surfaces. The general

laws for the atmosphere can be studied by an extension of § 11-4. By § 8-7

the average electrostatic density and potential in the atmosphere p and V
will satisfy the equations

V2F = - 47rp, p = e {- {v:)^e^^l^T + (vJoe-^^/'^^} (832)

This is the average potential. In addition, there will be polarization fields

round each positive and negative ion like those considered in § 8-8, which

will give rise to small additional effects. These, however, are negligible

unless the space charge is zero or very small, when they give rise to the

only surviving terms in the electrostatic energy. They are probably never

of importance here.

We observe first that

V,V^ = (l^e)o (l^+ )o'

and that v^ is unaffected by the electrostatic field. This is an example of

the general theorem that if the condition of dissociative equilibrium is
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satisfied at any point of an atmosphere in equilibrium under long-range

potentials, then it is in dissociative equiUbrium everywhere. The equihbrium

constant is independent of position. If we write

the equation for V becomes

V^F=^sinh^-i^^. (834)

We naturally only expect to be able to solve this explicitly (if at all) for

plane parallel condensers or their equivalent. If, then, V depends only on x

dW _ eK . 6(F-«
)

dx^ ~ kT ''""^ kT '

This can be integrated once giving

^ / T/ _ ^^ 1
(835)

\dxj
, e {V-a) ;

^ kT

where ^ is a constant of integration. We may notice that k has a very

simple form. It satisfies

K = STrVip.P-,) = SnViKnPo), (836)

where Kn is the equihbrium constant and Pq the partial pressure of the

neutral atoms.

Equation (835) can be integrated completely in terms of Weierstrass's

^-function. It can be integrated in finite terms with elementary functions

when A = 1. This case wiU serve for the general study of the behaviour of

V in the neighbourhood of the emitting surfaces, since there the argument

of the cosh will in general be large. We then have

dV ^ / . .e{V - a)^ = ±2VKsmh^^^,

which integrates in the form

-log|±tanh-^^;^| = -^x,

if X is measured from the emitting surface.

§ 11-8. Image forces* . Our treatment hitherto has been based on mean

potentials and mean densities according to the analysis of § 8-7. But our

averaging has been based only on averaging the electrons and ions in the

gas phase of the assembly and not on averaging all the movable charges in

the assembly. This latter of course would be the correct procedure and lead

to an unexceptionable result for V. But such a procedure seems to be far

* Based on von Laue, loc. cit. (twice), and Langmuir and Kingdom, loc. cit.
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beyond our resources at present, and a correction is necessary for the

polarizing effect of the individual ion on the neighbouring metal surface.

If we assume, as seems reasonable, that the metal surface remains in the

mean a surface of constant potential, then the polarizing effect is equivalent

to the formation of the usual electrical image, and the ion will be attracted

to the (plane) surface at a distance 8 with a force e^^S^, which is in addition

to the force arising from the average potential V. Also, unlike F, the image
force affects ions of either sign equally. Both are attracted to the metal.

The image force can be derived from a potential energy function — e2/4S.

We must suppose, therefore, that the correct atmospheric density law for

electrons is
_^ _ ^_^^^

g[e(F-Fo)+e2/4a]/^r^ (837)
and for positive ions

v+= (r+)oe[-^(^-^)+*'/4«]/fc2', (838)

The corresponding equation that V must satisfy is

V2F= - 4776 [- (i5e)oe*(^-^o)/fc2' + (i^Jq e'^^^" ^«^/^^] 6^'/*^^^ (839)

We have not given a rigorous proof of these equations. As we have indi-

cated, this could only come from a proper averaging treatment of all the

movable charges, not only of those in the atmosphere. It seems clear,

however, that the equations must be of this form, and that the true

correction for the inadequate averaging will not be widely different from

that proposed. Equation (839) of course follows logically from (837) and

(838). The correction cannot hold good indefinitely as S ^ 0. As soon

as the specified electron gets within distances of the walls comparable

with their departure from an ideal plane conducting surface the polarizing

effect will depend on the nature of the surface, the roughness of its micro-

structm'e and so on, and finally will reduce to an effect on individual atoms.

Thus the apparent infinity in the correcting factor is spurious and the

formula suggested cannot hold for values of S < 5 x 10-^ cm., or perhaps

10~' cm. Obviously at these distances the discussion fails altogether and

we need only pay attention to greater values of 8,

For values of 8 of the order of 10-^, 10"^ cm. the correction has become

quite insensible and our preceding results will hold unaltered. For on insert-

ing numerical values we see that the extra term is

4-15 X lO-'^jhT.

At room temperatures (2^=300° K.) this is entirely neghgible for 8>3x 10-^

and at the more usual thermionic temperatures of the order of 1000° K.

when 8 > 10-^. These are outside hmits. Closer investigation shows that

marked effects do not even extend so far. Consider for simplicity the case

of atmospheres without positive ions. Ignoring the image effect we found

in (815) that nj^m

V log 8.
e
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This was derived from an equation

instead of from the equation

or, in other words, by neglecting e^j^^hkT compared with — 2 log 8. At
300° K. and 8 = 10-^ these quantities are 1-4 and 27-6 respectively; for

8 = 10-', 14 and 30. At higher temperatures the main term is unaffected

and the image effect proportionally less. We see, therefore, that it is only

in the region less than 10~^ cm. from the wall that the image force will

really alter the solutions already given and at the higher temperatures

marked alterations are only caused near 8 = 10-' cm. It must be remem-
bered of comse that these neglected terms occur in an exponent and are

not simply additive.

When there are positive ions as well the image forces can make much
more marked qaahtative differences, for they lead to the formation of a

sheath of positive ions round the emitting surfaces which would be entirely

absent were it not for this image effect. The image effect only alters the

ratio of the concentrations of electrons and positive ions indirectly through

its effect on V . The sign of any space charge will be unaltered.

Since all the image effects are confined to thin layers in the immediate
neighbourhood of the emitting surfaces this layer may really be included

in the "surface phase" from the point of view of thermodynamic or

statistical treatment of volume effects. All our previous arguments are

therefore unaffected, if by the "surface of the metal" we mean not so

much the actual last fixed metallic atoms as the immediate outside of the

surface film at about 10-^, 10^^ cm. or so from the last metal atoms. The
potential at some such point must then be taken to be the potential of the

metal, and the differences of these potentials is the contact potential

difference of two different emitters. The question then arises whether the

work apparently done against the image forces in the surface layer of the

atmosphere is to be included in x- The answer of course is yes, but caution

is required. If we consider two perfectly pure pieces of the same metal,

one with a smooth and the other wdth a rough surface, the work done in

the atmosphere against the image force would on the average be different for

the two pieces. If there were no compensatmg effect such pieces of metal

should have a contact potential difference which there is no evidence for

and no reason to expect. There must therefore be some compensation in

the surface layer in the metal, and it seems necessary to suppose, to avoid

spurious contact potential differences, that the compensation is exact or

at least that there is exact compensation for all variations due to the

mechanical state of the surface*. The same argument for compensation of

* These conclusions may have to be modified if we should include here the active centres of

recent catalytic theories. See for example Constable, Proc. Roy. Soc. A, vol. cvrn, p. 355 (1925),

vol. ex, p. 283 (1926).
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mechanical states holds for any surface of given composition, whatever

impurities are present in or adsorbed on the surface of the pure metal.

Let us summarize this discussion by recalUng the complete laws for

the equilibrium of the atmosphere which we have obtained.

Immediately outside the surface layer {G (^) is the electron's partition

function without the F-factor)

v.= {v.)s-^^, (840)

f,= (P.),= ^'. (841)

The forms of G-^ and k^ are discussed in § 11-2 and of G2 and /Cg in § 11-6.

Elsewhere, outside the surface layers

v,= {v,),e'^^-'^s)lJ^'^, (842)

v+= {v+),e-'^^-'^s)lkT^ (843)

where F is an electrostatic potential satisfjdng

V2F= 477e(i^, - i^+). (844)

Inside the surface layer at 8 from the metal surface (844) continues to hold,

but (842) and (843) are replaced by

v,= (v,),e^(^-^^Vfc2'+e2/45fcT^ (§45)

v^= {v+),e-'^^'-f's)l'^'^+^'mT^ (846)

It will be well to caU attention to one last point. Inside the surface

layer v^v+ is no longer constant, but

v.i^+ = (r,), (v^),e^V2s^^. (847)

At the same time i^o ? the concentration of the neutral atoms, is unaffected

by the image forces so that

v^ _ (^^)^ i^+)s
g ,2i2SkT _ x^ e '^l-^^T. (848)

It might therefore be thought at first sight that the neutral atoms, ions

and electrons are no longer in dissociative equihbrium inside the layer. It

seems probable*, however, that this is not the case and that the equihbrium

is still complete, the effect of the image forces being merely to decrease the

work of dissociation x by e^/2S. Consider a quasi-Born cycle in which a

neutral atom is taken from S inside the layer to outside the layer, dis-

sociated there (work x required), brought back to the layer at 8 as two

ions (work e^/2S done) and there allowed to recombine (work x' done). This

is a reversible isothermal cycle, and we must therefore have

X = X' + ^72S (849)

in agreement with (848) and the preceding argument.

* Langmuir and Kingdom, loc. cit.



CHAPTER XII

THE DIELECTRIC AND DIA- AND PARAMAGNETIC CONSTANTS OF GASES

§ 12-1. The classical theory of the dielectric constant. The theory of the

dielectric constant of a gas is part of course of the theory of its refractivity,

for the dielectric constant is the limit of the refractivity for very long

wave lengths. The theory falls into two parts. In the first, which belongs

to electromagnetic theory, we trace the connection between the applied

electric force, the polarization and the total electric displacement in the

medium, assuming that the medium consists entirely of molecules of some
given type. In the second, which alone is statistical, we derive the con-

nection between the electric force and the polarization when the molecules

present are distributed in equilibrium in the field of force acting.

It is not necessary here to consider the details of the electromagnetic

part of the theoryf . Let 11 be the (average) strength of the doublet pro-

duced in a single molecule by a field of electric force F. The main part of

this will in simple cases be proportional and parallel to F and we have

n - d'^F. (850)

The calculation of 6^ forms the subject of the second (statistical) part of

the theory. If there are N such molecules per unit volume, then the

polarization P of the medium (doublet strength per unit volume) is given by

P = NIl = Nd*F. (851)

The total electric force F acting on a single molecule is not however equal

to the external electric force applied to the medium, but is reinforced by
the effect of the polarization itself. It is shown in fact by Lorentz that the

total electric force acting on any molecule is jP + |7rP for any arrangement

of the individual molecules with cubical symmetry. This result will therefore

be valid for the random arrangements in a gas. We have therefore the

equation
P = iV0* (i^ + IttP) (852)

to combine with the equation

47rP + P=eP (853)

defining the dielectric constant e. From these equations we obtain the

well-known law of Lorenz-Lorentz

^=-1^^^*. (854)

t See for example Lorentz, The theory of electrons, chap, iv; or Livens, The theory of electricity,

§ 237, ed. 1.
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It is obvious at once that this extends to gaseous mixtures in the form

e- 1

e+ 2
= iTrS.iV^,^,*. (855)

If e is replaced by ix^, the square of the refractive index, then it can

be shown similarly that /x^ obeys an equation of the same form

^'~
^ = f7r2,i^,^/. (856)

lx^+2 ^'

The function ^,* now of course depends on the molecular frequencies v,

and on the frequency of the exciting radiation v and (856) takes the form

All these formulae will be assumed to be familiar.

We now approach the statistical part of the problem. The chief interest

at this stage lies in the calculation of d* rather than /. The result will

depend on the particular assumption made as to the structure of the

molecules. It was first shown by Debye| that the facts are satisfactorily

accounted for, for a large variety of gases, if we assume that the gas

molecules are rigid dipoles of approximately constant electric moment and

in addition have ordinary polarizable isotropic electronic structures. On
this assumption the classical theory of ^* proceeds as follows.

Consider as the model molecule a rigid solid of revolution without axial

spin, of moment of inertia A free to turn about its centre of mass, with an

electric doublet of strength a directed along its axis of symmetry. Let the

body be subject to an electric field intensity F. Then the Hamiltonian

function for the motion of the rigid body is

The angle d is so measured that ^ = when the positive direction of the

dipole points along the field of force F. The partition fimction for the

rotations and orientations of such molecules will therefore be

^ (^) = p jjj
J ^^V -

j^f Wj [P'^ + ^^0 P^") - «-^ ^os ^j dpedp4>ddd<f>,

27TAkT ^ [- faF cos d\ . „,. ,^_^.
277 exp(

—

r^— jsmUdd, (858)

STT^AkT sinh jaF/kT)

P aF/kT

t Debye, Phys. Zeit. vol. xm, p. 97 (1912).

.(859)
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The fraction of molecules with their coordinate 6 between d and 6 + dd

will therefore be faFco^d\ . ^ ,^exp I
—Ym— )

^^" ^^^^

L-li {. . (860)
p faF cos d\ . „ ,„ ^ '

The average polarization ^*F is the resolved part of a along the direction

of the field averaged over all molecules distributed according to (860), and

is therefore given by
a f^ faF cos ^\ a a in
-^ exp I—j^Ffj— cos 6 sm dad

a* _ ^ -o \ fc-l I

(aF cos Q
. (

—

jjfv- )
smI

'^ (aF cos d\ .

thll-l]. (861)t

In all or nearly all practical cases aF\hT is very small, so that this reduces to

J^2

^* = i^. (862)

The coefficient \ arises as the average value of cos^ Q over a sphere.

Two restrictions in the foregoing account are easily removed. We have

first to introduce a term for the polarizability of the electronic structure

of the molecule. This obviously might depend on the orientation Q, j>, and

we should then have the Hamiltonian function

^ = 2Z (^^' + slK^ ^*') ~ ""^ "^^^ ^ ~ ^^ ^^' ^^
^''

and the polarization a cos 6 + ^ {6, cf)) F instead of a cos 6. We therefore

find for the average polarization

1 f^ r2- faF cos d + ^^F^\ . a , ojP\ p^q^j.
^ exp ( .^ ^^—

J
(a cos 6 + ^F) sm ddddcp

F

Jo Jo '""^K kT I

The leading terms reduce to

2- faF cos 6 + ^F-^\ . ,,.,,
exp rj-^—-—

J
smOdudcf)

where ^ ^ T" j8 sin ^ ddd(f>.

Secondly it is obviously unnecessary to restrict ourselves to a rigid

body with an axis of symmetry without axial spin. Any rigid body with

moments of inertia A, B, C, spinning in any manner, may be considered,

f This formula is more familiar in the theory of paramagnetism and is there due to Langevin,

Jour, de Phys. ser. 4, vol. iv, p. 678 (1905). See also § 12-7.

F 19
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which contains an electric doublet fixed in it and is also of polarizable

structure. We shall equally obtain (863)*. Thus the general classical

result is

^" ^ -^' ""^ +f\. (864)€+2 ^^(i,^

The contributions of different molecular species on the right are additive.

§ 12-2. Comparison with experiment. The formulae of § 12-1 were com-

pared with experiment with marked success by Debyef, and in recent

times excellent new comparisons have been rendered possible by the

observations of ZahnJ. It is obvious that the classical theory cannot be

correct at very low temperatures, but the quantum theory agrees, as we
shall see, with (864) at temperatures covering all observations.
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or in terms of gas pressure

291

(e-l)T2 = ^fl^ + iSr ,(865)

We therefore plot (e — 1) T^ or better (e — 1) vT , where v is the specific

volume, against the temperature and expect to find a straight line whose
slope determines jS and whose intercept on the axis of (e — V)vT the value

of a. The principal interest centres in a. The polarizability ^can also be

directly determined in this way, but better and more generous information

is provided by refractivities.

Fig. 19, taken from K. Compton*, shows typical examples of such plots,

which are excellent straight lines, and Table 40 shows the values of dipole

moments for a variety of gases so determined.

Table 40.

Dijpole moments of gaseous molecules from Debye's equation.

Gas
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molar equilibrium properties, for example P, should be derivable from

R (T) by differentiation. Comparing (859) and (861) we see at once that

P = Nd-^F =NkT^\ogR{T). (866)

This equation is not merely true in this particular case but is perfectly

general. It is simple to give a general proof of (866) similar to the proof of

(336) for Y which holds for quantized or (in the limit) equally for classical

systems. For if the N systems are distributed among a set of possible

states of unperturbed energies e^^ and if a„ is the average dipole moment of

the state u in the specified direction of F, then the perturbation energy is

— a^F and

Since ^ = Nlf{^), / (^) = Sra,^^.-»«^

^ = iW^a4i^g/(^)' (^«^)

which is (866). Only the orientational part of / {^) will be relevant. The
extra energy of the molecules is given at once as — PF by the usual formula

i>3 log/ (t^)/39-. The extended formula (863) can be obtained in the same

way by retaining also corrections to e^ of order F'^.

It is next necessary to examine in detail the form of (867) in the most

general case required, namely with

/(^) = i:,w,^^u-<^uF-l^uF\ (868)

We may suppose that the terms in F have had the effect of breaking up

a set of degenerate states of the same energy into less degenerate sets of

different energies, aixd write

/ (^) = S.-^^j (L.w.^-'^sF-l^sF^), (869)

We may suppose further that agF + \^sF'^ is so small that only the lowest

order terms need be retained so that

/ (^) =3 2,8-^; {Z,v3s + log 1/^ FY.,a,m,

+ i#2 |(iog 1/^)2 2^tn,a/ + log 1/^ S,ta,)8J).

In this equation we may replace Hgtaj by Wj the'weight of the Jth degenerate

state, and Sjta^-8-*j by /„ (^) the partition function for zero external field.

We may also suppose that

2:,a,tu,= 0. (870)

If (870) were not true, there would be a polarization effect independent of

field strength ;—no such effect is known, or predicted either by the classical

or quantum theory of the effect. Then

/m = /o (^) + ii^^S;^^.- {(log 1/^)2 S,r^,«,2 + log i/a STu.iSJ, ...(871)

NFP = ^-^^ 2,^^i {log 1/^ ILsW.aJ' + S,tn,|8J. (872)
/o \y)
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It is easy to recover the classical formula from (872) for classically

«s = « cos 6 and Sstjjs cos^ 6 = \wj so that

NF aP =
^-^^^

2,tn,^^i {1 a^ log 1/^ + ^} = iVTJP |i_ + ^

as before, a and ^ being assumed independent of j.

In the quantum theory the classical "states" that have appeared in

the foregoing calculations are of course regrouped into the true quantum
states. We must not expect all the details of the classical calculation to

be repeated, and in fact we shall find that in the quantum theory it may be

that «s = and the whole effect comes from ^. All we can demand is that for

large T the quantum theory shall agree with (864). Being a second and

not a first order effect the older quantum theory never succeeded in giving

a correct account satisfying the limiting condition, and we must use the

correct modern theory.

§ 12-4. Application of the modern quantum theory*. It is never possible

in this monograph to give the detailed solutions of quantum-mechanical

problems whose results we require for statistical applications. It would be

necessary, especially in the case of the modern theory, to develop the

solution at far too great a length and we must reluctantly content ourselves

with quoting results, or with very brief summaries of arguments in wave

or matrix form as may be convenient.

The unperturbed energies of the simple rotator without axial spin are

(as already quoted in Chapter ii)

"^=8^-^'(-^'+^^ (i= 0,1,2,...), (873)

and the weights of these states are 2j + 1. The (2J + 1) characteristic

functions satisfying Schrodinger's equation and corresponding to the jih

state are the familiar spherical harmonicst

COS
4'us - Pf (i^)

gin
"'^ ^^ = ^°' e) {o<s <i).

We can now proceed to find the values of e_, when perturbed by an external

field F, in which the rigid dipole a has a potential energy — aFix. It is at

* Correct versions have been given by Mensing and Pauli, Phys. Zeit. vol. xxvn, p. 509 (1926),

Kjonig, Proc. Nat. Acad. Sci. vol. xn, pp. 488, 608 (1926), in abstract by Van Vleck, Nature,

Aug. 14, 1926, and Manneback, Phys. Zeit. vol. xxvm, p. 72 (1927). The solution of the under-

lying problem of the free rotator or the symmetrical top in the matrix or wave mechanics will

be found in Oppenheimer, Proc. Canih. Phil. Soc. vol. xxiii, p. 327 (1926), Mensing, Zeit.jur Phys.

vol. xxx\^, p. 814 (1926), Dennison, Phys. Rev. vol. xxvm, p. 318 (1926), Reiche, Zeit.jur Phys.

vol. XXXIX, p. 444 (1926). More recently a general proof of the Langevin-Debye formula applying

to a wide range of molecular models has been given by Van Vleck, Phys. Rev. vol. xxix, p. 727

(1927); vol. XXX, p. 31 (1927).

f Schrodinger, Ann. der Phys. vol. Lxxix, p. 489 (1926) (esp. p. 520).
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once ob\dous that there is no first order change in energy for any state,

because (after Schrodinger's perturbation theory) the first order energy

changes are linear combinations of the integrals

.' - 1 .0

These all vanish when s ^ s' owing to the </> integration and, when 5 = s'

,

-1

always vanishes because {P/ (/i.)}^ is an even function of /x. All the integrals

therefore vanish and there are no first order changes in the energy. This is in

agreement with observation on the infra-red bands of HCl. These show no

linear Stark effect!.

The quadratic terms have also been evaluated J. It is found at once that

for the possible values < s < ji

^' T^ 3 U + 1) (2i - 1) (2i + 3) <^+"'' <''*'

ft =^^ (i=s = 0). (875)

[In the limit of large quantum numbers this goes over into the form

47T^Aa ^ fSs^ ,\

which is the classical result for a dipole rotating with total angular momen-
tum j^/27r and a resolved momentum sh/27T about the direction of the field.]

The degeneracy has not been completely resolved. There are two states

of equal energy when 5 =1= and only one when s = 0. Therefore Wg = 2,

5 ={= 0, and tJ7o = 1, from which it follows that

^sTOs^s=0 (i + 0), (877)

since '"i' {Ss^ - j {j + 1)} = 0. (878)
s= - j

It follows at once that
3 6-11 STT^Aa^ 1

^ = 4.eT^F =-3^/7W ^
^

In this account we have of course treated rigid dipoles. There will still

be an extra approximately constant term arising from the distortion of the

electronic structures, and we therefore write the complete formula for

rigid polarizable dipoles without axial spin

3 6-11 STT^Aa^ 1 ^

t Barker, Astroph. Jour. vol. LVin, p. 201 (1923).

J Kronig or Mensing and Pauli, loc. cit. Both authors calculate the average electric moment

parallel to F rather than the energy term, but the analysis is of course equivalent.
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The value of /o(^) or

has already been given in § 3-3. For sufficiently large T

with a numerical error about ^o- of this. Thus on substituting for /q (t>)

in (880) we recover the classical value. The error in the classical value for

the temperatures of Zahn's and similar experiments is at most of the order

of 0-5 per cent, and so insensible.

The quantum theory of gaseous dielectric polarization contains the

remarkable feature that only molecules in their quantum states j =
contribute to the polarization. This has a strict classical analogy as has

been pointed out by Pauli*. If we group together all orbits of equal

classical moment of momentum jh/27T and average classically by inte-

gration over all orientations the average value of s^/j^ is | and the average

value of ^s is still zero. Thus classically all rotating molecules make no

contribution. The sole contribution comes from those few molecules which

execute small vibrations about a position of rest.

§ 12-5. The isotropic cliaracter of the dielectric constant. We have so far

considered that the direction of the electric field itself serves to define a

definite origin of spherical polar coordinates for the molecules. The elec-

trical effects are however second order and small at that, and a small

magnetic field may have an overriding orientational effect. Whatever the

relative directions of the electric and magnetic fields the first order electric

effect vanishes (kj = 0) as before. To see this it is only necessary to verify

that

cos y xjjj gifjj s'dyid4> = {all s, s'),

.Jo '
'

where cos y = cos d cos x + sin 6 sin x cos ^

and X is the angle between the electric and magnetic fields. The quadratic

effect j8s will continue to be given by (874) when the direction s of the

electric and magnetic fields coincide. When they do not a different value

might perhaps be expected, but if they are at right angles the same values

of ^s and /So are found as before. Thus the response to the electric field is

exactly the same whether the molecules are orientated along or across the

field, and therefore, as easily follows, in ivhatever direction they are orientated

or even if their ^recessional axes are not orientated at all but distributed

uniformly in all directions. This result of course only holds neglecting terms

* Pauli, Zeit.fur Phys. vol. vi, p. 319 (1921).
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depending on H the strength of the orientating magnetic field. It implies

in accordance with observation that there is no magnetic double refraction

for long waves independent of the strength of the magnetic field. Similar

arguments show that such double refraction must be absent for all wave

lengths.

The model treated in this section represents adequately the halogen

hydrides and probably Ng , and the conclusions of the theory apply directly

to these gases. The results are however far more general as we shall see in

§ 12-61.

§ 12-6. More complex molecules. The symmetrical top model^. For other

molecules a more complicated model is essential and the necessary analysis

can be carried through for the symmetrical rigid top. We may assume, in

accordance with the symmetry, that the dipole moment lies along the axis

of symmetry, and shall indicate the calculations for the case in which the

electric field itself removes the degeneracy. The system is then character-

ized by three quantum numbers J, r, s, of which s defines the (trivial) pre-

cession of the resultant angular momentum about the field. The unperturbed

energies (neglecting this precession) are

.,.= 3^4^i(i+ l) + (5-l)r= + const] (881)

the subsidiary quantum numbers r and s are subject to its restrictions

I

**
1 <i' I

"^
I ^i- I^ i^ then found that

**^
a, (882)

j (i + 1)

877^^2 ( (j2 _ y2) (j2 _ ^2) {(j + 1)^ - r^} {{j + 1)^ - S^}

^'''

'

h^ Ifi^j - 1) (2i + 1) (i + 1)^ {2j + 1) {2j +3)

(883)

The degeneracy is fully resolved and cjs = 1. Substituting in (872), remem-

bering that 2j and e^ are now S^-^^ and e^ ,., we find llg'^sC^s = 0, as it must,

and

We notice that the polarization is contributed quite differentlyfor this model

and that for which r = 0. There are linear terms as well as quadratic^—^there

should be a linear Stark effect on all states except those for wliich r = 0.

We notice also that when r = (884) reduces to (879), the only contribution

arising when J = also, and then only from the quadratic terms.

t Kronig, loc. cit. (2).
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To find the limiting form of ^* for large T we replace the sums by

integrals in the usual manner. With the abbreviations

\G a)'~ STT^AkT' STT^kT

the sum in the numerator is

skTi,' \ruTT)+ a f u + ir-r^ ! -I
'"''

and in the denominator

r e-<riO+i) (2j + 1) dj [

^
e-^^^ dr.

Jo J -j

These can be simplified by integration by parts to the forms

^ _ e -0-; U+ 1) - r}2 -l di

2 [^
and - e-o-iO+i)-r32^.\

oJo
"^

Since a and r are small the important parts of the former of these integrals

arises for large j and j/{j + 1) ~ 1. Their ratio is therefore IjSkT, and we

find again the classical result

e* = -^
SkT'

to which a constant deformation term may be added.

§ 12-61. General theory of a complex molecule carrying a permanent

dipole-\. In view of §§ 12-4, 12-6 which lead to the same result, the Langevin-

Debye formula, for different models by entirely different routes, it is

natural to suppose that this result is of great generality for ordinary

temperatures, as it is in the classical theory. This has now been proved by

Van Vleck to be a simple consequence of the summation rules, and the

spectroscopic stability rules of the quantum mechanics, that hold quite

generally for those molecular systems which when unperturbed have orien-

tational degeneracy. We can hardly digress here sufficiently far to give

an adequate account of Van Vleck's proof, though it is in fact quite simple,

and must be content with a precise statement of his result and a discussion

of its consequences.

In order that the Langevin-Debye formula should hold for sufficiently

large T it is only necessary to assume that the dipole carrier (atom or

molecule) has a "permanent" electric (or magnetic) dipole moment which

is the same for all the group of normal states, and that these normal states

have energy steps from one to the next among themselves small compared

with kT, or in other words that the precessional frequencies of all the

t This section describes the results of Van Vleck, loc. cit.
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moments of momenta in the normal state are small compared with kTlh.

At the same time this group of normal states must be separated from all

other (excited) states by energy steps large compared with hT. These

conditions are usually strictly complied with by all simple atoms and

molecules. When they are complied with it does not matter whether the

normal atom is originally strictly degenerate or already perturbed by a

jfield of any strength weak enough for second order perturbations to be

neglected. It is unnecessary to specify precisely the degree of complication

of the normal group of states. The group may be built up by the composi-

tion of any number of moments of momenta with slow rates of precession,

so that the proof applies equally to rigid molecules, and to molecules in

which the orbital and electronic moments of momenta play an important

part. Under these conditions formula (863) for ^* will still be true, a and jS

being independent of the direction of the field even when another field in

some other direction is already orientating the molecules. In short a and j8

are independent of the degeneracy and of the manner in which it is removed.

We obtain the same value for 0* for any type of spatial quantization or

if there is no spatial quantization at all. All the molecules in Table 40 are

covered by Van Vleck's theorem, and the dipole moments may be legiti-

mately deduced in the manner of § 12-2.

The general proof includes a proof that both terms in the dielectric

constant of a gas are independent of the effect of a magnetic field H so far

as first order terms in H are concerned. This is in agreement with observa-

tion. It has been shown that 6* for He, Og and air changes by less than

10, 0-4, 0-4 per cent, respectively in fields up to 8000 gauss, and for NO
and HCl by less than 8 per cent, and 1 per cent, up to 4800 gaussf. There

might be an effect depending on H^ observable only in very large fields,

but this has not been investigated either theoretically or experimentally.

These generalities also hold in general for the refractive index just as

for the dielectric constant.

In Van Vleck's proof and the foregoing discussion it is assumed that a

relation equivalent to (870) holds in general, even when there is an already

existing magnetic field. It is conceivable that cases might exist of a Idnd

of magneto-electric directive effect in which the equivalent of (870) fails.

There would then be a state of electric polarization produced by a

magnetic field and vice versa. The energy term concerned is still really

quadratic in the perturbations. It is of type HF, but linear therefore in

H and F. The foregoing theory would continue to hold in such cases, but

only for the additional polarization produced by the electric field itself.

The effect could only be found with molecules which possess permanent

t Weatherby and Wolf, Phys. Rev. vol. xxvii, p. 769 (1926); Mott-Smith and Daily, Phys.

Rev. vol. xxvni, p. 976 (1926). To reach even these accuracy limits requires of course extreme

accuracy of measurement of e; 1 in 500,000 for He, Og, 1 in 100,000 for NO, HCI.
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non-zero electric and magnetic moments which are more or less rigidly

bound together and not at right angles to each other, so that the orientation

of one produces a net orientation of the other*. There is no known example

of such a gas, though the effect might be expected for NOj.

A sufficient formal example of the nature of the effect is provided by

the classical rigid rotator of § 12-1 with both an electric doublet of strength

« and a magnetic doublet of strength ^u, along its axis of symmetry, in

parallel fields F and H. Then the rotational partition function is an obvious

extension of (889), namely

R (T) = --p w+imW- ^^""^^

Using (867) and retaining only the largest terms, the polarization P is

given by
NojxH ,ggg.

A simple extension of this result to a model in which the electric and

magnetic dipoles are fixed in any directions in the rotator making an angle

X with each other leads to

^ Nafj, cosxH , .

SkT '
^ ^

The explanation of the absence of this effect in NO is interesting. An
explanation by assuming that cos ^ = is impossible, for the dipole

moment must lie along the figure axis, and it is almost certain from the

evidence of the band spectrum that the orbital moment of momentum and

therefore the magnetic moment has an axial component. The proper

explanation probably is that NO molecules are of two kinds, right- and

left-handed, of equal energies and therefore of equal concentrations, so that

for half of them the axial component of ju- is parallel to a and for the other

half anti-parallel.

§ 12-7. Para- and diamagnetism of gases and of ions in solution. The

foregoing theory can of course be transferred bodily from electric to

magnetic effects and becomes the statistical theory of para- and dia-

magnetism. There is one simplification. The magnetic force inside the

medium is by definition determined at the centre of a small needle-like

cavity and is independent of the induced magnetization of the medium.

The relation between the magnetic force H and the magnetization / is

/= kH,

* When the magnetic moment is entirely due to the spins of the electrons, a magnetic field

orientating the magnetic moment might be practically without effect on the molecular framework

carrying the electric moment. This explanation might hold for the normal states of atoms and

molecules whenever these are S-terms, but does not apply to NO whose normal state is a P-term.

t Debye, Zeit.filr Phys. vol. xxxvi, p. 300 (1926); Huber, Phys. Zeit. vol. xxvii, p. 619 (1926).
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where k is the magnetic susceptibility, and the susceptibility is connected

to the average molecular magnetic moment k*H by the equation

The calculation of k* is identical in form with the calculation of 6*.

We have merely to substitute H for F and /x (magnetic moment) for a.

The whole of our formulae then hold otherwise unaltered. We can for

example construct a partition function for the rotations and orientations

of any molecule including magnetic effects in the form

/(a-) = Y.w^^^u->-u^-lh,^^ (888)

and find at once

Any rigid body model with fixed magnetic moment /a treated classically

leads at once to an extra factor

sinh ifiHjkT)

fjiH/kT '

in the partition function / (^) and therefore to Langevin's formula

(890)

^ ^°*^ ^ ,(891)

For the common case of fxHjkT small we have

r2

This is the 'paramagnetic susceptibility.

The additional constant term of the dielectric theory reappears here

too, but in practice with opposite sign, and represents the dia^nagnetic

susceptibility. The complete value of /c* is therefore

K* = \^ + h (8<0), (893)

but S is always negligible compared with the other term unless ju, = 0,

for otherwise ju. is comparable with Bohr's magneton, and does not take

small non-zero valuesf.

Paramagnetic moments are always associated with mechanical moment
of momentum. So far as we yet know they arise either from unbalanced

electronic orbits or unbalanced momenta of the spinning electrons them-

selves|. The symmetrical top model with its magnetic moment along its

axis of figure is then the only not entirely inadequate model which can be

f These two statements are not strictly accurate. The rotating nuclei of a polar molecule

(carrying an electric doublet) give rise to a magnetic moment, which is very small compared

with the ordinary /x. The proton also possesses magnetic moment itself, and so do many atomic

nuclei, and these moments again are small.
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discussed in detail with any simplicity. The analysis of § 12-6 would then

apply with obvious changes, and lead to Langevin's formula. The general

theory of Van Vleck described in § 12-61 shows however that the applica-

bility of Langevin's formula or the more complete (893) is general, and
that too without change in /x or 8, whether or not there is spatial quantiza-

tion. This explains why attempts to repeat Glaser's experiments have

failed*. The para- or diamagnetic susceptibilities of air, O2, CO2, Ng and Hg
have been shown to be strictly proportional to the pressure at constant

temperature, and therefore to the number of molecules present, over a

range of pressures from 5 cm. Hg or less to one atmosphere. The Glaser

effectf, or apparent tripling of the susceptibility at the lower pressures,

seems to be a secondary effect due to the inadequate drying of the gas used.

§ 12-71, Atomic ions. Similar considerations J apply to the para- and
diamagnetism of atoms or atomic ions. Generally speaking these must be

studied in solutions rather than in gases, but the theory of the effect is the

same as it does not matter whether or not there is spatial quantization. The
theory of paramagnetism for an atomic ion is simpler than for a molecule,

since the magnetic moment is always directly proportional to the mechanical

momentum, and the independence of spatial quantization can be estab-

lished very simply. If the magnetic field lies along the z-axis the atomic

paramagnetic susceptibility is easily shown by the argument yielding (872)

to be proportional to the average value of M^^/kT, where M^ is the z-com-

ponent of the total angular momentum M. If there is spatial quantization,

then according to the quantum mechanics

M, = sh/27T {-j<s<j).

Thus the average value of M^^ is

1 s=+} o2/,2 7,2

2j + 1 s^^J 4772 -^-^ '•"
' 4:7T^

for the square of the total angular momentum is determined in the new
mechanics by J (J + 1). This result holds whether j has integral or half-

integral values. The result that M^ = |Jf ^ with spatial quantization means
of course that Jf^^ has the same value as with random orientations, which

is Van Vleck's theorem in this special case. In comparing the theory with

experiments and determining atomic magnetic moments it must be

remembered that M^ is given by J {j + 1) and not J^, and that the magnetic

moment associated with M is not M Bohr magnetons but gM magnetons,

where g is Lande's splitting factor as determmed by the anomalous Zeeman
effect for the normal state of the atom or ion in question.

* Lehrer, Zeit. fur Phys. vol. xxxvn, p. 155 (1926); Hammer, Proc. Nat. Acad. Sci. vol. xn,

p. 597 (1926).

t Glaser, Ann. der Phys. vol. lxxv, p. 1059 (1924),

J Van Vleck, loc, cit.
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It is well known that any central orbit of area 8 described in time t

by an electron has a mechanical moment of momentum 2'mS/T, and is

equivalent to a magnet of moment eSJTC. The ratio of magnetic to mechanical

momentum has therefore the standard value e/2mc, a ratio which is pre-

served by the quantum mechanics. For a system of moment of momentum
M, purely orbital in origin,

^- 2^0^= 4^0 ^^•(^•+1)^' ^'''^

In general /. = ^^ g {j {j + 1)}*. (896)

The value of €h/4:7rmc, which was fi for the normal one-quantum orbit of

hydrogen on the older quantum theory, is usually referred to as Bohr's

magneton. Its numerical value is 9-23 x 10-^^ electrostatic units. The

empirical unit, Weiss's magneton, is smaller by the factor 4-967. It is

easily seen that exact multiples of Bohr's magneton are not to be expected

in observations.

A proper comparison of observed and theoretical values of /x. for atomic

ions in solution is as yet not possible. Qualitatively there is excellent

agreement with (896), but the normal states of the free ions in question are

mostly still unknown by direct observation, and modifications are possible

in solution. We note the following observed and calculated values, the

observational data being from Stoner*.

In Table 41 the normal states of the free ions are taken from a table

by McLennan and Smith"]". It is assumed that in solution the ions have no

4o orbits, but that otherwise the normal rules for fixing the normal state

applyJ. The entries in square brackets would apply if the normal state

were selected from the other extreme of the set of multiple terms composing

the normal state.

A comparison of theory and observation for the atomic ions in this

table, at first sight unsatisfactory, on deeper consideration is not unpleasing.

Whenever we expect an 8 term for the normal state we find exact agree-

ment between theory and experiment. In other cases the observed value

is intermediate between the theoretical extremes and could always be

reproduced by a suitable distribution of ions among the terms of the normal

multiple state. The distributions among the various states can however

hardly be the same as they would be for free ions, and the energy differ-

ences of the various states must have been seriously modified in solution,

but obviously in a s^^stematic way. This however is not mireasonable and

* Stoner, Magnetism and Atomic Structure, London (1926).

t McLennan and Smith, Proc. Roy. Soc. A, vol. cxn, p. 76 (1926).

J See Hund, Linienspektren und periodisches System der Elemente (1927). No ion with just

four 82 orbits is known. We should expect a normal term ^D, but by the rules Wq rather than ^D^

.
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may be accepted as a probable explanation of the apparent vagaries of

the table. A study of the temperature variations of these ju, might yield

important information*.

Table 41.

Observed and calculated magneton numbers of molecules and

atomic ions of the iron transition group.
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magnetic moment necessarily the same as that of an atom with J = 1,

g = 2. Van Vleck's theorem then leads us to the tabulated value derived

from (896), irrespective of the precise coupling of this momentum vector

to the molecular frame.

The theory of NO is not so simple. The normal electronic state is ^P^;

the other state of the doublet is ^Ps with a separation (in wave number)

of 122. This separation is comparable with kT/hc (= 200) at room tempera-

tures. We have therefore to take account of the equilibrium distribution

in the two normal states, and also to make special calculations, since the

hypothesis of Van Vleck's theorem that all precessional frequencies are

small compared with kT/h is not fulfilled. The detailed calculations have

not been published J, but the result is that given in Table 41.

It is interesting to compare the atomic with the molecular account of

paramagnetic theory, considering the atom as a rigid top of vanishingly

small moment of inertia. Then terms which contain the factor A all vanish

compared with other terms, and the complete account of the effect, using

the rigid body model, reduces exactly to the simple atomic account which

has just been given.

Table 42.

Observed and calculated magneton numbers of atomic ions in the

rare earth group.

[Taken from Hund, loc. cit. p. 179, Table 78.]

Ion
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Data are as yet too scanty for a similar study of the palladium and
platinum transition groups, but for the rare earth group a comparison can

be made which is still more satisfactory than Table 41. The better agree-

ment here than in Table 41 is to be expected. For the incomplete group

of 43 electrons lies deeper in the atom than the incomplete group of 83

electrons in the iron group, and would be far less liable to modification in

solution.

§ 12-8. Dissociative Equilibria in magnetic fields. We take up again a

question left over from § 5-8, as to possible effects of magnetic forces on

dissociative equilibria, when some or all of the systems concerned possess

permanent magnetic moments. A tjrpical example is the dissociation of

the halogens, for halogen atoms must be paramagnetic with a normal state

^Pa {g = I), while the halogen molecules are known to be diamagnetic.

We shall be content to discuss only the simple typical case of the reaction

X2 ^^^ 2,X, where X is an atom. We shall retain only terms linear in H in.

the energies used in the partition functions for the atoms, which give the

whole paramagnetic effect in this case, and ignore all magnetic effects on

the molecules. The atoms may be assumed to be orientated by the field

and to be internally in their lowest quantum state. The magnetic states

will be assumed to be non-degenerate, of weight unity (§ 14-2).

The partition function (869) must be generalized to include space-

variable magnetic fields. Let us start by considering the various magnetic

states separately. Then the atom in the 5th state will have a potential

energy — iXgH in the field and therefore a partition function

fs{^) = F{^)V,i^), (897)

where F (^) =
^
^""'^^.

, V, (^) =
f[f

^-^^ dq,dq,dq, (898)
h^ (log 1/^)^ JJJv

The partition function for the atoms as a whole will therefore be

/(a-) = SJ,(^) = i^(^)F(^) iV{d-) = E,Vsm (899)

The partition function VG (0-) for the molecules is spatially constant and
need not be further specified. The numbers of atoms of any magnetic type

in a selected volume element will be given by the usual formula of type

(370).

In the absence of the magnetic field the dissociative equilibrium is fixed

by the equation

(X/F)2 fF^W ^ ^

where J is the number of magnetic states. When the magnetic field is acting

Zi__^Wx-J^ (901)

y 20
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In any selected volume element S V, let Xg be the average number of atoms

in the 5th magnetic state and x^ the number of molecules. Then

and if

8F V,{^r



CHAPTER XIII

APPLICATIONS TO LIQUIDS. THE PROPERTIES OF DILUTE SOLUTIONS

§ 13-1. It is at present far beyond the power of statistical mechanics

to deduce the properties of a liquid from a given molecular model. Most

liquids of our acquaintance are composed of very complex molecules. Even
if we possessed detailed experimental knowledge of the liquid states of the

inert gases we could hardly hope as yet to give a satisfactory theoretical

interpretation. It is not that the method is not sufficiently clear. It ought

to be possible for such simple liquids to give a very satisfactory account

of their properties if we take

j = N(\og^+l) + \ogB{n

B{T)=\ ... le-^/'^'^UAdco.),
.' (F) •'

where IF is the complete potential energy of the liquid in any configuration,

and F is the ordinary partition function for the constituent molecules

lacking the F-factor, presumably much the same as in a gas. It is not a

failure of theory but the prohibitive difficulty of calculating B (T) which
stands in the way. [It is possible of course that the true theory of liquids

does depend essentially on the newer form of statistical mechanics.]

The utmost that statistical mechanics can hope to do at present is to

calculate quantitatively the changes in B {T) when certain small changes

are made in the force system or the nature of the systems composing the

assembly—that is to calculate the properties of more or less dilute solutions,

given an empirical knowledge of the properties of the pure solvent. Even
this can only be done somewhat tentatively. We shaU give here merely a

sketch of how the theory of dilute solutions can be approached by an
application of the general theorems of statistical mechanics.

§ 13-2. Simple solutes. We will consider first solutions in which the

molecules of the solute may be regarded as the simplest possible systems

—massive uncharged points without internal structure, or external fields

of force. Let the solution consist of N molecules of the solvent and n of

the ideal solute in a volume F. Then the contribution to T from the

potential energy of the solution is k log B (T), where

B{T)=i ...fudnJ ...fe'^l^^hdwr (904)
Uv) 'r=l J iv) J r=l



308 The Properties of Dilute Solutions [13-2

In the completely ideal solution here contemplated W will be independent

of the coordinates of the n dissolved systems so that (904) reduces to

B{T)=V''I ... (e-^l^^ U dQr, (905)

= F"£' (T), (906)

where B' (T) is the value of B (T) when the solvent is present pure, in the

same volume at the same temperature. The change of T for this assembly

or this part of the assembly due to the presence of the solute is therefore

an increase of nk log F from the potential energy term. The translatory

energy contributes in this ideal case nk [log (F/n) +1], where F is the usual

partition function for the free translatory motion of a massive point. The
whole increase is therefore

^^^|log^+l|, (907)

as for a simple perfect gas.

These very simple considerations are sufficient to give us all the laws

of ideal dilute solutions. We shall show further in a later section that

our hypotheses about the solute sytems are needlessly restrictive, and that

the same laws hold rather more generally.

§ 13-21 . Osmotic pressure. Suppose an assembly is set up in which there

are two fluid phases separated by a semipermeable wall which permits free

passage to the solvent but none to the solute. In order that equilibrium

may be possible it is known that a pressure P must be applied to the whole

of the partition so that the pressure in the solution exceeds the pressure

in the solvent by P. This equilibrium excess pressure is called the osmotic

pressure. Its existence and ideal value follow at once from the theory.

For if JSTVq is the characteristic function for the pure solvent, then for the

solution

T = NYo + nk

and in equilibrium

1 VF
log — +1 .(908)

p =
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contributions for the internal energy and translational energy of the solvent

systems we shall find in all a function of the form

N\\og{Q{T,VlN)}+\].
Therefore

log -T, + 1T/^' = NY^ {T, V/N) + n log + 1 + M M
(911)

the last term referring to the vapour phase, which is assumed perfect. For

equilibrium we must have 8T = for the variation

hM= - SN, SV= - SV = VSN/N, ST = S (V/N) = 0,

n V'G V IV
which requires ^^^ N ^^^^^l ^N/ M' ^^^^^

For the vapour density of the pure solvent we have

M -^r-^e nIm ^ Ge-%

or, since the density of the vapour is usually negligible compared with that

of the solvent, approximately

M
--^, = (7e-*o. (913)

For the vapour density over the solution

M̂ = Ge-^o-n/N^ (914)

Thus p' = 2?e-"/^ S]) = - np/N, (915)

which is the standard result. The effect of the solute arises from the fact

that it must be compressed when any solvent is evaporated,

§ 13-23. Henry's law for dissolved vapours. We consider an assembly

consisting of an ideal solution and a perfect gas phase in which there is

present a gas which forms the solute in the solution. Then W/k for the

assembly, so far as it depends on the foreign gas, contains just the terms

/ VF \ ( V'F' \^(log-^+lj + m(log^^+lj.

where V is the volume of the gas phase and F' the partition function for

the gas molecules in the gas phase. Then for equilibrium for a variation

Bn= - hm, BT = SV = SV = 0,

VF V'F'
,(916)

n m
Henry's law states that at constant temperature the mass of gas dissolved
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per unit mass of solvent is proportional to the pressure of the gas on the

gas phase, or in symbols
n , m

which is (916).

We have given these simple examples, but really onceT has been con-

structed and the thermodynamic properties of the assemblies established

the rest is pure thermodynamics, and hardly a genuine illustration of

statistical principles. We shall therefore pass on without further reference

at this stage to other effects such as the lowering of the freezing point and

raising of the boiling point of solutions by solutes which follow by thermo-

dynamic reasoning from the form of T".

§ 13-3. Applicability to more extended models. The form of (905) will

be retained for much wider conditions than those contemplated in § 13-2,

conditions which represent much better approximations to actual solutes.

Suppose that W in (904) now contains terms for the forces between the

solute molecules themselves and between the solute and the solvent. If

the number of solute molecules is not too great the evaluation of (904)

requires merely an extension of the argument applied in § 8-4 in evaluating

distribution laws. The expression

f
... fe-'^/^^ n d^r (917)

.' (F) J r=l

will depend only on the relative coordinates of all the solute molecules, and

when there are only short-range forces acting it will to a first approximation

obviously be independent of these coordinates. Thus we still have

B{T)= V^B' (T), (918)

where B' (T) means the value of B (T) for the solvent molecules at the

given temperature and in a volume which has a peculiar form, being deter-

mined by the geometrical boundaries and the solute molecules fixed in

their average positions. The nature of the volume at the disposal of the

solvent may lead of course to secondary specific effects depending on the

nature of the interaction between the molecules of the solvent and the

solute. The natural primary effect is merely that B' (T) will have approxi-

mately the same value as it had for the solvent at the same temperature

and at its original volume Vq before the solute was added and altered it to

V. For dilute solutions the difference between Fq and V mil be insignificant

.

To a first approximation V — Vq should often be equal or nearly equal to

the volume of the molecules dissolved, but this will only be true if there

are no marked effects at the surfaces of the molecules of the solute.

The laws of § 13*2 for ideal solutions therefore may be expected to

continue to hold for dilute solutions of actual molecules as a first approxi-
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mation. The next approximation would naturally replace the factor F" in

(918) by a more accurate value, which will obviously depend on the sizes

of the solute molecules and on their average fields of force in solution in

exactly the same way as the corrected expression for V"^ for a simple gas

depends on the sizes of the gas molecules and their ordinary fields of force.

We are thus led to osmotic equations of state generalizing (909) for ideal

solutions as van der Waals' equation of state generalizes the perfect gas

laws. Considerable use has been made of such equations, but we shaU not

stop to consider them here. This side of the theory is satisfactory enough,

but we cannot satisfactorily proceed to any further approximation without

a more accurate calculation of the effect of the solute molecules on B' (T)

which gives rise to the secondary specific effects such as changes of volume

differing from solute to solute. This has not yet been done, and would be

of the nature of a surface effect.

The general success of van 't Hoff's theory, which the foregoing pages

present as a theorem in statistical mechanics, is well known and will not

be analysed here.

The theory extends at once to solutions of mixed solutes and to dis-

sociative equilibria among the various solute species, provided that dis-

sociation does not result in ionization as well, or if it does is present to a

very slight degree only. The simple osmotic theory can thus account satis-

factorily for the properties of weak electrolytes, substances which when

dissolved undergo a slight degree of dissociation into pairs of ions (as

shown by their conductivity). The number of ions present must be so small

that the long-range electrical forces do not contribute seriously to B (T).

For solutions of strong electrolytes, for example the common salts which

show a far higher conductivity and therefore degree of ionization, the simple

theory neglecting electrical effects is inadequate.

§ 13-4. Specific heats of solutions of non-electrolytes. The foregoing theory

should predict successfully not merely the commoner osmotic effects but

also the specific heat of the solution, or rather the difference of the specific

heat of the solution from that of the pure solvent. It follows at once from

the general theory applied to (907) that the specific heat of the solution

should exceed that of the solvent by an amount equal to specific heat of the

solute if it could exist as a gas in the same molecular form. It is difficult,

if not impossible, to devise satisfactory experimental tests of this, but

.Zwicky* has shown that theory and experiment are in reasonable agreement

by comparing the excess specific heat of the solution per gram-molecule of

solute with the specific heat of the solute in the pure solid (or liquid) state.

The following table is taken from his paper.

* Zwicky, Phys. Zeit. vol. xxvn, p. 271 (1926).
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Table 43.

Specific heats of solutes.

[Calories per gram-molecule per degree centigrade.]

[13-4

T circa 20° C.
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seen to be impossible of explanation by any type of dissociative equilibrium.

The departure of g from unity is known as the anomaly of strong electrolytes.

In confirmation of this a simple approximate calculation shows that

at moderate concentrations practically all the molecules of the solute should

be dissociated. We take the formula (321) putting, for estimates of order

of magnitude only,

m^m^lim^ + ^2) = 2-5 x IQ-^^, A = 10~^\ and Vo = 3 x IQi^.

Then at 300° K. "^ = 3-1 x lO^^e-^o^
»'12

if X is the work of dissociation from the normal state of the molecule,

measured in electron volts. The molecular densities are reckoned here in

number of molecules per cubic centimetre. If we take instead the more
usual unit in this connection, gram-molecules per litre solution, we have

^2 = 5 X 103e-40x.
C12

If the total solute is C gram-molecules per litre and it dissociates as a

simple binary salt into equal numbers of equivalent ions,

Cj^ = C2 , Cj + C22 = o

.

Thus {G - C12)' = 5 X 103e-40xci2.

To estimate the order of x we may calculate first the work required to

separate to infinity two unit charges in vacuo from an initial distance of

2 X 10-^ cm. This is 7-2 electron volts. It is at this point that the dielectric

constant of the medium and the polar nature of the normal salt molecule

become of dominant importance to the argument. If we may treat these

ionic charges as if they were large-scale charges in a medium of dielectric

constant D, then the work of separation is only 7-2/i) volts or about

1/11 volts for water. Thus

{C-c,,f^ \0^c,„ (921)

and if C is 1 or less, then c^^. must be less than lO^^C and dissociation is

practically complete. At first sight this argument might appear to prove

too much and suggest that for such values of x ^^^ dissociations should be

practically complete. But the argument can only hold (even approximately)

for strongly polar molecules. If the normal neutral molecule is electrically

neutral the medium will hardly affect the work of dissociation or ionization

;

for the first step it might as well not be there. But for the polar salt

molecule in its normal state the medium is already polarized round it by
its own field, in such a way as to reduce greatly (though perhaps not really

to the normal ratio IjD) the effective electrostatic forces.

The calculation we have made assigns to the associated salt molecule

classical vibrational energy along its line of centres. Owing to the weak
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binding energy in solution this is probably a gross overestimate, and the

dissociation will be still more complete than that indicated by (921) even

for divalent ions and perhaps for some ions of still higher valency.

§ 13-6. Electrostatic effects in solutions of strong electrolytes. We now
consider how to extend the analysis of §§ 8-7, 8-8, especially the latter, to a

dilute solution of a strong electrolyte, so as to calculate the extra part of

B (T) due to electrostatic forces. The theory we shall aim at estabUshing

is that of Debye and Hiickel, of which we have already given a critical

discussion in § 8-8 in the simplest possible case. All that is there said

remains true, but we have still to consider the additional difficulties raised

by the presence of the solvent.

If we write W in the form Wg + Wi , where the suffixes indicate energy

terms corresponding to forces of short and long range respectively, the

latter being electrostatic, we obtain at once from (530) which defines Wap j

dw^,^dw,^dw^^
dxfi dxp dxp

'
V -' y

At a distance apart of the a and /S sufficient to secure that the short-range

forces of the a and /S themselves are trivial (the a and ^ not getting bodily

in each other's way) we should expect to have

... ^^e-^/^^'n/' ((7co«)^«= 0, ^.—̂ = (923)

This result would be exact in the limit of no ionic charges beyond the

range of attractive forces of van der Waals' type. It would be modified

by such forces, but only trivially compared with the far more powerful

electrostatic forces themselves, and this modification will be ignored. There

is however a further reason to doubt whether (923) remains exactly valid

when the electrostatic forces are acting. In discussing the specific heat of

solutions of electrolytes Zwicky has shown reason to beheve (see § 13-8)

that there is an intense pressure round each ion due to the attraction of

the water dipoles by the inhomogeneous field of the ion. It follows that

for a water molecule d Wg/dx^ ^ 0, but must represent a force which acts

radially outwards and balances the mean attraction of the ion for the

water dipole at that range. Approximately the same force will presum-

ably act on the ions of the solute. It appears on a closer examination

that this force is not quite large enough to have a serious effect on the

ionic distribution laws. The mean strength /x of the water dipoles is about

5 X 10-1^ E.s.TT. (less than in the vapour state when it is 1-87 x 10-^^), and

the medium near the ion is probably saturated, all the dipoles pointing to

the ion. Hence for a water molecule (and so approximately for an ion)

dxa Dr^

'
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The electrostatic force on an ion at the same place is

These expressions are both modified by the atmosphere of other ions intro-

ducing the factor e-'"' and derived terms, but these do not affect the argu-

ment for dilute solutions in the important region fairly near the ion. The
ratio is /o ^ o i ri«»

er/ZjU, or 4-8 x lO^r.

Since r is always greater than about 2 x 10"^ cm. the pressure term is

probably negligible.

We conclude therefore that we have, with sufficient accuracy,

(924)

This is vaUd for separations of the a and /3 above a certain limit. For

separations below a certain limit (the mean diameter of the a and jS) there

can be no pairs of a and ^. There might be a transition region of some

importance but we shall not attempt to take accoimt of one, and shall

identify the two limits just mentioned.

We now differentiate (924) again with respect to x^ and add the two

similar equations. We thus find

[v.^ »f., - ^ s
f^')] J^^^

... fe-/- n/ (a..Y

V'^.-.^-g(£4S)l---n-'<''-)''"
(F)

It seems reasonable to expect further that
,(925)

dxfi dxfi

is zero or at least negligible as in (570), since the correlation between the

long- and short-range forces is small. We shall neglect this term in (925)

in the rest of the discussion.

We now encounter a difficulty in trying to apply Poisson's equation

to Vp^Wi under the integral sign. The simple direct argument is to say

that the ions are immersed in a medium of dielectric constant D which will

after averaging for the solvent molecules be the same at least approximately

as that for the medium in bulk. For dilute solutions D should therefore be

the dielectric constant for the pure solvent. If we make this assumption

^^^"^ WpWi = - ^TTpz^e/D. (926)

It is however undeniable that the argument is weak. The main part of D
is contributed by the orientation of the water dipoles. In obtaining (926)
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we have really used an illegitimate averaging process by working the com-

plete averaging implied in B {T) in separate stages. Such averaging pro-

cesses cannot be relied on for numerical accuracy, but any error introduced

is not likely to be large. It is the best that we can do here. What is more

serious is that most probably D is not really spatially constant round the

ion owing to a saturation effect, and the exact form of Poisson's equation

should really have been applied. We can only note this deficiency without

attempting here a better discussion. Accepting all these somewhat doubtful

but as yet unavoidable simplifications we are left with

On the meaning of p and the importance of the fluctuation term we

have already commented at length in § 8-8. There is nothing more to add

here. The utmost that we may conclude (and even this is not certain) is

that Poisson's equation

V^2F„^ + ^^^=0 (928)

may be used for Wap with p given in terms of Wa^ by Boltzmann's law,

see (588) and (589), if

kT \ dxp

is small compared with terms retained, and this must be verified a posteriori.

Any non-fluctuating part of Wap may be removed before applying the test.

§ 13-7. The theory of Debye and Hiickel. It was first proposed by Debye
and Hiickel* to determine the electrostatic terms in the characteristic

function of a strong electrolyte by means of the equations above, which

may be written

V.^F., = - ^^^'HyZyy'e-^'^yl^^, (929)

W^p = ez^ifj., (930)

ipa being then the average electrostatic potential round the a-ion of valency

Za . In spite of its insufficient foundation this theory is important, and we
shall develop its consequences in this section.

Since i/^a will be spherically symmetrical we have

Let us suppose first that the condition that ZyeipajkT should be small for

* Debye and Hiickel, Phys. Zeit. vol. xxiv, pp. 185, 305 (1923).
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all relevant values of r is satisfied for all a and y. We can then replace the

exponentials by their first two terms. The first terms give

which is zero, since the solution as a whole is normally electrically neutral.

The second terms leave us with the equation

1 9 ^2 S'Aa^ _ .,2./. .,2 _ 4^^' V . 2 ^>

The solution of (932) gives i/r^ for all values of r sufficiently great. Let us

suppose for simphcity that all the pairs of ions concerned have the same

mean diameter a (or assume a mean size for them all)*. Then (932) holds

for r> a, while for r <a there can be no other ion present, and the electric

intensity for values of r just less than o- must be z^efr^D. We have therefore

{r-^a) ipa= - {Be-"'' + Ce""-),

where A, B, and C are constants. To satisfy the boundary conditions for

r -> 00 we have C = 0, and the conditions of continuity of potential and

induction at r = o- are

From these equations it follows that

B = :

A = -

D \ + KCj'

z^eK 1

D 1 + Ka'

The boundary value of ipa is

(«' =^ra (9^3)

and the average potential due to the rest of the ions at the centre of a

specified a is at the same time

KZa e 1

- rb rr^- (»»*)

The maximum value of z^eifja/kT which should be small to justify (932)

* In view of other uncertainties a more refined treatment is hardly justified.
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can be derived at once from (933). For dilute solutions k or rather ku is

small, so the important term is

oDkT'

For water at 0° C. this is 7 x 10-^ Za,z^l(T. Since even for univalent ions

ZaZ^= 1, this is hardly small for the expected values of a, 3 or 4 x 10-^.

It is impUed* that there is no serious error committed in using it for ordinary

solutions, but this really awaits further investigation using the more

accurate equation (931).

We have yet to consider the legitimacy of ignoring the fluctuation

term. The fluctuating part of T'Fa^ is

^•"^ Dr \l + KU

it is sufficient to ignore kg and examine whether {dWa//dr)^lkT is or is

not small compared with a term retained in (931) such as 2 {dWap'ldr)/r

or dWap'/dr^ or K^Va^'. Comparison with the first is simple. We find the

ratio

ZaZpe^K ri — (1 + kt) e-

2DkT KT

Since for all positive x e*' < 1 + re + a;e*

it follows that the term [ ] never exceeds unity and the omission of the

fluctuation is legitimate if

WW («»«'

is small. This is equivalent to the condition that Wap'/kT should be small.

Since k vanishes with the concentration this condition is certainly

satisfied for solutions sufficiently dilute. For actual numerical values we

write

2^ = 6-06 X lo^o'r^ (S^r^ = r)

so that F^ is the "effective" ionic concentration of y ions in gram-ions

per Htre solution. Then
K = 0-229 X lovr

for water at 0° C. With these values of k, D and T (935) reduces to

and the condition of smallness may be taken to be satisfied for solutions

ji^ normal or less.

We conclude that there is a range of fairly dilute solutions in which

the combined use of Boltzmann's and Poisson's equations may give an

accurate account of the ionic distribution laws, by providing an accurate

* Hiickel, Ergebnisse der Exakten Naturwiss. vol. in, p. 214 (1924).
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method of approximating to the properties of B {T). It does not appear

that the use of (932) in place of (931) can be justified strictly and simply.

This approximation however is not vital to Debye and Hiickel's theory.

It merely allows of a simple formal solution in place of the much more

complicated one of § 13-72, but a simple solution which may be expected

to be a reasonable approximation to the true solution of the equation

proposed. Accepting this, the weakest pomts of the present theory lie in

the treatment of D and the use of jo.

In order to utilize these results to calculate the electrical contribution

Te to T" we must slightly modify and extend the theorem of § 8-91. We
have in general

B{T)= [ ... fe-^'^s+wmT n^ (dw,)^-,
J (V) J

and if the electrostatic energy terms alone are reduced to strength t

Br{T)=\ ... fe-(^*+-'^i)/fc^n, (rfM;,)^^« (936)
• (F) J

The average potential energy kT'^d log Br {T)/dT is then

of which ^^^Tm [ --IWi e-^^s+^-f^mT n^ {dw.Y<
Br [J-) J (r) J

is electrostatic. Keeping the distribution laws unaltered but increasing

each electrostatic energy term from t to r + dr therefore increases the

average potential energy of the assembly by

- kTdr^ log Br (T), (937)
ClT

which is the work required to make tliis change. On integrating tliis we
verify as before that the increase in the work function, or

~kT [log B,iT)~ log B,{T)l

is equal to the work required in the reversible isothermal charging process

to build up the ionic charges from zero.

The application to the theory of electrolytes is immediate. Let all

charges be supposed reduced to a fraction /x. Then /c^ = /x/c since k cc e.

The work done on the assembly in bringing up a charge Zaed/j, to an a ion

is therefore by (934) ^^^ 2^2^ ^^^^

Summed over aU ions and integrated for ^jl from to 1 this gives an expendi-

ture of work

1
{l0g(l + Ka) - /C(7 + 1 (/C0r)2} ,(938)
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When Ka is small this reduces to

— '^^ H N z ^
Q -r\ J-'a-'-^ a'^a. •

We find therefore the standard result

Te — T\m (-^a-^'a^a J

or for KG small

1

{Ka)'
{l0g(l + K(y) - K0-+ i(/CCT)2}

{I'aN^Z,3DT

[13-7

.(939)

.(940)

.(941)

The isothermal work terms above take account of the work of building

up the charges against the field of the other ions. No account is taken of

the work of building up the ionic charges themselves against their own

field. This work (per ion) does not depend on the concentration and is

unimportant in most applications but might affect the specific heat of the

solution owing to the temperature variation of D. The contribution will

depend on the model adopted for the ion. If we may liken it to a conducting

sphere of radius a, then the work of charging is

and the term
^" Si\r„^
2DT

.(942)

must be added to T^. But this model is probably unreliable, and the

calculation would be seriously changed by saturation effects in D.

It is now easy to calculate the osmotic coefficient g. The ideal osmotic

pressure Pq wiU be given by

The actual pressure will be

4^e depends on F only through k, so that by (932)

VdY^ldV ^ - iKd'FJdK,

2DT (/ca)3

Ka (2 + /ca) - 2 (1 + Ka) log (1 + Ka)

1 + Ka

Therefore for the osmotic coefficient g we have

1-9 = /ce2 Jl^N^zJ Ka (2 + /ccr) - 2 (1 + Ka) log (1 + Ka)'

(/ccr)3 (1 + Ka)

For small values of Ka this reduces to

Ke^ HaN^Z,^^-9 =
QDkT Jl^Na

.(943)

,(944)

,(945)
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which written in full is

If the concentration y of the electrolyte is given in gram-molecules per

litre solution, and if each molecule breaks up into v ions, then

'Z^'N^IY = 6-06 X 1020^7.

The factor {
}^ depends only on the valency of the ions and is unity for

univalent binary salts. It is frequently written w. Then inserting numerical

values for water at 0° C. we have

\- g= 0-263M'VM- (947)

Fig. 20. Osmotic coefficients as functions

of the concentration.

Fig. 21. Osmotic coefficients compared with

theoretical values for suitable values of <t.

§ 13-71. Co7nparison of theory and experiment for the osmotic coefficient.

Fig. 20 taken from Huckel's article shows I - g observed plotted against

VM- The theory, by (947), gives straight lines through the origin which

are also shown. The agreement for small concentrations is excellent, and

the observed curves approach their theoretical lines as limiting tangents

the more rapidly the smaller the valency of the ions. This is as it should be,

for the restrictions of the theory are better obeyed the smaller the valency.

For somewhat higher concentrations it is found that the full formula (944)

with usually reasonable values of ct gives an excellent representation of the

observed values. Fig. 21 shows the observed values of 1 - g^ plotted agamst



K2S04

2-69 X 10-8

La(N03)3

4-97 X 10-

MgSO^

3-55 X 10-

0,15

0,10

OfiS
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V'(vy), while the curves are theoretical ones calculated from (944) using the

following values of a:

KCl

3-76 X 10-8

The general agreement is good, but it must be reluctantly admitted that

there is no theoretical reason to expect

such a success, and that the mean ionic

diameters used can bear no simple relation

to the diameters of the ions of the solute

derived in other ways. The formula is

really only acting here as a useful interpo-

lation formula, and a is correcting for a

whole variety of theoretical imperfections

which the foregoing discussion should have

rendered plain. That the a obtained in this

way as a correction to the laws for very

dilute solutions is an omnium gatherum

correction and not a true ionic diameter

is shown sufficiently clearly by Fig. 22.

We see there that the deviations from the

simple theory in the series of alkali

chlorides are greatest for LiCl and least

for CsCl. This requires a greater a for LiCl

than CsCl which is prima facie ridiculous.

The deviations here obviously arise be-

cause the Li-^ ion is too small for the

happiness of the theory.

Unreasonably small diameters have also been derived from the Debye-

Hiickel theory for solutions in water of KNO3 (0-43 x 10"^ cm.) and

KIO3 (0-03 X 10-8 cm.)*, while TlCl in aTlNOg solutionf gives a negative (!)

diameter of — 0-93 x 10-^ cm.

§ 13-72. A more accurate solution of the Debye-Huckel equation. The
impossible diameters mentioned above can in part be ascribed to the in-

accuracy of the solution of (931), when the exponent ceases to be small.

Gronwall has shown how to improve the solution and found that some of

the terms neglected in the rough solution are as large as the terms in kg

which are retamedf . Let us consider the simplest case of a symmetrical

solute, with two ions of charge ± ze. Then (931) reduces to

r^l(^^iF)=^'4^-»^^^"*^ (»*«'

* Debye and Hiickel, loc. cit.; Bjerrum, Dansk. Vidensk. Selsk vol. vii, No. 9 (1926).

t Scharrer, Phys. Zeit. vol. xxv, p. 145 (1924).

X Gronwall, Proc. Nat. Acad. Sci. vol. xiii, p. 198 (1927).
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^"d "' = mT''T- <«*»>

It is convenient to introduce the symbols

Kf, a = KG,

, . ,
dip^ ze

and smce at r = o- -^ = — f^-i,

,

or Da^

therefore ata;=a ^= . (952)
ax a

The differential equation may be written

J^,(.=
|)-.^, = .^^(,), (953)

00 y2n +1

where
(f> {y) = &mhy - y = ^^-^^^ ^

(954)

We now transform the differential equation into an integral equation by

means of the Green's function of the left-hand side*, obtaining

y f'^) - 1%'7-rX f
-"-" - iri'"-'-'] ^ ^ «> "" <«^^>

This equation may be verified by direct differentiation, and attention to

the boundary conditions, which are (952) and y -> as a; -> oo.

The Debye-Hiickel solution consists of the first term only. That is, it

neglects ^ entirely. A next approximation may be obtained by substituting

the crude solution in 0. As /c (and so a) -> 0, this term is of the order of

a^. It can be shown (by expanding y in powers of 6) that the terms now
neglected are of the order of a^ log a. We write, then,

y (a) ^ ^— r e«-* ch 1 -^— —I tdt, (956)

~ 6 (1 - a + a2) _ 2 > ^
, e2("+i)(«-*) ^-^n

^^^

n = 1 2W + il Ja

~ 6 ( 1 — a + a^) — a^ 2 -t^ , , , ,^ rr-

.

^

n=i (2?i+ 1)! (2w- 1)

Thus approximately

^» (^) = Wa--D V-'^+ '^\?i (2^+l)!(2n-l) j
^'''^

The equation for ip^ is similar. The potential due to the distribution about

the central ion is given by the second term.

* See Courant-Hilbert, Methoden der mathematischen Physik, vol. i, pp. 273-275 (1924).

21-2
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We now reduce all charges by a fraction [x, and find the work required

to increase /jl to jjl + d/x. It is

— 2NZ€du .
——- 1 — /ccr/x + /CCT/A 1, —Tin I/O TT •

Integration from /x = to jw, = 1 gives the contribution to the work

function

-kT¥.= 2Nz^

3D f/ccr + |/CCT S
{z^e^/DkTay

n^-,{2n+2)l{2n-l)

If (Tq be the diameter inferred from the crude theory
.(958)

- kTY. =
2Nz^

3D (1 ^xao), .(959)

neglecting powers of k higher than the square. The two equations for Te

^g^^®^
. - {z^e^/DkTaY-

^0 = ^ - \^, (2. + 2). (2.-1)
(^^^)

This agreement holds for any thermodjniamic function, such as the osmotic

pressure or the free energy, which is obtained from ^ by differentiation

with respect to the volume. For the volume enters into (958) and (959)

only through k, and does not affect (960). The relation between CTq and a

may be written
DkT.,^^^L^y

(961)

oo 2lx^^~^
where O (x) X — H, ,(962)

, = 1 {2n+ 2)! {2n- 1)'

These formulae give more reasonable diameters, as appears from the

following table taken from Gronwall.

Table 44.

Diameters of electrolytic ions by elementary and extended theory

.

Solvent
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where G is Euler's constant, and [s''] = 'LiNiZ/+^/'EiNiZi^. As /c -> the

largest terms in the bracket are

I eh

4 DkT
1-^'^logl^. (964)

so that the behaviour of (964) is quite different from that of the crude

result 2

- kTW, -= - i^ S,.V,2,2 (1 - l^ao) (965)

We may however work with a ctq defined by the equation

-krr.^-i ^^ ^,N,^.^ ji - |.., - [f;^ (log 3;^ - c + i)|

,

(966)

neglecting smaller infinitesimals as /c -> 0. Then

^« + ^mr^^g ^/^«= ^ + ^m^^^g V-- 2^?3 (r+l)!(r-2) >

(967)

that is,

where
00 / \nOl^n r^M+112

0(a:) = a;-|log(x)+ S i-i-|f^ L^_-i- (969)

Since the relation between ctq and a is again independent of /c, it will hold

for all thermodynamic applications as before. The conclusion that there

should be this divergence between symmetrical and luisymmetrical electro-

lytes seems to be supported by the facts.

§ 13-8. Specific heats of solutions of electrolytes and indications of necessary

theoretical developments. The considerations advanced in this concluding

section are in the main derived from Zwicky*. We shall only attempt a

short descriptive account of the nature of the problems and of the tentative

solution proposed, for a satisfactory theory requires a theory of the

pressure variation of the specific heat of water, which has not yet been

developed in quantitative form.

The outstanding fact is that, contrary to the naive theory of § 13-4,

the specific heat of a solution of a strong electrolyte at ordinary tempera-

tures and pressures is appreciably less than that of the water in the solution

in its pure state. With this we may associate the well-recognized fact that

solutions of electrolytes have equations of state wliich are very close to

that of water under high pressure, and that the specific heat of water at

* Zwicky, Phys. Zeit. vol. xxvn, p. 271 (1926).
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temperatures from 10° C.-60° C. diminishes with increasing pressure. This

variation of the specific heat has not been directly measiu'ed but derived

from measurements of specific volume and the thermodynamic relation

dp dT^'

This property of water is satisfactorily accounted for in a quaUtative way
in terms of the formation of complex molecules (polymerization) of large

specific volume compared with the simple HgO. This large specific volume

is well known in ice. Since dissociation of these complexes reduces the

volume of the constituent molecules in water the degree of dissociation is

increased by increasing the pressure. The melting of ice under pressure is

simply the extreme case of this phenomenon. It is easy to see that such

properties can give rise to a point of maximum density at given pressure.

For as the temperature is raised at given pressure there are two processes

going on. One is the natural expansion of any fluid (of fixed constituents)

due to the increasing kinetic energy of translation and therefore rate of

transfer of momentum. The other is the dissociation of large complexes

into constituents of smaller total volume. This acts in the opposite sense

and a balance point is possible, and, as we know, occurs in water.

Now consider the effect of this polymerization on the specific heat of

the water. The specific heat of water at room temperature is by definition

18 calories per gram-molecule, and falls to 16-5 calories at 100° C. If we
think of the constituents of water as simple rigid HgO molecules they have

6 degrees of freedom and, even granting them the full potential energy in

each degree of freedom as well as the kinetic energy they must possess,

the specific heat could not be more than 12 x ^R or 12 calories. To this

internal molecular energy must be added, to an amount which can be

estimated closely from the properties of HgO vapour at 100° C. It can

certainly there not exceed 0-5 calorie, and would be negligible at room
temperature. There are thus 6 calories unaccounted for without poly-

merization, which can (and must) be properly accounted for by the heat of

dissociation when polymerization is taken into account. But since pressure

decreases the polymerization pressure will decrease Cj, at all temperatures

at which polymerization still plays a dominant part. This includes room
temperatures. At higher temperatures the variation of Cp can change sign

in consequence of the entry of other effects.

Zwicky has shown that the specific effects in solution of electrolytes

can be at once interpreted at least qualitatively in terms of these bulk

properties of water, and the intense pressure field which must surround an

ion due to the attraction of its inhomogeneous field for the water dipoles.

He estimates the mean dipole for (polymerized) water molecules at 5 x 10~^^

(as against 1-87 x 10"^^ for HgO in a vapour). He then shows that changes
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of specific heat can be expected of the following amounts per gram-

molecule of simple univalent salt dissolved:

(1) Due to the increase of number of degrees of freedom of the assembly

for the dissolved matter
12 calories.

(2) Due to the electrical polarization of the medium round each ion

— 9-8 calories.

In this estimate an attempt is made to allow for the saturation of the

polarization round each ion.

(3) Due to the compression of the water round each ion

— 119 calories.

These amounts have to be corrected for overlapping of the ionic fields.

(4) An unknown amount for hydration.

For further details Zwicky's paper should be consulted. The net result

is convincing that the explanations offered are on the right lines, and that

it only requires a proper elaboration of an exact theory to give complete

satisfaction in the explanation of this large group of important facts.

§ 13-9, Brownian movement. In connection with the properties of

liquids it is natural to consider the phenomena of Brownian movement.

Though the phenomena are observable and similar in all fluids, it is in

liquids that the earliest and most striking observations have been made.

As we now know the phenomena of Brownian movement are merely the

phenomena of molecular agitation, exhibited on a reduced scale by a

particle which is very large on the molecular scale—so large that its

diffraction effects at least can be seen in an ultramicroscope—and yet so

small that its velocity of thermal agitation in the equilibrium state is

sufficient to give it visible displacements in reasonable periods of time.

This identity was finally established by the experimental work of Perrin*

verifying the theories of Einstein. Subsequent investigators have added

more accurate measurements in even closer accord with the theory. By
the study of suitable particles suspended in a fiuid (1) we see the molecular

motions going on before our eyes, (2) we can check the assumptions of

statistical mechanics in a rather detailed way by proving that the charac-

teristics of the Brownian movement agree with the demands of that theory,

and (3) we obtain a direct, though not very accurate, method of measuring

• molecular magnitudes.

* Perrin,La theorie du rayonnement et les quanta {\^\2), "Les preuves de larealit^moleculaire",

Einstein, Ann. der Phys. vol. xvn, p. 549 (1905), vol. xix, p. 371 (1906).
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§ 13-91. The particle "atmosphere". In a liquid in a field of force, con-

taining particles, but so few that their mutual volume interactions may be

neglected, we shall find the atmospheric density law

v=Voe-^Wfc2'. (970)

This follows at once by generalizing (905) in the manner of the concluding

paragraphs of § 8-3. M' is the apparent mass of a single grain, that is its

mass less the mass of the fluid it displaces. Taking logarithms and intro-

ducing the density A of the grains and S of the liquid, we have for spherical

grains

kT log {voM = irra' (A - S)gz. (971)

In this equation Vq and v can be determined by actually counting the grains

visible in the field of a microscope. The other quantities are all easily

measurable except a the radius of the grain. This can be fixed in various

indirect and independent ways, so that (971) becomes an equation for k,

after verification that T log {vjv)/z is constant. The value obtained by

Perrin in this manner was 1-22 x 10"^^ in sufficiently good agreement with

the correct value.

§ 13-92. The diffusion movements of a single grain. If one attempts to

follow as closely as possible the actual movements of a single grain and

works out an observed "mean velocity of agitation", the value so found is

always of the order of 10~^ times the value given by the equilibrium theory

for the average velocity of a particle of the given mass. Such estimates

however are necessarily grossly wrong. We can never follow the details

of the movement of the grain, which has a kink at every molecular collision

—about 10^1 times a second in an ordinary liquid*. What we observe in

the way of displacements are of the nature of residual fluctuations about

a mean value zero and have little direct connection with the actual detailed

path of the grain. [To our senses (pushed to their furthest in the form of

the best cinematograph taking pictures at 10^ per sec.) the details of the

path are impossibly fine. It may fairly be compared in a crude way to the

graph of a continuous function with no differential coefficient. Such a

curve has not got a "length", and no idea of length can be obtained from

any inscribed polygon.]

A more subtle analysis is necessary. Confining attention to displace-

ments in one direction, let the concentration of the grains at any place

and time be v {x, t). Of those in any interval x, x + dx let the fraction

fr {x'— x) dx'he found after a time r in the interval x' , x' + dx' . Tliis fraction

can depend only owx' — x and not on x' and x separately. By integrating

* That is, so frequently that it is really wrong to think of separate collisions.
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the contributions found in dx' at time t + r from all other elements we
find . + «,

u {x' , t + t) = \ V {x, t)fr {x' — x) dx,
J - ca

r + oo

= v{x' -X,t)fAX)dX (972)
J -oo

This equation must hold for all x', t and t*. It is satisfied in the equilibrium

state in which v is constant in space and time, since by its definition

r^fr{X)dx=i.
.' - CO

Let us first suppose that t is small, and expand both functions v. Then

+ 0{x4friX)dX (973)

The odd powers of X may be assumed to vanish on integration by sym-

metry, and we shall verify a posteriori that the (t^) and O (X*) terms are

negligible for sufficiently small t. We then find

T
dt 2^ dx'^

^5^. (974)

•+00

where P = / X% {X)dX. (975)
— CO

This is Einstein's diffusion equation for the displacements of single grains.

It is easily verified that f^/r must be a constant independent of r and

characteristic of the grain, as is reaUy required for (974) to be significant.

For if T is not too small (greater than 10~^ sec. wiU suffice|) the velocity

of the grain at the end of the interval t will be completely independent of

the velocity at the beginning. Displacements in consecutive r-intervals

will therefore be independent. This being so if t' = ^ and Xj^, ..., Xj, are p
consecutive a;-displacements, then

If then we average x"^ for a large number n of grains or displacements the

product term will vanishJ and we shall find

or e^y^i^l-r. (976)

* Compare the similar treatment of velocities in § 19-5.

t This estimate is made by calculating how long the viscosity of the liquid will take to reduce

the velocity of a sphere the size of the grain to an insignificant fraction of its initial value. See

Perrin, loc. cit.

X Strictly, from the independence and the definition oifr,
-+00 r+oo

I X Xj fr {Xi)fj (Xj) dx.dxf,
— 00 •' — 00

which vanishes by symmetry.
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The approximation leading to (974) will still be adequate for t's large

enough to satisfy (976).

Unlike the true velocity of agitation the diffusion constant

D = ^V2t

of a grain is directly measurable. It has been shown by Einstein that such

measurements may be made to lead at once to a determination of k. We
apply the foregoing arguments to an atmosphere of grains in equilibrium

in a field of force. The rate of diffusion under the concentration gradient

must then just balance the directed effect of the field of force. If a force F
acts on the grains, assumed spheres of radius a, they acquire, by Stokes'

law, a steady velocity v given by
F

QTTfjia'

where /x is the viscosity of the fluid. The number crossing unit interface in

unit time is therefore w or t^

V =
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assuming the legitimacy of the various inversions of limit operations. We
therefore find

This equation is to hold for all x' , t and r, so that it must hold for any

initial law of density distribution v {x' — X). It therefore implies that*

92 a

r + oo

v{x' - X, t)

J — 00

D /, (Z) dX = 0.

D
aX2 dr

fr (X) = 0. ,(978)

The displacement distribution function fr (X) is therefore that solution of

(978) which places all the grains near X = at r = (the point-source

solution). Hence

fr (X) = ,^-77^^ e-^^/^^ (979)

or fr{X)
1 1

.(980)
V(27r)^

This law, the error law, for the displacements has been exhaustively tested

by observation. Perrin gives the following set of counts on the displace-

ments of a grain of radius 2-1 x 10-^ cm. at 30 sec. intervals. Out of a

number N of such observations the number of observed values of a;-dis-

placements between Xi and X2 should be

N r^2

1

Table 45.

Observations and calculations of the distribution of the displacements

of a Broivnian grain.

Range of

X X 10* cm.
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§ 13-94. Einstein's extension of (977). The argument establishing (977)

can be extended to the displacements with respect to any coordinate a

(e.g. an angular one) in which the normal equilibrium distribution is uni-

form. If ^2 is the mean square displacement in this coordinate in time t

due to the molecular agitation then by the old argument A^Jt is constant.

The distribution in a satisfies the same diffusion equation

and the number of particles passing by diffusion across a given value a

of the coordinate in unit time is again

da'

in the direction of v decreasing.

Now suppose an external field of potential energy
(f)

{a) acts on the

grains. In the equilibrium state we should have the distribution law

Suppose further that for an individual grain under a force W we have a

steady velocity controlled by viscous resistances and given by

da
" dt~^'

Then in the equilibrium state whenT = — </>' (a)

da K

But
Idv _ cf)' (a)

vda kT '

Therefore D = kT/K = lA^jr. (981)

This is the required generalization of (977). For a sphere rotating in a

viscous liquid about a fixed axis

Therefore for rotational displacements

A^ kT
,(982)

an equation confirmed experimentally by Perrin.

Footnote to p. 330. The hypothesis that the terms (X*) etc. are all O (t^) is essential to

§ 13-93 and the result is not necessarily true without it. The terms X* ... might contain terms

of order t, when (974) would contain dh/dx*, If the usual diffusion equation (974) is exact,

then the distribution function is Gaussian and conversely as we have shown in the text. But this

is not so on the scale of the eddy diffusion in the atmosphere. For Brownian movement Perrin's

experiments show that the diffusion equation and the distribution function have their simplest

form. Appeal to experiment cannot be dispensed with. I owe this footnote to Mr J, A. Gaunt.



CHAPTER XIV

ASSEMBLIES OF ATOMS, ATOMIC IONS AND ELECTRONS

§ 14-1. Introductory . We have already had occasion to consider inci-

dentally examples of gaseous assemblies in which atoms, ions and electrons

are present in dissociative equilibrium. We shall have occasion in the

following chapters to discuss systematically assemblies, especially at high

and very high temperatures, which are composed entirely of atomic ions

and electrons. These discussions of course have reference to the state of

matter in stars. It will be necessary to give a general survey of the present

state of atomic theory, at least on the formal descriptive side, so that we
may be able to write down at will the partition function, or an effective

approximate form of it, for the internal energy of any atomic ion. We
have then to reformulate the general theory of dissociative equilibrium in

terms of atomic ions and electrons instead of atoms and molecules and

introduce correcting terms for the electric charges of the particles. This

would be a simple matter were it not for the outstanding difficulty of the

convergence of the partition functions which must be disposed of in some

way during the process.

We shall assume that no molecules are present in the assembly; they

can easily be included when required. Let

Mq^ be the (average) number of neutral atoms of atomic number Z in a

volume F;

M/ be the (average) number of such atoms r-times ionized;

N be the (average) number of free electrons.

In general atoms r-times ionized must be defined to mean nuclei accom-

panied by Z — r electrons, each of which has insufficient energy to effect

an escape. These Z — r electrons combine together to form the stationary

states of the ion in which the state of each electron can be described by

four quantum numbers. The most convenient state of conventionally zero

energy is that state of the assembly in which the only constituents are

electrons and bare nuclei at rest at infinite separation. The bare nucleus

is assumed to be structureless. Tliis is of course untrue, but unless we are

to discuss the break-up and re-formation of nuclei their structure is irre-

levant* and it is a legitimate simplification to regard them as structureless

massive charged points, for which the standard weight (?pi ... dq^/h^ is

assigned to the element of phase space dp^ ... dq^. The bare nucleus will

* This is of course only correct because we are not concerned here with formation of molecules.

We have seen in the study of Hg in § 3-4, and again in § 7-41, that the nuclear weights are not

only relevant but important.
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therefore have a partition function VF/ (T) of the usual form (342). The

electron is now believed, on spectroscopic evidence, not to be structureless

but to have an axis of spin and two possible orientations in a magnetic

field. Its spin is invariable in amount and it can otherwise be regarded as

a massive charged point, for which when free the weight 2 {dpj^ . . . dq^jjh^ is

assigned to the element of djJi . . . dq^ . We shall use m for the mass of the

electron and m^ for the bare nucleus Z. It wiU never be necessary to dis-

tinguish between m^ and m^ + rm (r <z). The partition function for the

free electron wiU therefore be VG (T), where

fiCT
=''"'*,

(983)

which we have already used in Chapter xi.

Consider next the normal state of each atomic ion. Let the successive

ionization energies of the atom Z be Xo^, Xi^' •••' X^z-i ^-nd the weights of the

normal states w/. These x's are all to be defined with reference to a series

of normal states or states of least energy so that x/ is the work required

to remove one electron from an atom, which has already lost r electrons

and is then at rest in the state of lowest energy possible for its remnant

of {Z — r) electrons, and leave it again in its state of lowest possible

energy for the remnant oi {Z — r — 1 ) electrons, the atom and the extracted

electron being at rest at infinite separation. For the r-times ionized atom

in its normal state the partition function VF/ (T) is therefore given by

F/ (T) = (2^^y^)^ ru/e^^r'+-+>^'z-,m (984)

Each ion possesses in addition a set of stationary excited states of greater

energy content. If every excited state could be treated formally as a

constituent of a perfect gas this would cause w/ to be replaced by b/ (T),

^^^®^® b/{T)= i: {vj/)se-^^r-^^r%}l'^^. (985)
s =

The state 5 = is the normal state and we continue to write w/ and x/
instead of {m/)o and {x/)o- The energy of excitation is x/ —

(Xr'')s5 so that

{x/)s is the energy corresponding to the sth spectral term (suitably ordered)

of the r-times ionized atom Z. In fact b (T) does not converge. The altera-

tions necessary wiU be discussed at length later in §§ 14-4, 14-5. It is evident

from (985) that an application of statistical mechanics to such assemblies

requires a working knowledge of or approximation to {w/)s and (x/)s ^^r

all r, s and z.

§ 14-2. General features of atomic structure^. We shall start by sum-

marizing the general features of atomic structure which will form the basis

* We adopt in this paragraph the most modern normalization of the quantum numbers

n, k, j, s of an electronic orbit, taking the numbers that are natural to the characteristic solutions

of Schrodinger's equation. These are also practically the most convenient for most descriptive
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of our discussion. Following Bohr it is now well known that the electrons

in the atom can be classified first of all according to their principal quantum
number n (1, 2, 3, ...) and azimuthal quantum number ^ (0, \,2, ...,n — 1)

as % electrons. The broad outlines of the periodic table of the elements can

be at once accounted for in tliis way if it is assumed that just so many
electrons and no more can be packed into each of these groups or sub-

groups. It was recognized at once that the maximum number of electrons

in any atom with principal quantum number n must be 2^^ to fit the

periodic table. For some time the numbers of electrons in the n^. subgroups

were uncertain, but thanks to the work of Stoner and Pauli it was shown
that the number must be 2 {2k + 1). We recall of course that

2^1: {2k + 1) = 2n\

Pauli in particular was able to show that this maximum number of

electrons was an example of a general rule governing the whole structure

of atomic stationary states, namely that two electrons in one atom can

never occupy orbits described by exactly the same set of quantum numbers.

We shall have more to say of this rule later on and shall refer to it mean-
while as Pauli's exclusion principle or simply Pauli's principle. He formu-

lated it on purely empirical grounds, but it has since been shown by
Heisenberg and Dirac to possess a natural basis in the new mechanics.

As a result the number of electrons 2 {2k + 1) and 2n^ in subgroups and
groups, which yields at once the general structure of the periodic table, may
now be regarded as a formal deduction from the new atomic mechanics.

When any group or subgroup of electrons is full it forms a symmetrical

structure without mechanical or magnetic moment and interacts with other

electrons at least to a first approximation like a simple central field of force.

We have started by introducing the closed groups in the atom on account

of their descriptive importance, but logically they are complex and are

arrived at at a later stage. We turn next therefore to describe the states

of a hydrogen-like atom with just one electron, observing that owing to

the symmetry of closed groups any atomic ion containing only closed

groups behaves qualitatively exactly like a bare nucleus in forming states

for the next electron. There are only quantitative energy differences in the

states due to the different effective central field.

The states of the hydrogen-Uke atom containing one spinning electron

are detscribed according to the new mechanics by four quantum numbers
n, k, j, and s. The principal quantum number n takes (as of old) the values

(1, 2, 3, ...). The azimuthal quantum number k takes the values (0, 1, 2, ...,

n — I). This holds so far equally for a structureless electron. We note also

purposes and had been used empirically for that purpose by Sommerfeld and others previous to

the wave theory. We use s in preference to the commoner m to avoid confusion with the mass of

the electron.



336 Asse?nblies of Atoms, Atomic Ions and Electrons [14-2

that there are no longer any artificial exclusions of orbits for mechanical

reasons such as "hitting the nucleus". For small quantum numbers at

least the mechanical orbits of the older theory have no meaning. Every

solution of Schrodinger's equation is acceptable and accepted, and we note

that for any n there is always one solution (that for which k = 0) without
" orbital" angular momentum. The spinning electron has a spin of constant

magnitude. As we have already seen in Chapter xii, the quantity repre-

senting total angular momentum of any isolated system has on the new
mechanics the values {IiJ^tt) {i [i + 1)}^, and its resolved part in the direction

of a magnetic or other orientating field the values + i, ..., — i. For the

electron we must assume ^ = | . This momentum then compounds with the

"orbital" momentum k to give the total angular momentum J of the atom.

The j values of the atom are therefore

1k= 0, j = 2

,

k> 1, j = k± ^.

The total moment of momentum of the atom is represented as usual by
{h/27T) {j {j + 1)}^. If the atom (or electron and orbit) as a whole is orientated

by an external magnetic field, then the possible components of the momen-
tum along the field are sh/27T, where s takes the (2J + 1) values

-j<s< + j.

The complete set of states therefore corresponds to the following sets of

values of the four quantum numbers n, k, j, s.

Table 46.
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We see at once that they verify the formulae lii^ and 2 (2yfc + 1 )= 2/^ +2+ 2A;

already given, and, assuming Pauli's principle, that the general structure of

the periodic table must follow. We note in addition that structurally the

spectrum of hydrogen is exactly analogous to that of an alkali; the only

difference arises from the accidental coincidence of certain terms in the

hydrogen spectrum for different values of h which do not coincide for an

alkali owing to the energy variation with h in a non-Coulomb central field.

To an approximation which is in general ample for our applications the

terms of a true one-electron spectrum depend only on n and are given by
the Balmer formula

Xn = RhcZ^ln'^. (986)

The typical one-electron spectrum is thus (in agreement with observation)

what is called a doublet spectrum. It consists of sets of terms labelled

^8, 2P, ^D, ^F, ^G,... corresponding to ^ = 0, 1, 2, 3, 4, ..., of which the ^S

terms are single and all the others double. Different terms with the same
label correspond to different values of n, but their structure is always

independent of n. All the terms are completely resolved by a magnetic

field so that no degeneracy remains. We therefore expect that the weight

unity should be attached to each magnetic state, and we shall find that this

checks up with the limiting principle. The weight of all -S terms is therefore

2, of the -P terms 4 + 2 = 6, of the ^i) 6 + 4 = 10 and so on, or in general

the weight of each separate term is 2J + 1. At the moment this is only

justified for strictly hydrogen-like atoms, but we shall see directly that on
the same basis all closed configurations have also weight unity and the same
set of weights therefore apply to the states of all atoms and ions con-

structed of closed groups plus one extra electron.

When we come to atoms with more than one extra electron the same
principles can still be applied. Subject always to exclusions by Pauli's

principle, if we have two electrons in n, k, j, s and n', k', f, s' orbits,

originally thought of as independent of each other, we obtain thus one

possible atomic state. Subsequent introduction of the mutual perturba-

tions may alter the energy but cannot touch the existence of the state.

For given n, k and n', k' , for example, the variations of J, s and/, s' are

independent and the total number of states found should be

22 (2^ 4- 1) (2^•' + 1). (987)

This is in fact correct. If we aUow k and k' also to vary the total number
of states for given n and n' should be

2^n^n'^, (988)

which is agam correct. In practice of course the actual states of an atom
with two electrons do not present themselves in this way. The atom as it

were constructs itself by compounding the four momentum vectors of the

two orbits and the two electrons in a certain order of tightness of binding.
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The four vectors have possible components in a specified direction ranging

between ± ^, ±k' , ± |, ± 2 > respectively. It can be shown without much
difficulty that the order of compounding is without effect on the total

number of terms and total weight or number of magnetic states. The com-

position commonest in actual two-electron spectra is based on the formation

of the vector orbital momentum / from k and k'

,

\k-k' \<l<k + k' {l=kiik' = 0), (989)

and the electronic momentum r from | and -|,

r = 1,0. (990)

Then I and r combine to give the j-values specifying the total moment of

momentum of the atomic system (or rather its maximum resolved part),

^^^^^y li_r\<j<l + r {j=liir=0). (991)

In the particular case of two electrons we therefore get

j = l, (992)

j =1+ 1, I, I- 1, (993)

that is sets of singlets and triplets containing four terms in all for given I

of total weight 4 {21 +1). li k' = 0, 1 = k, and this agrees with (987). If

k, k' 4= 0, then we may suppose k' ^k (otherwise we interchange them),

and the possible I values are {k + k'), {k + k' — 1), ..., {k — k'). The total

k + k'

number of terms is 4 {2k' + 1) and the total weight 4 { 2 {21 + 1)} or
k-k'

4 {2k + 1) {2k' + 1) in agreement with (987). Subject still to exclusions by

Pauli's principle the argument can be extended to any number of electrons

extra to the closed groups. The total number of states formed by q such

electrons in {ni)j,^, ..., (Wg);^.^ orbits is always

2'i{2k^+ 1)... {2k, + 1), (994)

or in n^, ...,n^ orbits for any k's

2''ni^-...n,\ (995)

It will be remarked that this number of states is only obtained if we regard

the electrons as distinguishable and not allowed to interchange. If we

allowed q' distinguishable electrons to be permuted we should expect to

get q'
! times as many different states.

Let us now try to put the maximum number 2 {2k + 1) of electrons

into any one subgroup of azimuthal quantum number k, remembering

Pauli's principle. For all these electrons n and k are the same and therefore

one at least of J and s must differ for any pair of electrons. Since there are

exactly 2 {2k + 1) different pairs of possible values of j and s there is one

way and one way only in which the electrons can be inserted (permutations

being disallowed). There must be one electron in each orbit, and since the

values of s are symmetrical about zero the resultant j for the atom is zero,
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and we have a single state of weight unity. This is the theoretical basis of

our previous assertions about the properties of closed groups and subgroups.

There are of course always reductions in the number of states given by

(994) and (995) whenever two electrons have the same {n, k) or the same ?i.

This is of particular importance for the smallest possible values of n and k,

when it describes the fact that certain otherwise expected spectral terms

do not occur. For larger values of n it can usually be ignored, for what will

be required is the asymptotic form of (995) for large n, and it is easy to see

that (995) remains asymptotically true in spite of Pauli's principle. It will

be sufficient to consider a simple case of two electrons in states of the same

n, and to exclude all states of the same k which of course is a gross over-

estimate. The total number of states by (995) would be 4#. By the other

estimate the actual number is at least

4''2o {2k + l){2k' + 1) (k^k'),
k,k'

or 4^4 -""i: (2^'+ 1)2,

which is asymptotically still 4n*.

In assigning these total weights we have been counting together all

states constructed out of so many orbits of given {n, kys or given n's. It

is often permissible to group the orbits of higher quantum numbers in this

way because the differences of the energies of the various states in the

group are not significant. For states of lower quantum numbers this will

not always be true, though it is often even then legitimate to group together

all terms formed out of orbits of given (w, k). We should therefore complete

these rules by formulating the corresponding rules for the weights of single

states (e.g. one of the P or D terms of an alkali spectrum) and for a group

of multiple terms (e.g. the ^^air of P or D terms of an alkali spectrum).

The necessary analysis has already been implicitly given.

The terms of any atomic spectrum can be conveniently classified into

multiple terms and the multiple terms into sets of sequences to which the

labels S, P, D, F^G, ... are attached. There is just one such set for a one-

electron spectrum; in complex cases there may be many more. The labels

S, P, D, F, G still correspond to the values 0, 1, 2, ... of I. The number of

components of any multiple term has a maximum value p (equal to 2r + 1).

The number of components in the multiple S, P, D,F,G, ... terms is always

the lesser of the two numbers {21 + 1, 2/- + 1). A set of terms of maximum
multiplicity* p is labelled pS,fP,''D,''F,.... In no case can p - I he

greater than the number of electrons forming the incomplete group of

* For this the symbol r (or i? or 2R) is more often used, but we have used r for the associated

quantum number.
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orbits being compounded together. The individual terms of a multiple term

are distinguished by their J values derived from (991) and are labelled

pS.,'>P.,pD ,pF., ....
j' j' j' J'

A number n can be prefixed to this symbol to specify the current number
of the term in the sequence, or sets of numbers % can be prefixed to specify

the quantum numbers of the group of orbits out of which it is constructed.

In any case any such term is degenerate and splits into 2j + 1 magnetic

states in an external field, so that its weight is 2j+ 1.

One other type of grouping is sometimes employed. We may group

together all the terms arising from the addition of q electrons in given w^.

orbits to an atomic core wliich is not composed of closed configurations but

has some of its electrons in an incomplete group of given n\, orbits. Remem-
bering the effects of Pauli's principle the set of orbits composing the core will

give rise to a countable number of states Wc , which is the weight of the core

if its energy differences are insignificant. The result of this is of course that

the total number of states of the final system is no longer given by (994)

and (995) but is larger by the extra factor Wc.

We collect together the leading results

:

(1) The weight of a single term f8.,^P .,pD., ... in any spectrum of

any atom is
2j + 1.

'
(996)

(2) The total weight of any multiple term ^S ,<'P ,cD, ... {I = 0,\, ...)

in any spectrum of any atom is

(2r + 1) {21 +1) (2r + 1 = p). (997)

(3) The total weight of all terms arising from q outer electrons in given

n^ orbits attached to a core of total weight Wc is

2M2A;i+ 1)... (2^,+ l)ta,. (998)

If the core is a bare nucleus or consists of closed groups of electrons,

then n>c = 1. This formula is subject to reductions when any of the q outer

electrons are in orbits of the same n and k.

(4) The total weight of all terms arising from q outer electrons in orbits

of given principal quantum numbers n attached to a core of total weight

^'^^
2«V"-Vrac. (999)

If the core is a bare nucleus or consists of closed groups of electrons,

then cjc = 1. This formula is also subject to reductions when any of the q

outer electrons are in orbits of the same n.

There are no exceptions to these rules.

The foregoing count refers explicitly only to the assumption of non-

interchangeable electrons. This however is exactly what we require, if in
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combining the weights for the whole assembly we multiply as usual the

complexions for any particular example of the assembly by

_
^ . 11^ \iYx .)^ (1000)

where X is the total number of electrons, bound or free. The factor X IjN I

is the total number of permutations of all the electrons in the assembly in

which a number iV, unspecified in order, are free. Permutations of the free

electrons are allowed for in the calculation of the usual partition function.

This factor therefore allows completely for all possible permutations of the

individual electrons, now no longer regarded as distinguishable, in a single

atom. If we regard certain electrons as permanently bound in specified

orbits, they are then simply omitted from X and are no longer counted in the

possible permutations in a single atom. The same weights must be used.

It seems probable however from the later developments of the new
mechanics that all the electrons in any atom must be thought of as con-

tinually changing places, and classical mechanics probably requires this

too. The method of counting complexions based on the older statistical

mechanics which we employ in this monograph would therefore require us

to count the states of an atom with q' specified electrons as q'
! more

numerous than those given here. At the same time, since the interatomic

permutations are then already allowed for, the symmetry number <j = q' \

must be introduced into the denominator of (1000) to avoid a redupHcated

calculation of these permutations. The symmetry number therefore may
be allowed to disappear; and the correct count is given by using rules

(l)-(4) and (1000). This result is perhaps arrived at in the older theory in

a manner not altogether satisfactory. It is comforting to find that it is

confirmed in the newer form of statistical mechanics discussed in Chapter xxi.

We may embody this conclusion in rule (5)

:

(5) The weights of rules (l)-(4) are to be combined together as they

stand to form the weight of any complexion of any example of any assembly,

the number of examples being given by (1000).

In conclusion we shall find it useful in applications to have a table of

the weights of the lowest states for a number of atoms. The weight which

is of most value in this connection is the sum of the weights of all terms

in which all the electrons are in orbits of the normal (least possible) values

of n and k. In cases of doubt as to which orbit is normal after Z = 18

(e.g. between Sg and 4^) the most useful value refers to states of ions of

large core charge. For these there is no doubt which is the normal orbit

for the effect of the smaller n overwhelms that of the larger k. In these

calculations full account has been taken of Pauli's principle. The weight

is the weight of the group of normal terms for the atom named or for any

atomic ion with greater nuclear charge and the same (stated) number of
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electrons. After atomic number 18 the normal state of the atom and singly-

charged ion with the stated number of electrons may be different, as one

or two of the Sg orbits may be initially replaced by 4,, orbits. The atomic

symbols are therefore inserted purely as a descriptive reminder, and it is

not implied that the weights necessarily apply to the normal state of a

neutral atom with Z electrons, but only to the normal state of ions of

nuclear charge Z and the stated number of electrons provided Z is large

enough. In the range of this table it is probably sufficient that Z should

exceed the number of electrons by two or more.

Table 47.

Electrons in closed and unclosed groups*.
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values must be taken. For the later smaller terms (1001) will usually

suffice, or sometimes even rougher approximations such as zero.

The only important quantities remaining to be specified before we can

handle assemblies of ions and electrons are therefore the ionization energies

X/ and to a less extent {x/)s for small s. As we have said, these must in

genera] be taken from observation, but this can only be done directly when
the corresponding spectrum has been fully analysed. Thus Xo" ^^^ Xi

(sometimes X2' ^^d X3~ or even Xs,') have usually been determined in this way,

but much work will be required before the higher values are thus deter-

mined. It must be remembered that these are the successive ionization

energies of the atom. The removal of (say) the qth electron often corre-

sponds to a process well known and accurately observed in X-ray spectro-

scopy, but the energy values derived from X-ray spectroscopy are valueless

to us. For these energies are the energies required to remove certain

electrons from an intact atom or molecule, while we require to remove the

same electron when all the outer more loosely bound electrons are already

gone. This often requires twice as much energy—in certain cases it can

even be as much as five times as great.

We must fall back therefore on theoretical asymptotic formulae and

extrapolations by their means of known results. It has been shown by

Hartree* that the majority of the x/ can be fixed with reasonable security

in this way. Hartree has constructed tables for oxygen, iron and silver as

representative atoms, and others can be constructed by his methods. But

most calculations of highly ionized assemblies such as stellar interiors can

be carried through for representative atoms or simple mixtures and need

not employ large varieties of atoms.

In constructing and using a table of successive ionization energies we

must assume a definite order in which the electrons are to be removed (or

to return) which is the same as the order of tightness of binding. In accord-

ance with the arguments of the earlier part of this section we assume the

order

2 (lo), 2 (2o), 6 (2,), 2 (3o), 6 (3^), 10 (3,), 2 (4o), 6 (4,), 10 (4,), 2 (5o).

There are of course the well-known temporary departures from this order

already mentioned, and the two 5^ orbits do not follow the 42 orbits but

the 43 orbits for the heaviest elements. We shall not usually make calcu-

lations explicitly for these. We give below tables taken from Hartree's

paper. They were calculated in 1924 and could be made more accurate if

revised now in the light of later evidence. But they are amply accurate

enough for the purpose for which they are required. Those for oxygen and

iron have been so revised in parts.

* Hartree, Proc. Camb. Phil. Soc. vol. xxn, p. 464 (1924).



344 Assemblies of Atoms, Atomic Ions and Electrons [14-2

Table 48.

Successive ionization energies for oxygen {Z = 8).

Ionization energy



14-3] Energies of Successive Ionizations 345

Table 50.

Successive ionization 'potentials for silver {Z = 47).

Ionization energy
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when the integral is extended over the proper region of phase space. The
factor 2*^' allows for the two orientations of each electron. In the rest of the

calculation the electron can be treated as structureless. We shall start by
a detailed analysis of the limiting form of the partition function for a single

electron bound or free in the presence of a fixed nucleus of charge Ze, which

we require in full later in the chapter*.

Consider for simplicity a volume V in the form of a sphere of radius A
with the nucleus fixed at its centre. The classical partition function for a

single movable electron is, in polar coordinates,

/(T) = 1 \We-^I^Tp^dj)daj,r^drdar, (1003)

1 . Z
where ^^2^^''-^' ^^^^^'^

The elements of solid angle dQ.j, and dQ.^ define the directions of the

momentum and position vectors respectively. Thus / {T) can be written

f{T)= 2 ^j^^ j"!
e-xlJcT (^^2 + Zeh')i rdrdx (1005)

We will suppose that A is so large that a x' can be chosen so that

Ze^lA<^X <kT. (1006)

This requirement is usually satisfied in practice with an ample margin.

Then the contributions to/ {T) can be divided into three parts:

(1) A (^)- 00 > X > 0. Electron Free. Classical.

(2) /, {T). 0> x> - X- Electron Bound. Effectively Classicalf.

(3) /a {T). — x > X> ~ °°- Electron Bound. Quantized.

In (3) the integral form of the partition function must of course be replaced

by the usual sum over the possible stationary states.

Case (1). In /i (J') we have x >* Ze^/r over practically the whole of the

effective domain of integration. Hence we replace the factor (xr^ + Ze^r)^

by x^r and find

A (T) = 2
{27TmkTf V

h

the usual formula for the partition function of a free electron. Corrections

for the neglect of Ze^/r in/^ (T) will be made later by applying Debye and

Hiickel's theory of ionized media.

* Planck, Ann. der Phys. vol. Lxxv, p. 673 (1924).

f If the limiting principle is satisfied, as we shall shortly verify.
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Case (2). In j^ {T) we have effectively x/kT = 0. Putting a

347

X we

find

f,_{T) = 2^^^^^^ r da r (Ze'-r - ar^)^rdr, (1007)

where a is the smaller of Ze^/« and A.

Case (3). In/3 (^) we have to replace the integral by the quantized sum

/g (T) = I 2nH^nlkT (^^ = RhcZ-^jn^), (1008)
1

and n' = {RhcZ^lx'}^. (1009)

We now return to evaluate /^ (2^), putting r = (Ze^/a) sin^ ^. Then

/a (T) = 2
^3

'- (Z62)3 — sin^ cf> cos- </.(/</.,

n Jo a^ J

where a is arc sin {aA/Ze'^)i if this is real or else ^tt. The double integral

therefore divides into

Z^^IA ^^ c
arc Sin (a.4/Zt2)

J

or

sm^ c6 cos- <pd<p + -^ —
,

i- COS Odd ('

sin^ </) cos- (^f7(/) +

.' z^^iA 32 0J2

da

32 Ze^u a^(Ze2/^)*Jo sin^^ Jo

The repeated integral can be evaluated by integration by parts and is found

to have the value 1 — ttV '^- Thus

I6772 (2m)t (Ze2)3

= 2Z3 (mc)t
32 ^1

2 ylt _ 7T_ 1

9(Ze2)* 48(7)^J

1 1

[977 (^6^)1 3 (^')f
,(1010)

.(1011)
f32(Zi?/.c^)t ^

We can now see at once that the limiting principle is obeyed for an

atom with a single excited electron. For the contribution to the phase

integral, corresponding, according to (1009), to energies x between n' ± |,

say, is by (1011) the difference of the values of /a (T) for n' ± ^ or

f {(71' +1)3 -(..'- 1)3}

which is asymptotically 2n'^. This result can be extended at once to the

case of a number of electrons each independently in specified orbits of large

quantum number n^, ...,ng. The foregoing analysis applies formally to

each electron if Z denotes the proper effective nuclear charge. Since Z
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disappears from the result, its actual specification is unnecessary. In this

calculation the electrons are distinct and permutations are not allowed.

Actually in the classical case permutations must certainly occur and the

corresponding phase space must be

q ! 'ifin-^ ... n^.

This however is still in asymptotic agreement with the weights of the

quantum theory, which are equally subject to multiplication by q ! when
the electron permutations are put in at a later stage of complexion counting.

§ 14-4. Tlie approximate characteristic function. The method of excluded

volumes. A direct and accurate evaluation ofT for the assemblies contem-

plated in this chapter would be an affair of some difficulty. There are two
methods possible for approximations due in essentials to Urey and Planck

which are subject to quite different adverse criticisms. The fact that they

confirm each other qualitatively and even roughly quantitatively can be

regarded as some justification for a belief that the resulting formulae for

W/k are a fair approximation to the truth.

In the theory of Urey and Fermi* we treat the various atoms and
atomic ions as possessing an actual volume from which they entirely

exclude other systems, as in van der Waals' elementary theory of an

imperfect gas. We use the formulae of § 8-6 and assume that the ionic

volume in an excited state has a radius of the order of the diameter of the

central orbit described (after Bohr's theory) by the most highly excited

electron. The resulting excluded volumes are therefore really fictitious.

Physical reality can only be ascribed to them by the somewhat doubtful

argument that they represent that region of space which must be empty
for the ion in question to exist in that state at all. To the expression for

W/k so obtained we add a correction ^\/k for the till then neglected

electrostatic charges.

In the theory of Planck we proceed initially more logically by trying

to generalize the calculations of the last section into a simplified calculation

of B (&). But the simplifications which have to be made are rather severe,

and it is satisfactory that the form of the result is checked by the other

method using an entirely different type of approximation.

The ^jk for the theory of Urey and Fermi, omitting the electrostatic

term, has already been given in equation (555). Let us denote the atomic

ion of general type (r, s,z)hy the suffixes a or jS for shortness, and use the

suffix e for quantities characteristic of the electron. S^ will then mean a

summation over all atomic types, and 2a, p a summation over all pairs of

atomic types ; free electrons are excluded from either summation. Let the

average excluded volume of the (r, s, 2;)-ion for interaction with an electron

* Urey, Astrophys. Jour. vol. xlix, p. 1 (1924); Fermi, ZeiLfilr Phys. vol. xxvi, p. 54 (1924).
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be (v/)s,e, and for interaction with an atomic ion j8, {v/)s^fi. Then in the

notation of this chapter we have

(1012)
in which

F,' = «!?!*V (T) e<«,— .-.-../-, G = 2 <?=^)*,

(1013)

u/ (T) = 2 (tx;/), exp [- (x/ - {Xr%}/kT - {N iv,.%, + S, if, (v')s.^}/F].
s =

(1014)

In transforming T/^' we have left unmodified the partition fimction for the

free electron. The excluded volume corrections, when not small, are only

qualitatively correct. To determine {M/)g we have

(ilf/), Jf/

(m/), exp [- {x/ - {xr%}lkT - {N (V),,. + S^i/^ (V)..^}/ F]
"

^6/ {T)

'

(1015)

To theT/A; of (1012) we must add the contributions of the radiation in

the enclosure, and of the electrostatic potentials. The former is properly

additive, the latter is not, and if the excluded volumes had a genuine

physical existence, the electrostatic and excluded volume effects would
interact and ought to be introduced together. Since however we can only

aim at qualitative correctness here, we will be content with the rough

approximation of adding a separate electrostatic term. If we adopt the

approximations of the theory of Debye and Hiickel, equations (941) and

(932) give us here (i) = 1)

YJk = -A^^^^^3 {N + 2,,r2if,^}t (1016)

In calculating this we have assumed that any ion of type (r, s, z) can be

treated as a point charge of charge re.

In proposing this value for the electrostatic term we have ignored the

correction of § 2-76 necessary to distinguish between free and bound
electrons and the correction of § 13-72 for the complete form of Debye and

Hiickel's equations. It is a matter for great regret to me that these two

corrections have not yet been found amenable to calculation for stellar

conditions. The equation (948) can be altered to take account of § 2-76

and Gronwall's method can then be applied to it*. The solution is more

difficult than that of § 13-72 and involves interesting points in mathematics

and physical interpretation. Results analogous to Gronwall's can be

* Unpublished work by Gaunt. A summary has since been published, M.N.R.A.8. vol.

Lxxx\Tn, p. 369 (1928).
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obtained, but unfortunately their region of applicability does not include

the average conditions in even the most massive star. We therefore omit

the calculations and are forced to content ourselves with (1016) for

estimating the order of the electrostatic effects.

In the approximations of Urey and Fermi the excluded volumes are

treated as spherical and the radius of the interacting system ^ is neglected

compared with the radius of the (r, s, 2;)-system itself. This introduces no

error at the moderate or low temperatures which they themselves discuss

where highly excited orbits are rare. The radius of the (r, s, 2;)-system is

assumed to be the semi-diameter of the orbit of the most highly excited

electron or more strictly the aphelion distance when the orbit is not closed.

As a result we obtain from (1014) for hydrogen

< {T) = E^ 2s^ exp |- f|,
(l -

^2)
-

«'5J
' (1017)

where "^T V
—

~3 kT ^ ^

In (1018) a is the radius of the 1-quantum orbit in hydrogen, 5-34 x 10-^ cm.,

and xo^ in (1017) its ionization energy, 13-54 volts. More generally at higher

temperatures a better approximation to (1014) is obviously provided by

replacing s^ by (Sq^ + s^)^, where asQ^ is the average radius of all the inter-

acting systems. This improvement will not affect orders of magnitude and

we shall not investigate it in detail.

To formulate this theory quantitatively for other atoms with one

excited electron we obviously replace as^ by ans^/{r + 1)^, where ng is the

effective quantum number and (r + 1) the core charge. Since the excluded

volumes are only of importance for states of great excitation it will be

sufficiently accurate to group all states of given principal quantum number

together with the approximate excluded volume as^/{7' +1)^ and the weight

2s'^n7c. For an atom with any number of excited electrons we must pre-

sumably replace rtg by (wjmax, denoting thereby the greatest effective

quantum number among the excited electrons in the 5th state. In general

we shall be able to arrange the states into series in which the quantum

defect is roughly constant and n^ increases by unity from term to term.

These quantum defects will vary considerably with the k of the greatest

orbit and with variations in any of the quantum numbers of the other

excited orbits, but as a first approximation it will be legitimate to ignore

these variations and group together all the terms in u (T) which have a

given principal quantum number for the greatest orbit. We can then write

u/ (T) = S,{2/ (tD/),e-fV-(xr^W^2'}e-«V/('-+i)\ (1019)

where 2' is summed over all states in which the principal quantum numbers

of every electron are less than or equal to s and one at least is equal to s.
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To elucidate (1019) further we must group together the terms that

belong to given numbers of highly excited electrons ; let there be q of these

and z — r electrons in all. Then for these states we can ignore the variations

of {xr~)t ^iid take x/ ~ {Xr^)t to be effectively

X/ + ... + X'r+3-l'

the energy required to remove entirely the q highly excited electrons from

their normal orbits. These states contribute to u/ {T)

If we ignore reductions in the ta's for equivalent orbits, which do not affect

the terms of highest order, we find from the rules that, summed over all

states with the q principal quantum numbers of the excited electrons less

than or equal to s,

tuh,-.. ^s

2<1 gSQ

Therefore, by differentiation,

^t \^r )t ~ ^^ S
33

These states therefore contribute to u/ {T)

Sqw\+g2'i
g-{x,-'+... + x^,+ il/fcT 2,533-1 e-«V/('-+i)^

En this summation we shall for this approximation omit the quantum
defect and replace the sum by the integral

'0

or h^ik) a

The contribution to u/ {T) is therefore

r (1 + ig) w-~r+, 2'i\^^-^i^\-^^r+-+x^r +,-im (1020)

There is a similar contribution for every possible value of q. The complete

result may be written

a = z-r (U _j_ 113) ig

u/ (T) =w/+ 2 r (1 + ig) tu%+, 2« r ^^
' e-{V+-.+x^.+,_i}/fcr.

(1021)

It will often be found that one term in (1021) is dominant for given

values of the density and temperature. In such a case nearly all the atoms
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M/ present will have just q excited electrons and the rest z — r — q m.

normal orbits. If there is at most a single excited electron

V {T) = TO/ + 77^toV^i|
^^^^^^Y

e-V/fe^ (1022)

This is the simplest generalization of the theory of Urey and Fermi. These

authors do not give these approximate summations, whose accuracy is

ample for most applications.

It is naturally possible to calculate average values derived from

u/ (T) by the same process. The average energy content of any atom is

given by

in which of course only the exponents {x/ — {x/)^lkT are to be differen-

tiated. We find

JcT^^!^ ^ 2^ {X/ + ... + X%+a-l} r (1 + k) ^\^a 2^
f^i^l

X e-^^r'+- + X'r + q-iVkT (1023)

When the term (7 = g* is predominant in (1021) and so also in (1023) we
have

JcT^^logu/ (T) = x/ + '•' + X^-.a*-l (1024)

The energy content is the same as if these q* electrons were free and at rest

relative to the ion.

Other expressions which occur in the general formulae are

yT.pMpVp^e, p
A7V T\/r , V MaMpVaB
NZipM^Vp e + 2a 3

^

These may be evaluated as

- S,,,if/^ logV (T), iT.r,zM/ [^-y^) log U/ (T)

respectively.

The accuracy required in these formulae is reached by retaining only

the dominant term g = g* in (1021). To this approximation

J^ logV m ^ - k* a^ log « = - ^i|^^, .-(1025)
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In general g*, the average number of bound but highly excited electrons,

will vary with r and z and must be written (g/)*- Then

^^,M,v,,.^l^'0^, (1027)

'a7v n/r , V M^M^Va,fi

Oa^

i:r,AqrTM/N + \T.,M,*^r,z

2V N + Z^M^'
(1028)

§ 14-5. Planck's theory. In the foregoing theory there is an arbitrary

element, the choice of excluded volume. This is physically and theoretically

unsatisfactory. Instead of attempting to patch up the theory of imperfect

gases in this way so as to apply to assemblies of atoms, ions and electrons,

Planck has attempted to make a direct simplified calculation of Gibbs'

phase integral, and so B (T), for such an assembly by generalizing the

calculation of § 14-3.

For an assembly consisting of one electron and one fixed nucleus (Ze)

contained in a sphere of radius A about the nucleus, the calculations already

given are almost complete. For the electron free we have

For the electron bound

nT)=fAT)+h{n

= 2 2n^e>^nlkT + 2 \-~~^ ^

—

'- \n

Now by familiar arguments we have approximately

n'

S 2nH^nlk^ = 2 {e^il^T + ^n'^}.
n=l

Hence /' (T) = 2ex./'- + ^(^^^ (1029)

In constructing partition functions hitherto we have found it convenient

to take the normal state of lowest energy as standard. With this convention

/.(T) = 2 + «-i<^^'e-«./- (1030)

In all such approximations it may be necessary to include a finite

number of terms besides the first term for the normal state before the terms

of high excitation are lumped together with the remainder. Thus the com-

plete form of/' (T) would be

/' (T) = iti7,e-!xi-x.}/fcT + gf(
^-^^^g-4)t

^_^^^^^ ^^^^^^

In general either the first term {s = 1) or the remainder is dominant (the

F 23
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latter for large values of T). When however the remainder is negligible, it

is often necessary in discussing fine points, such as the appearance in

absorption of lines arising from the first few excited states, to include the

first few terms in the former part of/' (T). Only the first term contributes

sensibly to the numerical value of/' {T) itself, but the other terms control

the distribution of the small fraction of atoms in the early excited states

on which the phenomena in question depend.

When the assembly of volume V contains a nmnber of fixed nuclei and

one electron, / {T) is still given by (1003) with

1 , „ Ze-

2m To.

It is however now impossible to carry out the exact integration, and the

most reasonable simplifpng assumption is that when x < ^ all terms in

2a are neghgible except the largest. Tliis means that we treat as free all

states of the electron in which its energy is greater than the energy of

escape from the nearest nucleus when all nuclei have the same charge, and

is in a sense equivalent to ignoring molecule formation. Tliis simplification

should be reliable so long as the nuclei are not too close together. Each

nucleus then makes a contribution to the phase integral like (1005) and

therefore like (1030), which maj- be described by sajang that each nucleus

has this partition function for a bound electron, if A is so chosen that on

the average the bound electron is nearer to the selected nucleus than to

any other. If there are M nuclei we must therefore take

The essential part of the condition (1006) is then that

Ze'-{^^<'kT. (1032)

The method can now be generalized for a number of nuclei of different

positive charges. The condition that the electron should be bound to

nucleus 1 rather than to nucleus 2 is now natm-ally

Tliis means that to each nucleus (Ze) we must attach an average volume

proportional to Z^. If we now define a radius A by the equation

^7tA^1:,Z^M' = V, (1033)

then the actual radius A^ for use ^^ith a nucleus (Z^e) will be given by

The partition function for an electron boimd to a nucleus (Z^e) may there-

fore be ^^Titten

2 + e-V.. r«* (l)'^-^]-^^ (1036)
[977 VW 6^ JCZ.Z^M")^
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The permanent constant in [ ] will be written B ; it has the numerical value

B = 1-017 X 1012 cm.-^

Let us now allow the nuclei their natural freedom of movement.
Their mean velocities are very slow compared with the velocities of the

electrons, and to a first rough approximation the rule for fixing the par-

ticular nucleus to which an electron with negative energy is bound is

not affected. It is of course strictly the relative Idnetic energy of electron

and nucleus which should be used in the binding rule, and we replace this

by the kinetic energy of the electron (relative to the centre of mass of the

assembly as a whole). A closer approximation here would be of interest.

To the approximation at present proposed the foregoing formulae can be

regarded as independent of the motion of the nuclei. The calculations of

the phase integral of the assembly for the nuclei therefore take their ordinary

form and yield the ordinary partition functions for massive particles ; the

electrostatic forces between the nuclei themselves lead to no complications

(being repulsive), and are (or should be) allowed for in the term (1016).

Let us next suppose that there is more than one electron in the assembly,

but that no nucleus can catch more than one electron. We can ignore also

the repulsive force between the electrons. Then the foregoing analysis

suffices to determine the partition function of any nucleus which has caught

an electron, and the whole value of B (T) can best be evaluated by the

usual combinatory rules of § 5-2. In our notation therefore

u%^., {T)^2^B (-^^exp {-r\-xim, (1036)

and using (1036) we can apply all the usual formulae.

To extend these arguments to the capture of more than one electron is

not difficult, provided rather rough approximations are sufficient. We shall

obviously approximate fairly closely to the holding power of an atom
r-times ionized by assuming that it holds excited electrons like a point

charge (r -I- 1 ) e. This approximation will be very good when all the electrons

except one are in normal or nearly normal orbits. In general it must under-

estimate the efficiency of the ion at holding its last electron. An overestitnate

of the efficiency can be obtained by assuming that the ion holds like a

point charge (r + q) e, where q is the total number of its electrons in highly

excited orbits.

In order to estimate the value of u/ (T) we again consider separately

the parts arising for various specified numbers q of highly excited electrons.

The weight of the remaining core of the atom with electrons in normal

orbits is m-^+q. This core now catches q electrons in succession into highly

excited orbits acting on one assumption like a point charge (r + 1) e and

on the other like (r + q) e. The contribution to u/ (T), estimated according

23-2
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to the foregoing version of Planck's theory, will therefore be the continued

product of contributions for each electron in order with an extra factor

ta^y+5 for the weight of the core. According therefore to the holding power

assumed we find the following limiting approximations for w/ {T) :

X e-^^r'+-+X'T + q-lV''T^ (1037)

X e-{x/+-+x^, + g_i}/fcr. (1038)

In (1038) {M/)q denotes the average number of atomic ions of atomic

number Z, r times ionized, with q highly excited electrons. These equations

give upper and lower limits for u/ (T). A closer approximation than either

can probably be obtained by considering an (r + g')-times ionized atom and

letting it catch q electrons in succession into excited orbits. If we assume

that the number of orbits so obtained is not altered by later captures and

that at each stage the ion captures like a point ion of the new net charge,

we can replace (r + g)^ in (1038) hy {r + 1) ... {r + q) and obtain

V (T) = w/ + ^"1
'w\+, {r + 1)3 ... {r + q)^ B<^

2=1

If no other considerations entered one should prefer (1039) to (1037)

or (1038) in applications. The clustering of the free electrons round the

positive ion will however decrease its holding power for highly excited

electrons, and terms of large q are mainly important for large N/V when
this shielding is largest. When as here this shielding is not directly allowed

for, formula (1037) is to be preferred. It is undoubtedly at this point, that

is in the correct enumeration of bound states, that the present theory is

weakest, and a better method of enumeration is greatly to be desired.

These u/ (T) may be used for a direct construction of T, which is

formally theT for a mixture of perfect gases with radiation and the electro-

static terms added. There are in this theory as here developed no excluded

volumes. The residual atomic cores of electrons in normal orbits do possess

volumes which can be taken account of in the usual way. But the effect of

these is usually extremely small.

In applications the most important combination is u^r+i {T)lu/ (T). It

sometimes happens that one term of (1037) is dominant for a given density

and temperature, and then the dominant terms of u^r+i {T), u/ (T) generally
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correspond to equal numbers of electrons in normal orbits, and a difference

of one highly excited electron. In such a case

If s is the average number of free electrons per atom, then it is defined by

It will then be permissible as a very rough approximation to write

(5 + 1)3

'r,z {r + 1)3 M- = (5 + 1)3 S,,, Jf/ = ^-^

—

'- N,

and so
^^W^^{M:_imi^

(1041)
u/{T) (r+ l)3^(F/iV)4

When we now form the equations of dissociative equilibrium the exponential

factors vanish. The ratios M^+JM/ are controlled entirely by the (r + 1)^

factor. The x/ only control the numbers of electrons in normal orbits.

As a check on the somewhat speculative approximations which have

been necessary at certain stages in this chapter, it is well to compare the

formulae for u/ (T) given by the two theories in the simplest case of a

single excited electron. When the permanent constants are given their

numerical values we find

:

For the theory of Urey and Fermi,

u/ {T) = w/ + 7-40 X lOiit.^^1 (r + l)t (^)* (^f
e-><r^!'^

.

For the theory of Planck,

V (T) = m/ + 1-017 X 1012 ta-V+i^^^ (|)* e-x/l^^.

These formulae are in substantial agreement.

The following chapters consist largely of applications of these formulae.



CHAPTER XV

ATMOSPHERIC PROBLEMS

§ 15-1 . Scope of Chapters X V and X VI. In this chapter and the follow-

ing we shall set out to apply our general theorems to special problems of

the properties of matter in a gaseous state which is nearly perfect. We shall

of course discuss only such problems as arise out of the study of equilibrium

states of such matter or as can be treated at once by application of the

properties of the equilibrium state and the laws of mechanisms detailed

in Chapters xvii and xix. Problems essentially requirmg the theory of

transport phenomena or of radiative equilibrium are therefore excluded.

The problems that present themselves are of two classes, (1) atmospheric

problems, this chapter, and (2) problems of the interior of a gaseous star,

Chapter xvi. The equilibrium and quasi-equilibrium properties of atmo-

spheres—extensive assemblies of perfect gas constituents in a strong

external field of force—consist only of the properties of assemblies which

can be treated as isothermal. We have already derived Dalton's law for

the distribution of the various constituents in an atmosphere of perfect

gases. Until recently the only other problem discussed was the rate of

escape of molecules into space from the boundary of the atmosphere of a

planet or a star*. Thanks however largely to the work of Milne a number of

other interesting atmospheric problems have been proposed and solved at

least to a first approximation. The contents of this chapter consist there-

fore of discussions of the following problems: (1) The equilibrium of an

isothermal ionized atmosphere and the permanent electrical fields and

charges existing in it. (2) The behaviour of the absorption spectra formed

by stellar reversing layers. (3) The normal escape of molecules from the

atmosphere of the earth or a star. (4) The formation by radiation pressure

of tenuous high-level atmospheres (chromospheres). (5) The ejection of

atoms and ions from stellar atmospheres at high speeds by abnormal

radiation pressure; (4) and (5) in outline only. Of these the first alone

refers to a true equilibrium state. The second and third can properly be

treated to a first approximation by using equilibrium properties. In the

others equilibrium properties play a smaller part. It is however justifiable

to give a sketch of them for the sake of a systematic account of this whole

group of problems. An account of the third is rendered the more desirable

because great advances in treatment have been made since Jeans' account

was written, and the theory is now probably in a final form. When all is

said however it is obvious that these researches merely deal Avith special

* Jeans, loc. cit. chap. xv.
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features of a stellar atmosphere. A proper theory embracing them all,

based as it must be on a study of the assembly subject to the flux of

radiation from below, would lie outside our range. But we are spared the

temptation to include it, for no such theory yet exists.

In an atmospheric problem the main field of force may be regarded as

external to and independent of the assembly discussed. In a star, considered

as a whole, this is not so, and the main field arises from the gravitation of

the matter of the assembly itself. In Chapter xvi therefore the start

corresponding to that of Chapter xv would be a discussion of the isothermal

gravitating gas sphere of ionized material. In the absence of electrical

forces there is nothing to add to Emden*. We could make some comment
following Rosselandf on the effect of electrical forces on the radial dis-

tribution of different elements. The applicability of these remarks to an

actual (non-isothermal) star is however doubtful. It is obviously outside

our province to attempt any discussion of the large scale interior constitu-

tion of a star, which depends on many other factors besides the properties

of the equilibrium state of a given body of matter. For this the reader will

naturally turn to EddingtonJ. But whatever the large scale structure of

a star, the small scale structure is essentially that of matter in the most

complete thermodynamic equilibrium§. The equilibrium properties of

stellar material are important, and the main part of Chapter xvi is there-

fore devoted to an attempt to calculate as accurately as possible the equi-

librium state of matter at stellar temperatures and pressures.

§ 15-2. The equilibriu7n of an io7iized atmosphere \\. We start by discussing

an atmosphere of a single primary constituent, say Ca, in equilibrium with

its ionization products Ca+ and electrons. We later consider extensions

to more complicated atmospheres, but these are not easy to make exactly.

By (133) and (375) for the sth. constituent

^= (^)o e-K*+^.'^)/^2'. (1042)

It is necessary to include an electrostatic potential ip as well as the gravita-

tional cf), since Dalton's law entails a separation of the charges. By (572)

for each constituent

V2 {m,cf> + e,0) = 47Tm,G {2,m,wj - 4776, {2,^^,
where G is the constant of gravitation. As these hold for all m, and e, we
must have „ _

V^ = ^irGlL.m.n,, (1043)

?V= -4772,6,71:. (1044)
* Emden, Gaskugdn.

t Rosseland, M.N.R.A.S. vol. Lxxxiv, p. 729 (1924).

X Eddington, The internal constitution of the stars (1926), and now also Jeans, Astronomy and
Cosmogony (1928).

§ Eddington, loc. cit. p. 21. I| Milne, Proc. Camh. Phil. Soc. vol. xxn, p. 493 (1925).
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These are the complete equations. Owing however to the smallness of Grris^

compared with e^^ we may usually neglect altogether the gravitational field

of the atmosphere itself and replace (1043) by V^^ = 0, so that
(f)
= gz ii the

curvature of the atmosphere may be neglected, and otherwise <f>= ~ GMIr,

where M is the mass of the central body and r the distance from its centre.

By (376) the ionization constant is constant in space, so that the con-

dition of ionization equilibrium affects only the constants (?^s)o . The whole

equilibrium problem may therefore be solved without reference to this

condition, provided the constants of integration {ng)^ are adjusted to satisfy

it. If the suffixes 1, 2, 3 refer respectively to the neutral atom, the ion and

the electron, we have therefore, curvature neglected,

^ = ("^)j, e-"h9^/fcr^ (1045)

^= (^)(,
e-Kff^+^^V^i', (1046)

i; = (7^0 e-K9^-'^)/'=2', (1047)

coupled with -~ = — ^ne {n^ — n^). (1048)

For an atmosphere stratified in planes ifs will be a function of z alone. We
recall also that m^ = m^ + m^ and m^ is very small.

Let us write e^' = — | {m^ — m^) g + kTf, (1049)

denoting differentiations with respect to z by primes, and differentiate

logarithmically (1046) and (1047). Then

< ^ _ 1 (m^ + m^) g
-f,

.(1050)

We can reintegrate (1050) in the form

'^2 = (^)o exp l-az-j fdzj

^3 = {%)o exp ^
- as +

J
fdzj

n^ _ _ \ (^2 + W3) g „

n,~ kT ^J\

/' = w(^-^)- (io5i:

I (m^ + nis) gr>

kT J

(1052)

From equations (1051) and (1052) we can eliminate n^ and n^, and from the

result eliminate \jdz by differentiation. We find

{^~]' ~^" ^ K^T (^^)o(^3)oe-^« (1053)

With the help of this equation we may determine the behaviour of / and

so the general characteristics of the atmosphere.
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§ 15-21. Form of f for large jiositive z, at the outside boundary of the

atmosphere. If the resultant charge on the whole body and its atmosphere

is zero, then at the outer boundary 0' = and

1 (m^ - m^) g _

We search for an approximate solution of (1053) by replacing / by /oo and
writing/' = e~"^ ^. Then | satisfies

Therefore
477e2 f

I

,(1054)

of wliich the second term is negligible compared with the first; y is a

constant of integration. Returning to /' and integrating, we find

4:7T€^ g — (a— /oo)3

/ = /«>- j^ \/(^?2%)o 7 ^_ ^
,

- l>h^^_^V(%«-;)„re--='- (1055)

It is easy to show that the error in this equation is O (e-smg^z/fcrj From
this it follows that

fdz =
w. mg) gz 4:7Te^kT —

kT +
m^g'^ V(^2^^3)o ye-^'sWA^r + s^

where S is a constant of integration. Inserting this in (1052) we find

Uo =
D exp

^3 = (%)o e-^'sW^r J) exp

(1056)

^-2- y/{n^n^\ye-^^^'l^'^

(1057)

and in order to satisfy (1051) we must have D = y \/{n^ln^^.

We can draw interesting deductions. Since the extra exponentials tend

to unity as 2 -^ + oo, we have idtimately

^2~V(^2%)oye-"'2^-'A-^,
{z very large) ,(1058)

%~V(^2%)oye-"'3^^/fcr,

which is Dalton's law, when the electrostatic forces have become trivial.

The "when" is however instructive, for this occurs when

4:7T€^kT ,, , ,,„

o-^- V *i2% ye-"'39^Ar
^3 y
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is small compared with unity. On using (1058) we see that this condition is

47Te^kTn^
or

477e22>3

w3 y
.(1059)

small compared with unity. For electrons on the sun ^Tre^lm^^g^ is

4-85 X 10^'. Thus the partial pressure of the electrons must be well below
10"^^ dynes/cm. 2 or 10"^^ atmospheres before Dalton's law becomes effec-

tive. We have then reached a region so tenuous that the density there is

far below the probable density in interstellar space ! In no region which

can be considered as belonging to the atmosphere of the sun or any particular

star do we even approach the condition (1059).

§ 15-22. The form of f for large negative z, at the base of the atmosphere.

On referring to equation (1053) we see that the right-hand side tends to

infinity as 2 ^ — oo, and therefore if / has a limit at all that limit must be

zero. There are no physically possible alternatives. For large negative z

the equation therefore approximates to

,(1060)

This equation must be solved asymptotically as 2 -^ — oo, a and the

coefficient of e-^^f being numerically small. By the substitution* / = ae~''

(rj -^ + CO ) it is easy to show that

kT
e-iaz +1^ + (e^asj^

From this it follows that to a sufficient approximation

f "= a exp
~a\ kT

e-^'-'+Oiaz) ;i06i)

From this form it follows at once that

•

87762 VK^)©

fdz converges, and approximately

I

fdz = a
kT

laz exp
2

{
^-neWJn^n^U ^ -\

a\ kT J
^

J

We can now suppose that — oo is chosen for Zq in (1052). Then since/' ->

(^2)0 == (%)o- ^o^ sufficiently large negative z we shall therefore find

approximately

^=-%= (^)oe""'- (1062)

The meaning of this distribution law is that the ions and electrons are dis-

tributed as if they were both of mass equal to their mean mass—with no

tendency to separate out and consequently no electric field. This fusion

we have shown to occur at the base of the atmosphere, or in the interior

* We insert a to take care of the dimensional factor in /.
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of the star, but the question of interest is where for this purpose does the

interior start. It starts obviously as soon as fdz is small compared with
J — 00

unity, that is to say as soon as

87762^(^2^3)0

or

kT

8e

iaz

[27Tp,]i

(ma + Wg) g

is fairly large compared with unity. For calcium on the sun this reduces

numerically to

5-4 X 10V2^3>

which is large as soon as p.;^ the electron pressure is greater than say
10-ifi dynes/cm. 2, or IO-22 atmospheres. Even this figure corresponds to

a density less than that of interstellar space, so that so far as separation

of electrons and ions is concerned, the interior of the star, in which separa-

tion is impossible, may be taken to include the whole of the star and any

atmosphere that can properly be regarded as private to it. All we have to

do in any problem of an ionized atmosphere in equilibrium is to use

(1062) instead of Dalton's law. To produce this there is a constant electric

field acting outwards of intensity ^ (mg — Wg) g/e, but the separation of

charge necessary to produce this is altogether trivial.

§ 15-23. Further observations. If the charge on the star has a surface

density a, then, as z -> + 00,

— ei/j' -^ 4:7Ta.

This alters slightly the form of the solution as z ^ + od, but does not affect

the conditions as z -> — 00, since these are independent of /« . Hence the

conclusions of § 15-22 are valid whatever the charge on the star.

Again we have shown that /-^Oasz->— go and that

/ -> 1 (Wa - mg) gjkT,

a positive quantity as z -^ + 00 . From the form of the relation for /',

namely

f'
= A[ei--'''-e-i--'''] {A>0),

it follows that if / starts positive for large negative z then/' > 0, / increases

and /' can never vanish. Since / has to be positive for large positive z it

follows that/ and/' must both always be positive and/ steadily increases.

For the uncharged star this implies that the resultant charge down to

any level is always negative since as / > 0, rig > rig • But this negative
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charge is excessively minute. Appljring Gauss' theorem to (1049) we see

that the excess charge o- per unit area is given by

- 477(7 = - 1 (W2 - mg) gje.

The excess number of electrons per unit area is therefore

which for ionized calcium on the sun is 0-3!

§ 15-24. Multivalent ions and their comjnnsating free electrons. The

theory for an atmosphere of a single set of positive ions of charge + v^e

and the corresponding electrons is very similar. In place of the equations

(1046)-(1048) we have

^ = (^)jj e-C^a^^ + ^a^^V^r^

^3 = (%)oe"^™3S2-**)/fcr,

ijj" = - 4776 {V27l2- %).

We now define / by the equation

.(1063)

.(1064)

.(1065)

.f =-
m. '^3)9

Vo+ 1
+ kTf,

and replace the last equations by

(^2)0 exp (-az-u2 fdzno

^3= (^3)0 exp ^
- a3 +

I

°fdzj,

„, 4776^ — —

mg + ^2^3 9

V. + 1 kTj'

the equation satisfied by / being now

f f
l)e-

"2+1 —

(1066)

The conclusions which can be drawn from this equation correspond exactly

to those drawn from (1053). The ions and electrons never separate out

appreciably in the atmosphere proper, and for large negative z, f ^ 0,

f -> 0. If then Zq is taken as - 00, we find {n^)^ = v^ (^)o and the distribu-

tion laws
'^,= Moe-^% (1067)

^3=K)o"2e-"^ (1068)

There are just Ug times as many electrons as ions, and both possess the

exponential factor of a neutral particle of mass (m^ + y2W3)/(u2 +1)-
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§ 15-25. Atmospheres with ynore than one positive ion. This case is

unfortunately much more complicated, and it is of course more typical of

actual atmospheres. It is sufficient for illustration to consider two positive

ions and electrons. The neutral atoms required by the dissociative equi-

librium are also present, but need not be explicitly considered. The
equations then are

« = (n ) (>
— {m^gZ'\-v.^i<ii)llcT

If it happens that
ifi" = — 477e {n-^vi + n^vo — W3).

mi — m, m, — w,
(]0C9)

i»i + 1 U2 + 1

the substitution eiff' = ^ -^ g + kTf

reduces the leading terms in all three exponentials to equality. We are

then led to an equation for /similar to but more complicated than (1066),

but from which the same conclusions can be drawn. This equality will never

be satisfied by the main constituents of an atmosphere, even approximately.

When (1069) is not satisfied, I have not been able to find any formal

approximations to the solution of the set of equations proposed. It is how-

ever possible to obtain useful qualitative information.

Let us suppose that in a certain region the conditions are dominated

by the first constituent. We will suppose this region is fairly deep in the

atmosphere so that the conclusions of § 15-22 hold. Then approximately

kT ui + 1

.(1070)

-here <= "' '\^x' W C""'

We find that a^ < «! if

m^ — wig mj — mg

^2+ 1 ^1 + 1 '

and we shall certainly find a region of control by the first constituent if we
can go deep enough into the atmosphere {z ^ — 00) without other dis-

turbances. Generalizing we might say that in an isothermal atmosphere

the deepest levels will be controlled by the constituent for which

(mi - m^)l{v^ + 1)
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is greatest, but this only holds if the effectively undisturbed isothermal

region is extensive enough to differentiate between the various constituents.

In the region of control by n^ the rate of space variation of n.^ given by
%' may even be reversed so that n^ increases upwards («i'< 0),

As we rise in the atmosphere {z -> + oo) this state of things must

reverse and control must pass over to the second constituent. We shall

then have ,_ ^ .

^2 ^ (^)o e-"2^] _ mg + U2W3 g

% = (^3)0 e-"2^j ^2 + 1 kT'

n-i = (n170

where «,' = (yg + 1) mi - ui (ma - m^) g

V2+ 1 kT'

We can verify that «2' > «2 ^s it should be for this region.

A special case of particular interest is that in which the constituents

1 and 2 are the single and double ions of the same neutral atom 0. Then

m^ = mo — W3, mg = m^ — 2m3, vj = 1, 1^2 = 2. Applying these formulae we
find that in the deep region

^= {n^JQ e-'^os^l^T
,
^^ (Ti)o

e-i'«oS2/fc2'^

^- K)o , n^ - (^)o
e-i^o9^I^T^

so that the concentration of double ions does not alter. In the high region

;^=. (?i7)o e-^^'o^-/^^ ^= (%)o e-^'"o9^M-3'.

Here we leave this application. Our main conclusion is that large scale

electrical effects profoundly alter the vertical distribution of the ions and

electrons in an atmosphere, in general refusing to let them separate. In

effect they alter g for ions and electrons in the way we have attempted to

calculate, but the actual fields required to do this are very smaU, and apart

from this modification of g the resulting fields and charges can always be

neglected. Certain similar applications to stellar interiors will be made in

the next chapter. We should in conclusion record the warning that an

actual atmosphere is submitted to a strong one-sided flow of radiation from

the photosphere of the star, and that selective action of this radiation may
seriously modify any conclusions drawn when gravity is the only external

force acting. The atmosphere cannot then be an assembly in statistical

equilibrium, but the type of effect which may enter is discussed in § 15-5.

§ 15-3. Stellar absorption spectra. The atmosphere of a star, when we

have reached the deeper levels of the last sections, levels still of extreme
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tenuity, will consist of a mixture of atoms, ions and electrons in a state in

which each constituent behaves approximately like a perfect gas. The

mixture as a whole is electrically neutral as the separation of electrons and

ions in the gravitational field is trivial. We shall verify later that the

deviations from the perfect gas laws required by the theory developed in

Chapter xiv are insignificant for the regions to be explored in this section.

We shall regard this atmosphere to a first approximation as an isothermal

homogeneous slab in statistical equilibrium, but subject to a flow of radi-

ation of all wave lengths, corresponding to a higher temperature from the

lower levels (photosphere) of the star. Such a slab forms an idealized

reversing layer, forming by specific absorption dark lines in the continuous

spectrum. Our object in these sections is to show how the theorems of

statistical mechanics can be applied in a general way to explain the

behaviour of these absorption lines, particularly in regard to the march of

their intensities as we pass through the series of spectral types, and to

deduce at least rough information as to the temperatures and pressures in

the reversing layers of most stars. We shall not enter into great detail,

since a recent book by Miss Payne* gives a full account to which the reader

should refer. These sections will therefore be confined to a summary, with

supplements of her account.

The first successful quantitative application of the theory of statistical

(or rather in his case thermodynamic) equilibrium to stellar reversing layers

is due to Sahaf. An atom absorbs a different optical spectrum for each

stage of ionization, and in fact a different set of lines for each stationary

state belonging to each stage, and therefore the relative intensities of the

absorption lines of its successive spectra in the spectrum of any star must

give some indication of the relative numbers of atoms in the various stages

of ionization in the reversing layer, and therefore of the temperature and

pressure.

The early applications of this idea may be divided into two main groups.

The first is typified by comparisons between the spectra of the normal solar

reversing layer and sun spots, and between spectra of giants and dwarfs of

the same spectral type. It was shown that the intensity differences are

largely explained by changes in the degree of ionization resulting either

from temperature differences (sun and spot) or from pressure differences

(giant and dwarf) J. A similar successful comparison may be drawn

between the spectra of the reversing layer and chromosphere (flash spectrum) f.

In the second group attention is devoted to the general march of the inten-

sity of a line, or group of lines, through the sequence of stellar spectral

types, and an attempt is made to deduce the temperature scale from the

* Miss Payne, Stellar Atmospheres, Harvard Monographs, No. 1 (1925).

t Saha, Phil. Mag. vol. XL, pp.472, 809 (1920); Proc. Roy. Soc. A, vol. xcix, p. 136 (1921).

J Saha, loc. cit. (1) and (2); Russell, Astrophys. Jour. vol. LV, p. 119 (1922).
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positions in this sequence of the first and last ("marginal") appearances

of the line. At such a point the fraction of atoms in the reversing layer

capable of absorbing the line must be very small, and if the pressure is

known the temperature can be calculated*.

But the precision of the early calculations was questionable owing to

the difhculty of formulating the conditions for the marginal appearance of

a linef. Firstly we do not know a priori how small the "very small"

fraction of atoms must be at marginal appearance. Secondly the point of

marginal appearance will depend on the relative abundance of the element

giving the line—other things being equal lines due to a more abundant

element will persist to a smaller fractional concentration. A similar diffi-

culty may arise from different atomic absorption coefficients for different

lines J. Large uncertainties may arise from all these causes.

However, the general qualitative adequacy of the theory carried the

conviction that imperfections of this kind were imperfections of our know-

ledge and not of the theory; it is reasonable both a priori and on the evi-

dence to conclude that in the main the intensities of absorption lines vary

in the same sense as the numbers of atoms capable of absorbing them. The

next step was to formulate this conclusion explicitly: Other things being

equal, the intensity of a given absorption line in a stellar spectrum varies

always in the same sense as the concentration of atoms in the reversing layer

capable of absorbing the line. The foregoing difficulties are then in the main

avoided, if we devote attention in the first instance to the place in the stellar

sequence at which a given line attains its maximum intensity. This will be

attained at the maximum concentration of atoms capable of absorbing

the line, and the conditions therefore only involve the temperature and

pressure. We do not now require to know the relative abundance of the

various elements, the efficiency of any atomic state as an absorber, or the

absolute number of effective atoms required to form a line. The temperature

at which, for a given pressure, a given line of loiown series relationships

attains its maximum is simply deducible from the properties of the equi-

librium state. A number of such calculations will be given in the following

pages. Consequently in the first instance each observed maximum of a line

in the stellar sequence relates the temperature and pressure of the reversing

layer at that point of the sequence. This appears to be the most satisfactory

way to apply Saha's theory quantitatively to fix stellar temperatures and

pressures §. We therefore summarize the results of such calculations. But

* Saha, loc. cit. (3), and Zeit. fur Phys. vol. vi, p. 40 (1921); H. H. Plaskett, "The Spectra of

three 0-type stars," Pub. Dom. Astropliys. Ohs. vol. i, No. 30 (1922).

t These difficulties were discussed by Milne, The Observatory, vol. XLVi, p. 113 (1923).

X We now are fairly certain, however, that the atomic absorption coefficients concerned in

stellar spectra are all of the same order of magnitude.

§ Such calculations were made by R. H. Fowler and Milne, M.N.R.A.8. vol. lxxxiii, p. 403

(1923); vol. Lxxxiv, p. 499 (1924); R. H. Fowler, M.N.B.A.8. vol. lxxxv, p. 970 (1925).
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we can then attempt to refine them in various ways, and show that each

observed maximum can probably be made to determine directly a tempera-

ture in the stellar sequence, without assuming a pressure. The pressure is

itself determined by the theory, being that of the layer in which the absorp-

tion line is formed. We find that this refined theory requires the height

of this layer to vary in a definite way from line to line. Instead of assuming

a pressure, we assume that a certain function of the properties of the atom
and its abundance and gravity on the surface of the star may be assumed

roughly constant. There is reasonable ground for belief that this assumption

is true on the average, so that the derived temperature scale should be

reliable. The final step, not here reached, will be to regard each observed

maximum in the known temperature scale as fixing the value of this func-

tion and to deduce therefrom abundance factors or absolute values of

atomic absorption coefficients. For this step we require a quantitative

theory of the formation of an absorption line, a synthesis which has hardly

yet been made.

Lines absorbed by the neutral atom in its normal state, which we shall

call normal lines, will be shown theoretically always to decrease in intensity

as we traverse the spectral types from M to higher temperatures. This is

almost obvious without calculation, for the fraction in the normal state

(initially practically unity) can only decrease as the temperature increases.

An exception to this absence of maximum could occur if in atmospheres of

very low temperature the atoms in question were all removed by con-

densation or chemical combination. Such considerations are however not

usually of importance and will not be referred to again. It is easy to see

that all other lines should have a maximum somewhere. Consider first a

line absorbed by some excited state of a neutral atom, which we shall refer

to as a subordinate line. The fraction of atoms in this excited state is the

product of two factors: (1) The fraction of the atoms not yet ionized;

(2) the fraction of these neutral atoms in the proper state. The first factor

decreases steadily from 1 to as T increases, while the second increases

steadily from a very small value. This must lead somewhere to a maximum
in the product. Similarly for the normal lines of any ion, we start at low

temperatures with atmospheres in which there are no such ions, and pass

through a stage at which almost all are once ionized, to a final stage in

which all are in still higher stages of ionization. Again we find a maximum*.
In the first stage of the discussion we find it convenient to calculate

pressures for maxima at a given temperature. The general result of the

* In identif5''ing this maximum with the observed maximum we assume that the average

abundance of this atom changes only very slowly (if at all) along the stellar sequence. There ia

every a priori consideration in favour of this assumption which is of coiurse essential. Otherwise,

for example, the maximum of the Balmer lines in A -type stars might be due to a maximum in

the absolute abundance of hydrogen there, a barren and unsatisfying conclusion.

F 24
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comparison with observation is that observed and theoretical maxima can

be fitted together into a consistent scheme provided that the pressure in

the layers which reverse strongly ordinary subordinate lines is of the order

of 10~^ atmosphere. Similarly in layers which reverse strongly normal

lines of atoms and ions and nearly normal lines of the metallic transition

elements the pressure must be of the order 10~^-10~^" atmosphere. At

the second more refined stage we see that this result is expected and that

on the whole all observations fit into a logically consistent whole, leaving

outstanding a number of interesting minor discrepancies.

The observational material on the positions of maxima in the sequence

of giant stars is mainly due to Miss Payne and Menzel*. For dwarfs there

is not the same sequence of material, and we have mainly cross comparisons

with the giant sequence at spectral types F and G.

§ 15-31. The statistical theory of absorption lines. To carry out the calcu-

lations suggested in § 15-3 we use equations (1015)f and the method of

§ 8-6 to determine the {M/)glV, and then differentiate with respect to T
to determine maximum values. But the general formulae simplify greatly

here. In the first place Xr~lx~r+i is never greater than about 0-7 for any

atomic ions with which we have to deal in reversing layers and is usually

nearer 0-5, The successive stages of ionization are thus well separated, and

it is found that we never have to consider more than two consecutive stages

of any atom at any one time for a subordinate line or three at most for a

normal line. Secondly, excluded volumes and the electrostatic energy can

be ignored entirely, except of course for the convergency factors due

to the former in u/ {T). We shall find further that m all calculations of

maxima u (T) reduces to its first or at most its first two or three terms,

for which the excluded volumes can be ignored, and that the highly excited

states make no effective contribution. We shaU therefore start the calcu-

lations with these simplifications, which are easily justified a posteriori.

It is convenient to express the laws of dissociative equilibrium in terms

of pe the partial pressure of the free electrons, and Xq,Xj^, ..., x^ the fractions

of any atom present in the neutral, smgly ionized, or 5-times ionized

states. Then the equations of dissociation (333), generalized as in § 8-6,

reduce to

.^,^^^
2(2^)>(.T)l.^^.,,,, ^.„,^,

with Hj-Xr = 1.

We need not here retain the affix z. Let {nj.)s be the fraction of all the atoms

* Miss Payne, Harvard Circular, No, 258 (1924); loc. cit. chap, vin; Menzel, Harvard Circular,

Nos. 252, 256 (1924),

f It is here a matter of indifference whether we use Urey's or Planck's form for u/ (T), since

the states of high excitation prove negligible.
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of one type which are r-times ionized and in their 5th state. Then (1015)

reduces to

For discussing the maxima of the states of the neutral atom we may ignore

Xj. for r > 2 owing to the rapidly increasing x'^- Inserting numerical values

in (1072) we find*

Xq=
,

"^ '
^— , 1073

Uq (T) eW^r + 0-664 % (T) T^/p^

in ) = ir^o)se<^o^sl^'

Uq (T) e^olJcT + 0-664 ^^ (T) T"^/pe

The maximum value of {UqJs forgiven pressure occurs where 8(?1q)s/8T = 0,

or where

o:66i« p|(xA +im:+^t^) ,^.,,,, ,

This gives the pressure in dynes/cm. ^ wliich can be converted to atmo-

spheres with sufficient accuracy by multiplication by 10-^. We have also

{(^o)Jmax = (a:o)max ^ ""'

^ ^y^
. (1077)

The same formulae hold for the maxima of the subordinate lines of the

r-times ionized atom, when we replace the suffix by r and ignore all stages

of ionization except r and r + 1. A simple verification, which we omit, is

required first to show that for the relevant temperatures x^ + Xj.+i= 1

approximately.

We conclude that any subordinate line should have a maximum given

by these formulae. For any normal line of a neutral atom (xoJs = Xo ^^^^

(r?-o)s has no maximum for kT'^u^ JUq reduces to zero, and (1075) merely gives

T = 0. Formula (1076) reduces to (a:;o)max = 1 in this case.

We must next examine the numerical values of u^ (T), Ui (T) and their

differential coefficients. From (1075) it follows that near the maximum

PejT-- and e-^ol'^T ^lust be approximately equal, and we shall find that the

actual orders of both are about 10~^. For the approximate form of u,. (T)

we take (1021), in which a is given by (1018). We may take pe = ^^

approximately. The numerical value of

[{r + l)3/9a]*

* The numerical factor here is twice that (0-332) used in the work of R. H. Fowler and Milne,

because we have here corrected for the weight 2 of the free electron. All the weights used in the

two papers (loc. cit.) are wrong, though the results are hardly affected. Effectively correct weights

were used by R. H. Fowler, loc. cit.

24-2
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is therefore of the order 2 x 10^ at most in a reversing layer. It follows at

once from (1021) that we have at most one highly excited electron, and

that the states of high excitation of even this one electron make a negligible

contribution to u^. (T) (less than one per cent.). In reversing layer problems

therefore it is only the first few terms of u,. (T) which need be considered,

and usually only the first (constant) term and the term to which the

subordinate line under discussion belongs. We verify in the same way that

the contributions of highly excited terms to kT'^u/ {T)jur (T) are equally

negligible in the equations for the maxima.

Returning now to the early terms, suppose that for simplicity

^^0 {T) = Wq+ (c7o)i
e-'^^o-ixoWlkT^ (1078)

Then
^ (y^

' = (Xo - (Xo)i}

Wn

Uo {T)j
' ,(1079)

Unless Xo ~ (Xo)i ' ^^^ ©ii^^gy o^ excitation, is small compared with kT, the

effect of the second term in Uq (T) is negligible both in (1078) and (1079).

Even if ^o — (Xo)i is small, Uq (T) will still be of no importance in the formula

for p^ unless this second state of small energy of excitation is also the state

in which the atoms must be in order to absorb the line in question. In that

special case (xo)s = (Xo)i ^^^ *^® denominator of pe becomes

(Xo- (Xo)i}^0'

instead of {xo
-

(Xo)i} '^o (^)' which is the value when Uq (T) is ignored.

When the excited states are nearly normal this correction may be con-

siderable. No effect of this sort can be produced by kT^u^ {T)lu-^ {T), which

can always be neglected. We can therefore replace (1075) by

^ 0^664M^ (Xo). + JkT ^. ^_^^/,,^

^0 Xo - (Xo)s

which in this form is always valid if Wq is taken to mean the sum of the

weights of just those states which differ in energy from .the normal state

by an amount which is very small compared with Xq — (Xo)s • In calculating

(^o)max we can always ignore Uq (T) and %' (T) so that

(XoWx- ^V^Jf^ . (1081)

To discuss a normal line of the ionized atom we must retain three

stages. Then
^^ ^ 0^664 u,^ ^. ^_^^^^^

Xi p, u^ (T)
'

Xi ^ 0-664 u^{T) ^^ ^_^jj^^

Xq p, Uq{T)

Xq+ Xi+ X2= 1, % = TDiXju^^ (T).
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If we solve these equations for n^ we find that

n^ = .

% {T) + u, (T) ^-||^
T-t eW^^ + u, {T)^ T^ e-x.'^^'

(1082)
Thus the maximum of % will occur when

kT^u,' (T) -^^{^^ + ^IcT - hT^u^lu,) u, (T) T't e^ol^^

+ ^^ {xi + #T + kT^u.,'/u^} u^ (T) T^ e-xil^T _ q (io83)

If we can ignore the term in u^' (T) we then find

p. ^ 0-664 f^-+4^^+|P^ . "-4^1* T^ e-^'xo..)/.. (1084)

The order of the two terms retained from (1083) is {u^u^^ e-'^''^i-'>^o>lkT

at the maximum, and this maximum occurs at a lower temperature than

that at which the maxima of any subordinate lines of the ionized atom
occur. The conclusions as to the negligibility of the terms of high excitation

hold therefore a fortiori. The order of kT'^u^' (T) will therefore be

iXi - iXi)i}
e-ix.-ix.hV'cT^

which may be important in (1083) if there is an excitation potential of the

ionized atom comparable with | (xi
—

Xo)- When this is the case (1083)

must be solved as a quadratic for p^. At the maximum, if %' (T) can be

ignored

(%)max= ^^-T —
, (1085)

Wi (T) + {(Wo^2)* e-4<^i-^o)/^^}

which is approximately equal to ctj/Wi (T) and therefore nearly unity.

If, as can happen, the term in u^' (T) is of larger order than the other

two terms at the suggested maximum (1084), then the third term in (1083)

can be ignored and we have

p, =
0-664 CT%/ (T)

,

The maximum is due in this case to the switch over of the majority of the

atoms from the normal state to the first excited state as the temperature

rises, and in the determination of the maximum we can ignore second stage

ionization entirely. If for simplicity we write here

Ui {T) =1^1+ (tDi)i e-(>^i-<>^i)iV^2'^

then V, =
0-664 {w,\ {x, - (xi)i} Ti e-{x„+x,-(xx),}/;^r,

(1087)
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,(1088)
/ \ 1

In this case (^ijmax =
^^ (j^) + o {K)i e-(x,-(x,)iiMr|

'

which again differs only a little from m-Ju-^ (T) or unity.

In certain cases in calculating maxima of subordinate lines of an ionized

element of very small energy of excitation it may be necessary to use the

apparatus of these paragraphs taking account of three successive stages of

ionization. But no general discussion of the negligibility of the various

u (T) and u' (T) can expect to cover all cases, and when doubt arises it

is always a simple matter to write down an explicit 2- or 3-term formula

for the whole relevant part of u (T) and use the exact values of u {T)

and u' (T).

§ 15-32. Numerical calculations. We present in this section numerical

applications to a selection of the available observational material. To do

more would take up too much space, and the selection is wide enough to

justify the theory. It is obvious from a cursory inspection of the rest of

the material that it will fit into the same scheme. Except where otherwise

recorded the data are taken from Menzel or Miss Payne or from Hund*, but

the calculations given here are revised, as we now know the correct forms

of u (T) which were not available for earlier calculations.

Throughout the calculations we group together all the lines of a multi-

plet, ignoring the energy differences in the initial and in the final state.

This is legitimate, and our discussion therefore refers to the maximum of

the multiplet as a whole rather than the maxima of its component lines,

but these are indistinguishable. The only noteworthy inaccuracy in this

simplification is that the fraction of atoms at maximum is that capable of

absorbing some line of the multiplet. The fraction capable of absorbing one

given fine is naturally less, and in some applications this point may need

attention. We tabulate for each element or each group of lines of each

element the data fused in the calculations. This is followed by the observed

position of the maximum, and then by a few calculations for a series of

maximum temperatures of the electron pressure, the fraction of atoms in

the required stage of ionization, the fraction in the required stationary

state, and the product of this last fraction by the electron pressure.

(i) V. IW- ^F (part) ; AA 4395, 4390, 4385, 4379
; Xo= 6-30, (xo)i = 6-02

;

Uq (T) = 28 + 30e-o-28/fc^ + 20e-io5/fc2', ii^ [T) = 25 + 35e-o-32/A^2'_

For the least blended lines no maximum is observed. It lies below Jf 3.

^na.
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(ii) Ba+. 1 2>Sf - 1 2P; AA 4934, 4554; Xo = 5-18, xi = 0-95;

i (Xi - Xo) = 2-385 > 1-512 = Xi-(Xi)i;

Uq (T) = 1 + 5e-i«//^^, u^ (T) = 2 + lOe-i-^ia/fcr, u^ {T) =^ I.

[Variations of u^ (T) may be ignored.] The maximum must lie at ilf 3 or

just below. (%)max=l.

^o,u.



376 Atmospheric Problems [15-32

(vi) Fe. \^F -^X; X = D,F,G; some 16 lines in aU; Xo = 8-15,

{Xo)2=6-59;

Uq {T) = 25 + 35e-o-95/fcr + 2\e-'^-^^l^'^ , u^ {T) = 30 + 28e-o-33/*2' 4. ____

The observed maximum is well determined at ^ 2

.

T^,,
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(X) Mg+. IW-l^F; AA4481; xi= 15-00, (xi)i=6-15; u^T) =^ 2,

u^ (T) = 1 ; {wi\ = 10. There is a well-observed maximurii a,t A2.

^n..
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(xvi) Si++. 1^S-2^P;AX 4552, 4567, 4574; ;^2
= 33-35*, (^a),

= 14-40;

Bl-2.
1, % (T) = 2; (c72)s = 3. There is a well-defined maximum at

T^..
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(xxi) He+. "4686 series"; A 4686; xi = 54-16, (xi)^ = 6-02; u^ (T) = 2,

u,{T)= i;K)s= 18.

"Pickering series"; AA 5412, etc.; (xi)s' = 3-39; (m^),. = 32.

The lines seem nearly to have reached their maximum at the end of Plaskett's

sequence of 0-stars. The observed maximum may be taken to occur at O 5.

The calculations are for the 4686 series.

^ma.
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We have already seen that the electrostatic term i/r may profoundly modify

the equilibrium distribution of ions. We must be content to assume that

^=y^e-mgzjkT^ (1089)

where m' is used for the effective atomic mass. Consider the variation of

homologous slabs of these atmospheres along the stellar sequence. Homo-
logous slabs will be determined by equal changes in the exponent in (1089),

and therefore the thickness of a given slab will be fixed by an equation like

m'gz' 1

kT

where a is some constant such as 1 or 10, and and 1 refer to the bottom

and top of the slab. Thus the thickness of homologous slabs varies as

Tjm'g from star to star, and atom to atom. The number of any atomic

species per cm.^ of the stellar surface therefore also varies like T/m'gf. [In

an atmosphere perfectly mixed by large-scale convections, such as the

lower atmosphere of the earth, m' will have a common mean value for all

atoms.]

If fe is the partial pressure of the electrons at any level in the slab, then

the concentration of electrons v^ is given by

If ct> is the abiuidance factor for the element in question, defined by the

equation
Number of nuclei of given atomic number per cm.^

Number of free electrons per cm.^
'

then the concentration v of these atomic nuclei satisfies

V = oiVf, ^ wpe/kT,

and the number of these nuclei per cm.^ of the steUar surface in a given

slab will vary as rr

TTn X -^ , or -f .

KT m g in g

If {nr)s is the fraction of these nuclei which provide atoms r times ionized

in state s, then the number of atoms per cm.^ of the stellar surface in a

state to absorb a given line will vary as

^TP^,
(1090)mg

In (1090) oj, {n^)g, and m' are functions of Z the atomic number.

We must now consider rather more closely the conditions under which

a strong absorption line is formed. There must be enough suitable atoms

per cm.^ to form it. It cannot therefore be formed at too low a pressure,

or too high in the reversing layer. But at the same time it must be formed

as high as possible in the reversing layer in order that the temperature

difference between the absorbing material and the photosphere may be as



382 Atmospheric Problems [15-33

great as possible. The actual position of the effective layer will be fixed by

the balancing of these two factors. Viewed from the outside we may regard

an absorption line as a particular wave length at which the absorption

coefficient of the stellar atmosphere is abnormally great, so that we can

only see into the star down to an abnormally small depth, a depth which

is that of the effective slab for this line.

In our elementary calculations we start by determining maxima by

d {n/)JdT = 0, that is for a given value of wpei'm'g. This means that for

the selected value of (effectively) pe/g we get the best absorption at the

temperature so determined. It remains to examine how to choose or fix

the proper value of pe for use in this way. The maximum concentration of

suitable atoms per cm.^ in the slab of the chosen pe varies as

^ {(V)s}max Pe

m'g

The value of pe for use here must be large enough to give enough suit-

able atoms but no larger. Now it seems probable from general evidence

that to produce a strong absorption line one needs about the same number

per cm. 2 of any sort of atom in the suitable state—or more generally that

the number one will require wiU vary as l/{K/)g, where k is the atomic

absorption coefficient for selective absorption of this line by atoms in the

suitable state. The argument therefore suggests that

<^ {(V)s}max Pe ^ a
(1091)

m'g (k/)/
^

where « is a constant, which this elementary reasoning cannot fix. There

is considerable evidence that {k/)s is of the order 10^ and not subject to

much variation from state to state or atom to atom for the lines of stellar

importance.

In equation (1091) there are several factors wliich it is legitimate to

ignore in a first approximation, for the argument is not sufficiently refined

to take account of their probable variations. We have already made

some comment on m', or rather m'g. This really represents the force of

gravity on the atom as modified by electrostatic fields and radiation

pressure, in particular for the pressure due to the selective absorption

forming the line. Gravity itself increases along the giant sequence approxi-

mately as T^, but it is very doubtful if this variation will remain effective

in m'g. Again <o must decrease as T and therefore ve increases, but this is

a slow variation, and it will vary by unknown amounts from atom to atom.

It seems reasonable to conclude that {n/jsmaxpe as calculated in the last

section should have a roughly constant value for all the maxima of absorption

lines in stellar spectra. This conclusion is tentative and is only put forward

in so far as it is supported by observation and until an exact theory has

been worked out to replace the vague generalities of this section.
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This conclusion, it will be seen, at once accounts for the variations of

Pe required by the calculations on which we commented before. We see

now that if the constant value of {(??y^)s}max Ve is say 2 x lO-^*^ (Pein atmo-

spheres), the theoretical maxima fit coherently with the observations, and
determine with some precision and convincingness a stellar temperature

scale. We give below the resulting temperatures derived by interpolation

from the tables. It will be observed that the equation

{(V)Jmax :Pe = 2 X IQ-l"

determines T'max directly, without explicit assumption as to p^ , as the root

of the equation (for subordinate lines)

o ^ 10-10 = 0-664 (m/),{(;c/), + pyp2^%^,(y) .
{^X/-(x/)sVkT

(1092)

There are of course slight modifications when u^' and u\^^ are included.

We derive maxima from (1092) by assuming that m'gjcoK is roughly con-

stant from atom to atom and star to star, and have fixed its mean value

by a rough average over all the stellar material.

Table 51.

The stellar temperature scale derived from absorption line maxima.

Atom
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be admitted that, for whatever cause, this maximum does not fit in with

the theory. If the H and K lines of Ca+ really have a maximum at XO
then the temperature for Ca+ is also wrong, but the position of the maximum
is doubtful. There is also an important theoretical modification in this case

of which we shall speak later.

§ 15-34. Giants and dwarfs of the same spectral type. Statistical theory

can be effectively applied to a number of other problems in stellar atmo-

spheres. The most interesting would be a similar analysis of the tempera-

ture scale for the sequence of dwarfs, but not enough material is yet avail-

able for such a discussion. Certain cross-connections can however be made
between the two series, and appear to be in full agreement with statistical

theory. Menzel* has shown this qualitatively by a comparison of the spectra

of 6 Indi and a Tauri, a typical dwarf and giant of type K 5 . From the point

of view of a stellar atmosphere the difference between a giant and a dwarf

must primarily be the different value of g, which is much less for the giant.

Absorption lines will therefore be formed at lower pressures in the giant,

and given maxima will occur at lower temperatures. This may be expressed

by saying that for given spectral type giants will be colder than dwarfs,

which is a well-known fact of observation.

The theory here given accounts for this temperature difference satis-

factorily. According to (1091) the maxima of a given line should occur in

the two sequences where

g J giant

^max Pe

. 9 J dwarf
.(1093)

or after (1092) where
y/&T

9 giant

^1 g-{2x/-(x/),}/fc2'-

9 dwarf
,(1094)

We may calculate the temperature difference in this way for giants and

dwarfs of type G' by using as typical examples the sun and Capella to give

the values of g, and by assuming that a spectrum of type G may be specified

with sufficient accuracy by making the lines of zinc have their maximum
there. In that case for the reversing layer of the giant Capella we have

nearly enough, T = 4800, 2^, - {xr)s = 13-35, g = 0-067 x 10^ For the

sun g = 2-13 X 10*. Thus the reversing layer temperature for a dwarf of

type GO, such as the sun, ought to be the root of the equation

/^i g-i3-35/fcr ^ 40.7 (4800)* e-i3-35/48oofc^

= 6-3 X 10-4.

The root is approximately 5400°, a temperature difference of 600°, in

excellent agreement with solar conditions, but the success of the theory

must only be regarded as provisional, pending a more exact theory replacing

(1091).
* Loc. cit.
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§ 15-35. The points of marginal appearance. Decay of lines past their

maxima. When the stellar temperature scale is known, with or without

the help of the positions of the maxima of absorption lines, it is possible

to draw some information about the factor co/c from the temperatures of

the points of marginal appearance of an absorption line. When a line is

just visible we may suppose that the concentration of suitable atoms
required to form it must reach a certain minimum value proportional to

l//c; that is k {nj.)s has some fairly definite value. Since we know p, and T
we can derive from this a corresponding value of cti/c. Since the values of

K are all much the same, we can thus derive values of co or rather relative

values of a> for different elements—that is their relative abundance. The
result is of course admittedly only a rough approximation. Such calcula-

tions have been begun by Miss Payne (q.v.) with interesting results.

In connection with these and future calculations there is one important

observation to be made from the statistical side. It will be observed that

the typical curves of the concentration of atoms in given states shown in

Fig. 23 are markedly unsymmetrical about the maximum. The rise to the

maximum is much steeper than the fall off for higher temperatures. So

far as the suggested argument goes the value of co/c derived from first and
last appearance should be the same, and the theoretical curves suggest

that lines should fade out much more slowly than they come in. For many
lines this is directly contrary to observation. The observed rise and fall in

intensity are reasonably symmetrical about the maximum. There is however

one well recognized exception, the Balmer series which unlike most other

lines has not faded out even in the hottest stars.

While the theory can perhaps hardly claim to be able to explain com-

pletely the symmetry of the observed curves, the marked difference between

the behaviour of the Balmer lines and the lines say of Si or Si+ and metallic

lines generally is accounted for by the simple theory when the calculations

are made so as to allow for successive ionizations. This was not done for

Fig. 23. Any line of the spectra H I, He II, etc., is a line of the last spectrum

the atom can emit, for it has no further electrons to lose. Spectra such as

Si I, Fe I, Si II, etc., belong on the other hand to atoms that can lose a

regular sequence of further electrons at not too widely spaced ionization

potentials. Spectra such as Si IV, Mg II and probably Na I will be effec-

tively the last spectra of these atoms, for the next electron is separated

by a big step in ionization potential, and will not become effectively

removable at the temperatures of stellar reversing layers. The numerically

different behaviour of "last" and "not last" spectra can at once be

established.

The behaviour of any state of a "last" spectrum will continue to be

given for temperatures far beyond Tmax by equation (1074), for no further

stage of ionization is reached. The behaviour of a state of a "not last"

F 25



386 Atmospheric Problems [15-35

spectrum is determined on the contrary by (1072) and (1073) as before,

but with ^^_|_^^+ ... + a:, + x,+i= 1, (1095)

if the (r + l)th state is the last ever relevant. This leads to (1074) near the

maximum of a line of the neutral atom where (1095) reduces to rc^ + iCi = 1.

But at higher temperatures we have successively Xy-{- x^^ \, ...x^+ ^r+i = Ij

approximately, and (?io)s will be substantially diminished. The physical

reason for this decrease is easily seen. So long as the commonest ion has

merely to catch one electron to get into the required state, the chance of

doing so diminishes as the temperature rises, it is true, but not excessively

rapidly. But if it has to catch two or more electrons, its chance of being

in the proper state diminishes more or less like the square or higher power

of the former chance. In the case specified we have

^p/- (0-664)T^''e-!^o+-+x._x}/fcT^rj^)
Xq

" Uq {T)

and so K). = ,7-^ .o-664V
^^^^^^

At high temperatures, far past the maximum, this can be combined with

Xr + Xr+i = 1 and the usual relation (1072) between x^ and a:;y+i. We thus

find

(ctq), e-{^o-<><oM/^^
1

V^o)s
=

n.«ft4
' ^

/0-fifi4\»* -;

u^ (T) + -^1^^ Th-^ri^^ u,^^ {T) r-^^] T^' e-ixo+x,+...+x._x}/^T

(1097)

This equation holds through the region in which x^ + x^^i_= 1 sufficiently

nearly. It holds also for spectra other than the first if we replace the

sufifixes by ^ and the index r hy r — t.

Simple calculation for an idealized case will best show the effect of the

extra term in (1097). We will compare the spectrum H I with an idealized

Si I of the same term values and ionization potential, 13-54 volts, followed

by successive ionization potentials at 20, 31-5, and 45 volts, and carry

through the calculations for a temperature of 25,000° K. and ^^ = 4 x 10-^

atmosphere, roughly the maximum of the Si IV lines. For simplicity we will

ignore differences of weight and take {wq)s and u^ (T) all unity. Dropping

factors the same for both atoms we find

H I (^o). ^ oW- = ^^~""-

I -(_ J'5 g-13-54/fcr

1 + — — T* e-'^l^'P (
^Uir^

J

Tf e-^^I^T
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There is thus an extra factor 10-^^ at 25,000° K. reducing the lines of the

ideahzed Si I compared with those of H I. The fraction of H atoms capable

of absorbing the Balmer lines at maximum is about 4 x 10"^, which is

only reduced by an extra factor of 10-^'^ at 25,000° K. The reduction factor

of similar Si I atoms is therefore lO"^*^'.

These purely tjrpical calculations at once explain the complete dis-

appearance of all metallic lines at higher temperatures compared with the

striking persistence of the Balmer lines. For in all metals of the Fe group,

up to and including Cu, there is always an adequately long series of ioniza-

tion potentials not too far apart, and the foregoing arguments hold. They
also hold for Si, S, and Al and to a less extent for and N. The rate of

disappearance of the He I lines will hardly be reinforced in this way before

a temperature of 30,000° K. Lines of Ca I and Mg I and similar spectra,

followed by one near ionization potential, will have their rate of decay

considerably amplified, though not to the degree calculated above. The
H and K lines of Ca+ should behave like a last spectrum. There remain

certain cases of fairly rapid disappearance which cannot be accounted for

in this way. The best example is given by the lines of Mg II which disappear

fairly rapidly, but belong to a spectrum which is followed by an ionization

potential of the order of 60 volts.

§ 15-4. Tlie escape of molecules from the boundary of an isothermal atmo-

sphere. Recent work by Milne* and Lennard-Jonesf has greatly improved

the theoretical basis of the calculations on this sixty-year-oldj problem,

which have now for the first time been given a precise form. The earlier

calculations, of which a sufficient account is given by Jeans §, contain an

unsatisfactory feature in the arbitrary choice of a "ceiling" to the atmo-

sphere. The rate of flow of molecules past the ceiling, possessing more than

the velocity of escape, is then enumerated and taken to be the rate of loss

of molecules from the atmosphere. A numerical result can only be reached

at all by this method for the molecular distribution law typical of an

isothermal gas in a constant field of force.

The first advance on these calculations was made by Milne by intro-

ducing the idea of the "cone of escape ". For simplicity he regarded all the

other molecules as fixed except those whose escape is in question, and for

a given position in the atmosphere calculated the solid angle above the

moving molecule, not screened by other molecules. The restriction of fixing

the other molecules is not very serious, and he also evaluates in some detail

the atmospheric distribution laws under the assumption T oc r ~", where r

* ]VIilne, Trans. Canib. Phil. Soc. vol. xxn, p. 483 (1923).

t J. E. Jones, ibid. p. 535 (1923).

X Johnstone Stoney.

§ Jeans, loc. cit. chap. xv.

25-s
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is the distance from the centre of the star or planet. He then shows that

the number of molecules moving past a given level into the cone of escape

has a fairly sharp maximum at a particular level in the atmosphere—the

level of escape—and takes this maximum value as equal to the rate of

escape.

In spite of the advance made in this calculation, which defines properly

the hitherto undefined level of escape or ceiling, there are still not entirely

satisfactory features, for obviously the number of escaping molecules cross-

ing a given level must continually increase as the level rises, starting from

zero at the surface of the planet. Though the maximum Milne calculates

may and in fact does represent fairly accurately the escaping molecules

integrated for all levels we may reasonably ask for a still better theory, and

the remedy lies in a more accurate enumeration of the molecules starting

off at a given level into the cone of escape. Incidentally we can remove

the restriction that the other molecules are fixed. These are the final

improvements due to Lennard-Jones. We shall give some account of his

work here, which is carried out for isothermal atmospheres. An extension

to Milne's general case has not been made. It would be laborious and lie

outside our scope. For the isothermal case Milne's approximate theory is

satisfactorily confirmed, so that his results are probably reliable in general.

We make these applications the occasion for presenting a general calcula-

tion of the mean free path and the general method of enumerating mole-

cules by the volume element in which they last suffered a collision—matter

which we have not found place for elsewhere, but which is of great import-

ance in many applications of statistical mechanics which lie just beyond

our scope.

All calculations are of course made on the assumption that the extremely

slow rates of escape are without sensible effect on the equilibrium dis-

tribution laws.

§ 15-41. The free 'paths of molecules in a uniform or non-uniform gas. In

accurate calculations of the type that follow the important quantity is not

so much the average distance between consecutive collisions (free path)

travelled by aU molecules as the free path for a molecule of given velocity,

or what is the same thing, the chance that in time dt a molecule of velocity

c will suffer a collision. This idea was introduced by Tait*. The molecules

are supposed to be rigid elastic spheres of diameter a.

Consider a molecule of velocity c. The chance of collision with a second

molecule of velocity c' in an element of time dt is equal to the number of

molecules of this type contained in a cylinder of cross-section ttct^ and

length Vdt, where V is the relative velocity. If the direction of c' with

respect to c be described by the usual Eulerian angles 6, </>, then the number

* Tait, Edin. Trans, vol. xxxm, p. 74 (1886).
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of molecules in this cylinder having velocities between c' and c' + dc' and

moving in do) about 6, cf) is

V (w^Y e-i^o''/'^'^ c'^dc' sin 9 ded4 x TraWdt (1098)

The relative velocity V is of course given by

F2 = c2 + c'2 - 2cc' cos 0. (1099)

If we denote by (c) dt the average number of collisions in time dt (the

chance of a collision in dt) with any other molecule, then

(c) = irvo"- fs-^l* [* ["T e-^"'"''/^-^ c'^Ydc' sin Q dddch.
\Z7tK1 J Jo-'oJo

(1100)

The (/)-integration is immediate; the ^-integration can be carried out by

transforming to the variable F (c and c' fixed). By (1099)

sin 0(7^= VdV/cc'.

The limits of integration for V are
|
c — c'

|
and c + c'. We are thus left

with

(c) = |77Va2 (,,^1^)* f*
e-4"»«"/^-2' c' (c2 + 3c'2) (7c'

+ 1 l\-imc'2/lcT c'2 (c'2 + 3c2) ^^c'

CJo
,(1101)

The first integral can, the second cannot, be evaluated in finite terms. We
find after simple reductions,

where ifj (x) = xe-^^ + {2x^ + 1)
{'' e'y^ly (1103)
Jo

The average number of coUisions in a small path length dl is therefore

(c) dljc.

This is therefore the chance of the free path terminating in dl. The chance

of continuing unaffected is therefore

c

Let / {I) be the fraction of c-molecules projected in a given direction

from a given origin that describe without a collision a path greater than I.

The fraction of these molecules that survive a further distance dl without

a collision is / (Z + dl), and therefore by the last argument

f{i+di)=f{i){\-^diy

'JI=-^S^,
. (1104)

fdl c ' ^ ^
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It follows generally that

f{l) = e J' '
; (1105)

in this equation at the worst both c and v in {c)/c may depend on I and

the direction of projection and v also on the origin. If we ignore changes

of c and write

d{c)^Q {c)/vc,

a function of c only, then

-d (c) I v(Xo,t/Q,Zo,l, e,<p)dl

f{l) = e J' (1106)

It follows that the fraction of c-molecules with a path length between I

and I + dl before a collision is

-d(c)
I

vdl

e{c)vdle -^^
. (1107)

When V is constant (1106) reduces to

f(^l^ = e-HeM^e-@Mi!e=Q-il\M^ (1108)

defining the mean free ijatli A (c). The fraction of paths between I and

I + dl reduces to

^e-il>^ic)^ (1109)
A (c)

These are well-known formulae. The name mean free path is justified by

the equation

.Cxf)^-""°'-^<«)
("'«)

Similar arguments hold in the general case using (1105). The mean free

path of the molecules may then be defined by putting

'o c

or ^^^ = O /-,27./7T ' (1111)
c2 2^7Ta^kT'

If c is large compared with the average molecular velocity, so that the

argument of ?/» is large,

x^

and formula (1111) becomes

2
\

e-y^ dy - ^/^T,

Jo

A(oo) 1

vt?s = -!-. (1112)
.1 TTCT^

This equation gives the length of a cylinder of base tto'^ which contains on

the average just one molecule, and the free path is that which we get by
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regarding all the other molecules as fixed. For uniform density we have

the well-known result

A(00)= 1/77VCT2. (1113)

The integral in(1105) or (1106) may, and in atmospheric problems does,

converge when I ^ co . In that case the definition of A (c) by (1108) or

(1111) fails—it would make A (c) infinite, and the integral in ( 1 1 10) diverges.

This means that as the path increases f [1) -^/(co) so that anon-zero

fraction of the original molecules survives to execute infinite free paths. The

fraction which so survives is

eJ' ' , or e J'

if variations of c may be neglected.

§ 15-42. The number of molecules with specified velocities ivhich cross or

strike a given area in given time. We have already had occasion in § 11-2

to use such a formula, and it will be considered in greater detail in § 17-8.

The formula (1277) there obtained is

V (YTrf
^^^'"""'^''^ cos e clcdwdS (1114)

This is the number of c-molecules which strike an area dS moving within

a solid angle doi making an angle 9 with the normal to dS. The number

which cross a geometrical interface is the same, and similarly obtained.

The molecular density at the wall or interface is v.

Since this is also the number reflected from such an element of surface

in the equilibrium state, the formula (1114) must hold for all equilibrium

states, whatever the fields of force in the gas. It applies therefore in atmo-

spheric problems for atmospheres in equilibrium, even when the free paths

are very long. It is however of some interest to obtain this formula in a

more special way, using the idea of the free path, so as to see what con-

tributions the various elements of the gas make to the actual number.

The molecules in (1114) must have had their origin, that is their last

collision, somewhere in a cylinder of infinite length on the base d8 with

generators parallel to the molecular velocity. If the molecules move in a

field of force the "cylinder" becomes a tube of flow enclosed by the family

of free trajectories passing through the perimeter of dS. In accounting for

the molecules which cross dS we shall associate all the molecules ivith the

volmne element in which they last collided, a classification which is important

in many applications. Molecules which cross dS with velocity c in dw start

from their last collision as Co-molecules moving in da)Q .

When the gas is in equilibrium the number of collisions per unit volume

after which one molecule has specified velocities must be equal to the
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number before which one molecule had the same specified velocities. Hence
in a length dl of such a cylinder or tube there will be

''» (2^)* «"*"''°'^''' c,^dc,dco^Q (Co) dl cos d,d8,

such collisions per unit time, since (Cq) dt is the fraction of Co-molecules

that suffer a collision in time dt. This can be written

""^^{^^crf
^"^'"'"'^''^Co'^ M cos d^dc^dw^dldSQ (1115)

This is the number of proper molecules which are shot off per unit time

from an element at distance I along the tube from dS so as to cross dS if

undisturbed. Not all of these reach dS. The number which succeed is

reduced by collisions to the fraction

e J^

The total number of c-molecules crossing dS in the specified direction in

unit time is therefore

(2^;^) Jo
^o'e-^-«oV^^ c^e (Co) COS ^0 do,,dS,d%e J dl.

(1116)

Such formulae can sometimes be used in non-equilibrium states provided

Maxwell's law remains valid. To see how in equilibrium (1116) reduces to

(1114) we consider the simplest case of a uniform field of force at right

angles to dS. Then
dS^ = dS, \mCf^ = \mc^ + rngz^,

Cn^dCndcOn = dUndVndWn = J |

^' ^' ^
) C^dcdo),

u, V, w J
^0 U/l^O'^"'0 ~ UU^qIVUqUIVq

= i^c^dcdoi = — c^dcdoj.

Also j/oC'^fi'V^^ = V.

Hence (1116) reduces to
[I

V
[2:;^)

c^e-i^'<^'I^T cos e dcdojdS v^d (Cq) e •/ dl,

which is (1114). This reduction holds equally in the general case.

§ 15-43. Free paths in an upper atmosphere. We will now apply these

results to an upper atmosphere where the free paths are very long, so that

the change of v along the path cannot always be neglected. When account
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is taken of the decrease of gravity with height we have, at a distance r

from the centre of the planet,
mga{r - a)

V = VqB ^
, (111'7)

where Vq is the density at the base of the isothermal part of the atmosphere,

g is the value of gravity and a is the radius of the planet (both strictly for

the base of the isothermal atmosphere). As is well known this formula leads

to a finite atmospheric density at infinity. The "atmosphere" would then

fill space and there would be no problem of escape. It is not however

consistent with obvious physical facts to regard such an extensive atmo-

sphere as belonging in any sense to a particular body. The atmosphere has

effectively ended at distances comparable with the planet's radius at most.

The chief difficulty in (1117) arises from neglecting the mass of the atmo-

sphere itself and treating g as constant. Milne* has shown that when this

is taken into account an appropriate formula applicable at all distances is

= -(7")
' e-^od-ro/r) (g^ = mgrJkT - 2), (1118)

where r^ refers to any convenient level in the atmosphere. This gives an

atmosphere of zero density at infinity though of uifinite mass. The mass

of the atmosphere does not really seriously affect the distribution law in

any important region or the rate of escape, but the use of (1118) avoids

troublesome difficulties in the calculations.

We shall now investigate in such an atmosphere the free paths of c-

molecules, with the simplification that we shall ignore the effect on the

free path of the change of c in the gravitational field and the curvature of

the path. The first of these steps is justified because for the molecules that

will interest us (escaping molecules) c must be large compared with

{2kT/m)i in any region in which collisions matter. In the integrand of

(1105) ifj/c^ is only slowly variable and we may use (1106). The second is

justified because the length of the exact hyperbolic path is sufficiently

represented by its asymptote.

If the c-molecule starts at radius r at ^ to the vertical and proceeds to

R after a path s, then the exponent in (1106) is

- e{c)f V (R) ds,
Jo

where with sufficient accuracy R = r + s cos 6. This neglects terms due to

the curvature of the layers of the atmosphere of order (s sin d/R)^. Using

(1118) this reduces to „ ^ a (r'\

g^e^o cos ^
^ ^

* Milne, loc. cit. equation (25).
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The fraction of c-molecules projected from a level r at an angle 6 with the

vertical which could escape to infinity without a further collision is given

by taking the exponential of (1119).

§ 15'44. The loss of molecules from a simple isothermal atmosphere. By
a trivial adaptation* of (1115) we see that the number of c-molecules shot

off in unit time from a spherical shell of radius r and thickness dr at an

angle between 6 and 6 + dd with the vertical is

27Tv' (K^jmf e'i^''l^^ cW (c) sin d dddc x 477/2^7^ (1120)

We have hitherto been studying only the conditions for avoiding further

colHsions. We must now introduce the further condition for escape that

oc,, where
c,^2ga^lr. (1121)

We find therefore at once that dL, the total number of escaping molecules

produced by the level r, is

dL - ^TT^vH^dr f^r^)* r e-*'""'/"^ c^d (c) dc
XZTTICI J J Cg

sin Odd (1122)X Texp [- ""^y ^''\ {e^'oro/r - 1}

To find L, the total rate of escape, dL must be integrated with respect to r

from the surface of the planet to infinity.

There is no need to give the further work in detail since no further

question of principle arises, and the calculations are somewhat laborious.

Molecules of course theoretically escape from all levels, but owing to the

exponential factor in (1122) only effectively when the exponent does not

much exceed unity. In order to obtain a concrete picture we may usefully

simplify (1122) by replacing the exponential by zero when its exponent is

greater than unity and unity when its exponent is less than unity. In fact

since only orders of magnitude are of interest this simplification may be

used in computations. This is the method used by Lennard-Jones (q.v.).

To obtain an idea of the level at which escape effectively begins we quote

the results obtained by this simplified method of calculation for the outer

helium| atmosphere of the earth, for which g = 9S1, r^ = 6-39 x 10^,

T = 219° K., k/m = 2-08 x 10^ We have therefore ^o = 135-6. We may
take further o- = 2-0 x 10"^, Vq = 7-46 x 10^^ (base of the stratosphere

assumed to lie at 20 km. height). We then find that the exponent falls to

unity for the most favourable conditions c= cx), 0=0 at a critical height

^'^gi^^^^y r,= 1-085^0.

* In (1115) the volume element was cos d(,dldSo, which here becomes inr^dr.

t Chapman and Milne, Quart. J. Boy. Met. Soc. vol. xlvi, p. 357 (1920). This paper is the

source of all the meteorological data in the discussion here.



Fig. 24. Showing the variation of the velocity of escape with angle for a level in the earth's

atmosphere at which the least velocity of escape &, is 1-6 x 10^ cm. /sec.

Fig. 25. Showing the variation of free paths with direction in the earth's upper atmosphere.
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The critical level is about 540 km. above the base of the stratosphere.

Above this height we can define a rapidly expanding cone of escape in

such a way that the exponent becomes less than unity inside a cone of

given semi-vertical angle about the vertical for c = oo as soon as r reaches

the values given in the table below.

Table 52.

Variation of cone of escape with height. {Earth's helium.)

Semi-vertical

angle of cone
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formulae for various gases from various bodies. The rates are in all cases

slower than those given by Jeans, so that the interest lies rather in the

cases which are regarded by him as critical. The table also includes calcula-

tions for mixed atmospheres for which the original paper should be con-

sulted. The much greater rate of loss of the lightest constituent from a

mixed atmosphere in the final stages is due to the effect of collisions with

the other constituents in keeping up the supply of faster moving molecules.

The calculations for mixed atmospheres give of course a better representa-

tion of the facts for the later stages, but the later stages are not of much
astronomical importance.

Table 53.

(1) Rate of escape of heliu7n from Mars.

Isothermal atmosphere. Time in years.

Density at

the planet's

surface after

years shown
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continually (presumably more or less in an equilibrium state) up to such

heights, and the problem at once arises as to how they are supported. A
simple calculation shows at once that no such extensive atmosphere can

possibly exist in ordinary statistical equilibrium. Beyond the apparent

limb of the sun we should expect the atmosphere to consist of matter which

in equilibrium would have the properties of a perfect gas, and therefore we
should expect the atmospheric density law to hold—that is

and g has its solar value 2-73 x 10*. Even if we assume a temperature of

6000° K. (the actual temperature must be less), we find that this means a

density ratio at the top and bottom of a 10,000 km. layer of 10^°°. This

would be somewhat reduced by the electrostatic fields as in § 15-2. If the

atmosphere were a simple mixture of calcium ions and electrons the factor

would be 10*°", but in no case can we suppose that the index of the factor

is reduced much below this order. If therefore we suppose that we have

a calcium atmosphere in ordinary equilibrium the density ratio must fall

off at this prodigious rate. The density at the sun's limb may not be exactly

known, but it is certain that it is not excessively large. The pressure is

certainly not of order much greater than one atmosphere, and if this were

all due to calcium atoms, the density would be 10^^. A reduction of this

to 10-3^2 leaves us practically no calcium atoms at all, certainly not enough

to be visible. In fact the thickness of the effective calcium atmosphere

would be of the order of 100 km. at most, rather than 10,000 km. or more.

This has long been recognized, and the consequence admitted that the

calcium atoms seen at eclipses which constitute the permanent calcium

chromosphere cannot be matter in approximately thermodynamic equi-

librium. They cannot therefore be matter supported by the ordinary

material pressure gradient of which the underlying mechanism is molecular

collisions, and the only other possible mechanism of support is radiation

pressure. This idea has been developed in quantitative form by Milne* in

a recent series of important papers, with the result that much new light

has been thrown on the nature of such atmospheres supported by radiation

and many allied questions, and the observed facts satisfactorily explained.

We shall give an account here of so much of these researches as does not

require a study of the general laws of the flux of radiation, and summarize

the rest. We must naturally make free use of the laws of radiative pro-

cesses which are collected in Chapter xix, to which we shall refer forward

here.

* Milne (1). "An astrophysical determination of the average life of an excited calcium atom,"

M.N.R.A.8. vol. Lxxxiv, p. 354 (1924), (2), (3) and (4). "The equilibrium of the calcium

chromosphere," M.N.R.A.S. vol. Lxxxv, p. Ill (1924), -vol. lxxxvi, pp. 8, 578 (1925, 26), (5).

"On the possibility of the emission of high speed atoms from the sun and from the stars,"

M.N.R.A.S. vol. Lxxxvn, p. 459 (1926).
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If the pressure arising from the reaction of the atom to the flow of

radiation from the photosphere is to balance the force of gravity, the

pressure must, on the atomic scale, be very large indeed. An atom of course

interacts with light of all frequencies, but only strongly with light of the

frequency of its own absorption lines (§ 19-2) or of a frequency great enough
to ionize it (§ 19-3). For Ca+ near the sun there will be practically no photo-

ionization since the absorption edge lies too far in the ultra-violet, so that

the calcium chromosphere must be supported (at least mainly) by the

radiation pressure due to the formation of the H and K absorption lines

themselves.

The H and K lines of Ca+ form a close doublet 1 ^^ - 1 ^P. It will

obviously be legitimate in a first survey to imagme that the two lines are

fused to form a single one of their united strength. The states of the atom
concerned are then to be thought of as two only of weights 2 and 6. We
shall find that any Ca+ atom is only in the excited ^P state for a very short

fraction of all time, so that multiple absorptions to still higher states will

be comparatively infrequent and may be disregarded. From the 1 ^P state

the excited Ca+ atom can return either to the normal 1 ^S state emitting

H and K or to the intermediate metastable 1 ^D state emitting the lines

AA 8498, 8542, 8662, which may also be regarded as fused, and the '^D state

a single state of weight 10. It follows that this group known to astro-

physicists as X should be visible in the sun's chromosphere wherever H
and K are visible and with closely connected intensities. Owing to photo-

graphic difficulties in the deep red and infra-red region of these lines this

has not yet been established observationally, but the X lines have been

traced to great heights by Curtis and Burns*. The existence of this meta-

stable "D state is a compHcation to the analysis, which however may be

avoided at first by the following considerations. Since the state is meta-

stable and the densities in the region to be discussed turn out to be extremely

low, a Ca+ atom in the '^D state will remain there permanently until it

reabsorbs one of the X lines and returns to 1 ^P. Consequently for present

purposes the ^D state acts like an extra normal state. If the wave lengths

of H and K and X were approximately equal we could even regard the

1 2/S and 1 ^D states as fused into a state of weight 12. Though this cannot

be done, it is clear that a first discussion omitting all reference to the 1 '^D

state will be correct in essentials, liable merely to subsequent numerical

correction.

We propose therefore the simplified problem of the formation of a high

level chromosphere of Ca+ atoms (and electrons) supported by the pressure

of the absorbed H and K radiation, the atoms being idealized systems of

* Eclipse of 1928, Jan. 24. Curtis and Burns, Pub. Allegheny Obs. vol. vi, p. 95 (1925). More

recently Davidson, M.N.R.A.S. vol. Lxxxvni, p. 30 (1927), has recorded preliminary com-

parisons of H, K, and X by observations without an eclipse.
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two stationary states only of weights 2 and 6. The problem is not an

equilibrium one, but the state of the matter in this atmosphere must be

determined by enumerating and balancing all the atomic events, using the

atomic formulae of the equilibrium theory of § 19-2. The only atomic

events of importance are absorption and emission of H and K, satisfying

Einstein's laws.

Consider the state of an atom at the upper boundary of the chromo-

sphere—that is so high that there are too few atoms above it to alter

effectively the outflowing H and K radiation or to return radiation to the

atom from above. We may suppose that the sun's continuous photo-

spheric radiation / {v) is that of a black body at temperature T (about

6000° K.)*. From the point of view of the Ca+ atom this may to a first

approximation be regarded as uniformly distributed over the hemisphere

below it and reduced by absorption below to a fraction r of the photo-

spheric value. Such an atom must on the whole be in equilibrium so that

the average rate of absorption of upward momentum from the radiation

must exactly balance the rate of increase of downwards momentum due

to gravity. Spontaneous emission of radiation by the atom is isotropic and

so contributes nothing on the average to the momentum. Stimulated

emissions are directed, but for the frequencies in question too rare to need

inclusion.

By (1321) the chance of absorption by a normal atom in time dt is

Bj^I (v) dvdt in isotropic v-radiation. The chance is reduced here to

^rBi^I{v)dvdt.

The average time t' that a normal atom remains in the normal state before

absorbingi is therefore given by

Ifr' = lrB^^ I {v)dv. (1126)

Neglecting stimulated emissions, the chance of emitting in time dt and the

average life t in the excited state are given by A-^ and t = 1/^2^- Using

(1326) and Planck's law for I{v) we find

T ^rB^^ I (v) dv XD2 \i
,(1127)

Now the average life in both states together, during which the atom absorbs

just one quantum, is t + r', and the upward momentum absorbed with this

quantum is liv cos djc which averaged over the hemisphere has the value

^hvjc. It follows that for equilibrium

m^ (r + t') = Pr/c. (1128)

* Fabry and Buisson, C.R. vol. clxxv, p. 156 (1922); H. H. Plaskett, Pub. Domin. Astrophys.

Ohs. vol. II, p. 253 (1923).

•f
The argument from the chance in time dt to the fraction not having absorbed after time t

and the mean life t' is that of § 15-41.
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For the numerical values T = 6000° K., A = 3950, Jiv/kT - 6-05,

m = 40 X 1-65 X lO-^^ and g = 2-73 x 10^ vi^jw^ = 3, we find

tJt' = rx 3-54 X 10-3,

T + r' = T = 4-6 X 10-5,

T=rx 1-62 X 10-7.

The Ca+ atoms here considered on the upper boundary of the chromo-

sphere will be almost ideally undisturbed and their absorption lines will

have their natural narrow width. The observed H and K lines of the sun

and many stars are broad, but it can only be the centre of the Ime with

which we are concerned in the upper chromosphere. The observed value

of r for the centre of the H and K lines averaged over the sun's disc is about

0-11. We thus find

T = 1-8 X 10-8, A.^ = 0-5 X 10'.

The simplicity of the argument and the data leading to this result are

noticeable, and give this determination of t great weight*.

A number of interesting deductions may be drawn from these formulae.

Equations (1127) and (1128) may be used to derive a formula for r, namely

^^w,^ngcr _
w^ hv

If F {v) is the residual central mtensity in the line, rl {v), this can be

expressed very simply in the form

F(v)=^^^'"^^. (1130)
w^ c

If the right-hand side of equation (1129) is greater than imity there can be

no absorption line, and the type of high level chromospheric equilibrium

here contemplated cannot occur. This will happen if the atom is too heavy,

if g is too large, if v/T is too large, or if t is too large. Using the value of t

deduced from the sun for Ca+ the critical photospheric temperature below

which a calcium chromosphere cannot be formed is 4400° K. for a star with

the same surface value of gravity as the sun.

If the right-hand side of (1129) is less than unity a calcium chromo-

sphere may still be impossible for the photospheric v-radiation will be

reduced below I (v) in the lower absorbing layers (reversing layer). But
so long as the r of (1129) is less than r^, the reduction ratio when the

v-radiation is free of the pressure-supported layers, a chromosphere will be

* An important contribution to the theory has just been made by Unsold, Zeit. fur Phys.

vol. XLiv, p. 793 (1927). He points out that we now know A^ and t theoretically with some
certainty, for the strength of the combined H and K absorption coefficient is almost exactly the

same as if each atom carried one classical electron vibrating with this frequency. The true value

of T is slightly less than the value derived by Milne. The atoms are more absorptive. The dis-

crepancy may be accoiinted for by the proportion of doubly ionized calcium atoms which must be

supported in equilibrium by the radiation pressure of the H and K lines alone.j

F 26
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formed at once, for equilibrium for Ca+ atoms at the top of the reversing

layer is impossible, and they will be driven out by the radiation pressure

until a screen is formed sufficiently deep to cut down the finally emergent

v-radiation to the fraction r.

Values of r for various stars have been given by Milne as follows

:

Table 54.

Residual intensities in the centre of the H and K lines.

Star
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chromosphere set up in this way is such that the chromosphere can extend

to the great heights at which it is observed. For this the reader must refer

to the original papers*. The result of this investigation is that the pressure

of radiation at any given level is proportional to F {y) defined above and

to («! — n^jin-i^ + n^. The ratio n^ln-^ decreases outwards and

increases outwards and at great heights tends to a limit fixed by the

boundary conditions already discussed. The density p of the chromosphere

at height x is given by
_ ^TrkTohv^^^v CTi

(1131)
^ mg^c^ {x + XqY w-i -\- TD2'

In this formula Tq is the "temperature" of the chromosphere assumed

uniform, as measured by its pressure, that is by the mean kinetic energy

of its constituent systems, Av is the effective width of the absorption line

of residual intensity F {v) and Xq a constant fixed by the theory, equal to

the height of the equivalent homogeneous atmosphere. Heights are mea-

sured from an assumed level at which the intensity of i^-radiation has its

photospheric value. Curvature of the layers and change of g with height

have been neglectedf

.

Milne discusses also the case in which at the upper boundary the

radiation pressure supports a fraction 1 — /z of the weight of the atom and

shows that the distribution law changes over rapidly to the exponential

type as if the atoms had an effective mass iim. Such chromospheres he

calls "partially supported ", and those with /x = above " fully supported ".

In the case of partial support, remembering the electrostatic effects

(equation (1062)), we have

p = p^e-^mgxl2kT,^ (1132)

The theory therefore gives just the type of extended atmosphere required.

For calcium on the sun the density decreases in a fully supported chromo-

sphere by 1/23 in 14,000 km., compared with 10-^°" when radiation pressure

is neglected or 10"^ and lO"^'' for /x = 0-01 or 0-1. Values of jjl as great as

0-01 must be impossible on the sun.

In a later paperJ the doublet character of the ^P level is taken explicitly

into account. It is shown that the residual intensity calculated as above

as though the level were single is equal to the weighted mean of the residual

intensities in the two components, the weights being naturally the ro's of

the two ^P states. The relative residual intensities should vary inversely

as the weights—that is the strength of the absorption lines directly as the

* Milne, loc. cit. (2).

f"
An extension of the theory to a spherical sun has recently been made by P. A. Taylor,

M.N.B.A.S. vol. Lxxxvii, p. 605 (1927).

J Milne, loc. cit. (3).

26-2
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weights, in agreement with the general rules for intensities in multiplet

spectra.

In this paper the metastable '^D state is also taken into account and

the relation between the residual intensity in H and K and the X group

investigated. It is shown that the existence of the ^D state means that

the formula for r for the H and K lines (11 29) has to contain an extra factor

1

1 + v't/vt

In this factor the ordinary symbols refer to the line 1 ^S — 1 ^P and the

primed symbols to 1 ^D — 1 ^P. If v' were equal to v we should simply

have replaced the mean life r for the H and K switch by the true mean life

of the excited atom tt'/{r + r'). This factor does not alter the order of the

estimates already made. The further implications of the theory cannot be

considered here.

§ 15-51. Anomalies in the behaviour of the absorption lines of Ca^, Si+,

and Ba+. We are now in a position to consider the places of the maxima
of these lines in Table 51 of § 15-33 and their behaviour for higher tempera-

tures. The theory seems to place the maxima at temperatures rather lower

than the general run of other temperatures, perhaps 400° too low in the

case of Sr+ which is the best determined. It is tempting to suggest that

these delayed maxima are due to the formation of a strontium (or other)

chromosphere of increasing depth, and so to increasing chromospheric

absorption in hotter stars. Since the residual intensity in the centre of the

absorption line is fixed as a function of gr and m and independent of the

photospheric temperature, the observed strength of the centre of the Ime

will increase with increasing T due to this extra absorption beyond the

reversing layer.

Again lines that are past (on the hot side of) their maximum are

normally weakened when we pass from dwarfs to giants, and lines that are

short of (on the cold side of) their maximum are normally strengthened.

To this rule the normal lines of Sr+ (and to some degree also the same lines

of Ca+ and Ba+) are noteworthy exceptions. There is no doubt that the

lines of Sr+ are stronger in giants than dwarfs on the hot side of their

maximum*. It is extremely tempting to suppose that this is due to a

superposed chromospheric effect. In the giants with the smaller g a more
extensive chromosphere is formed with a smaller absolute residual intensity.

This strengthens the line in a way which is impossible for non-chromo-

spheric absorption and may well outweigh the normal reversing layer effect.

§ 15-6. The velocity distribution of atoms in the chromosphere and the

escape of atoms from the sun by radiative expulsion. We have hitherto

* Payne, loc. cit. p. 151.
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ignored in this discussion of the chromosphere the fluctuations in the

velocity of a single Ca+ atom, and have been content with seeing that

its radial velocity shall be zero on the average. Milne has however pushed

his enquiry further* so as to establish the details of the velocity distribution

law in the upper chromosphere. The method necessary is a simple extension

of § 19-5. There we consider the preservation of Maxwell's law by line

absorption and emission in isotropic equilibrium radiation. Here we have

merely to generalize this for non-isotropic radiation of which the average

transfer of momentum due to the anisotropy is balanced by gravity. The

state of the matter will not be statistical equilibrium, but the radiative

interactions are dominant, and the steady state set up must be practically

that demanded by this one-sided application of the laws of § 19-5, assumed

to act alone.

It is at once evident that Theorem 19-5 will apply to the radial

velocities. The radial velocity distribution will therefore be Maxwellian

with a mean square velocity v^ given by

^=1 Lt ^.

The evaluation of u^ and A proceeds exactly as in § 19-52 and requires

nothing new in principle, but a knowledge of the details of the radiative

anisotropy into which we cannot go. In place of (1373) we find in fact for

radiation uniformly distributed over a hemisphere

'""'-
„ *f8/W ("33)

/ (-) a {v)

approximately, with other similar forms with different numerical constants

for other (more accurate) assumptions as to the intensity distribution of

the radiation. At the bottom of the absorption line dr/dv = (maximum
reduction in intensity ratio) so that as usual

V dl (v) hv

I (v) dv kT^

approximately, where T^ is the photospheric temperature. Thus

The distribution of radial velocities is therefore Maxwellian with a tem-

perature Tq {ternperahire meafiing now only the parameter of the radial velocity

distributio7i) given by
To=iT,. (1134)

This Tq is the temperature which gives the radial pressure and so must be

used above in the study of the equilibrium of the chromosphere. More

* Milne, loc. cit. (4).
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accurate evaluations lead to values of Tq rather nearer to and somewhat

greater than \T^.

IVIilne has in addition evaluated the temperature parameter Tq for the

tangential velocity distribution. It is interesting to find that tliis is

different from Tq . The distribution is still Maxwellian in these components

as we should expect, but in the simple case leading to (11 34) above Tq =T^.

§15-61. Limitations of the foregoing analysis. Radiative expulsions. In

the arguments of § 19-5 we assume (and follow tacitly the same assumptions

here) that the relevant velocities of the atoms are small compared with

the velocity of light, and in fact so small that the change from / {v) to I {v')y

where v' — v is the Doppler shift of frequency, can be regarded as equal to

(v' — v) dijdv. The black body curve / (v) is a smooth curve without sharp

local changes, and no question arises as to the legitimacy of these approxi-

mations. In the present problem however we are not concerned with the

ordinary black body curve, but with r (v) I {v)—that is the black body

curve cut by a sharp deep absorption line. The foregoing arguments will

still hold but really only for atoms which have velocities so small that the

Doppler shift is small compared with the width of the absorption line itself.

The average velocity v for Ca+ atoms in the sun's chromosphere is about

1*3 X 10^ and the corresponding Doppler change of wave length about

1-5 X 10-^". A velocity of lOv will still only shift the line by O-I Angstrom

and leave the central absorption intensity of these atoms on the flat part

at the bottom of the observed contours of H and K. This is sufficient to

justify the full procedure adopted above. But once the velocity of an atom

exceeds some such value the approximation for / (v) in terms of / (v') is

inadequate within a strong absorption line.

Milne has shown that a convenient and sufficiently accurate form of

the equation (1359) for the average radiative retardation adapted to the

present calculations for radiation uniformly distributed over a hemisphere is

g dt c \ ^ I (v) d (v) J ^ ^

This however must be replaced by something like

Idv 2y /, , v' M'
9

if the velocity is sufficient for the Doppler shift to bring the absorption

frequency of the moving atom into the wing of the absorption line. For

small velocities in either direction (1135) and (1136) give equally the

retardation which we have already discussed, and (1136) continues to give

a retardation for an inward moving atom for any value of Av. But for an

outward moving atom of considerable velocity equation (1136) may not

only not give a retardation, but may even give an acceleration large

g dt c \ ^ I (v) AvJ' ^ '
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compared with 2vjc. For example if v = 300 km. /sec. AA = 4 Angstroms

and the absorption frequency of the atom has moved right out of the

absorption Hne to the ultra-violet side. Then

^v v' A/ , A/
^ c / {v') Av '•" I

'

which is about 6 and therefore very large compared with 2v/c.

The fast outward moving atom is heavily accelerated, nearly enough

according to the equation

dv

It \g

V V M
c I {v') Av 'W

A/
.(1137)

Pz
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For velocities of the atom such that the Doppler shift lies between

Pq and Pi we have obviously the equation of motion

Zi-TpoV/
„ V r^'

r = 1139)

where V is the velocity corresponding to a Doppler shift from P^ to Pi,

half the width of the line. Integrating this for an initial velocity Vq when

r = a we find

This holds until r = r^, say, when v = F so that

''-'•o-Vf('-,^)- lur

If Foo is the critical velocity of escape from the sun's gravitational field

1 Foo ^ = ag so that this may be written

2F(F-i'o) A V 2 .(1142)

After Pi the equation of motion is obviously

r =
2

2^ '

which gives on integration

Adding (1142) and (1143) to eliminate r-^ we find

^;2+ V{V-2v,) = ^-^^V^m

We may now let r ^ co and neglect Vq , so that we find

J — T F2
F

F^-

For the sun's calcium V^ = 615 km ./sec. the H and K Imes are very broad

so that, as it happens, VjV^ is about 1.

(/i
-

7o)//o
= 8, v^2 _ 77^2^ ^^ = 1.63 X 108 cm./sec.

These very large velocities of repulsive escape are extremely interesting

and have a number of astrophysical and geophj^sical applications for which

the original paper should be consulted.



CHAPTER XVI

APPLICATIONS TO STELLAR INTERIORS*

§ 16-1. Rosseland's theorem. We shall start this chapter with some

comment on an application by Rosselandf of the theorems of §§ 15-2-15'25

to the far interior of a star. He there discusses the effect of electrical fields

on the relative distribution of different elements in the interior of a star,

as we have done for atmospheres in the sections quoted.

It will be sufficient to consider the assembly of § 15-25, but we must

now use the general equations (1042), (1043) and (1044), since both gravi-

tational and electrical fields arise from the matter of the assembly itself.

The point made by Rosseland is that, if (1069) is satisfied, then the

substitution

^ls=- ^^"7^ ^ = - ^^^^7^
^ (1144)

reduces all the exponential factors in the three distribution laws to the

common value

E=e ^^^ -^^-^^ ^=e '"^^ '^^^^
^ (1145)

The equation for cf) remains

V^ = 47tGE (Wi (nJo + ma {n^)^ + m^ {71s)q},

and the equation for ip becomes

„., ,
4776^ (^1 + 1) -n r , ^v

/
\

/ \ •>

^ '^
=

^, ' ^ ^^1 (^'l)0 + "2 (^^2)0 - (^3)0}-

These two equations are consistent and the relation (1144) a possible

solution of the problem if the values of (%)o, (^^2)0' (%)o ^^® suitably fixed,

that is if the ratio of the mass density and charge density at a particular

point has the correct value. The analysis of §§ 15-2-15-25 shows however

that in that simple case even if the initial condition is not satisfied the

exact solution approaches the corresponding particular one with extreme

rapidity, and one may safely assume that it does so here too. In the interior

therefore of a star composed of any number of mixed ions, if the conditions

(1069) equivalent to (1144) are satisfied for each pair, the gravitational and

electrostatic potentials will be everywhere in the ratio (1144) and the con-

stituents will be everjrwhere mixed in the same proportions. The space

variation common to all components is given by (1145).

Interesting conclusions could be drawn if this uniform constitution

could be established even in the restricted isothermal case. It is therefore

* I have to thank Dr Hartree for the numerical calculations in this chapter,

t Rosseland, M.N.R.A.S. vol. lxxxiv, p. 720 (1924).
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necessary to examine (1069) with some care to see how closely it could be

satisfied in a star. Since atoms are largely reduced to nuclei and free

electrons, and since the masses and charges of nuclei are very nearly pro-

portional, it seems at first sight as if (1069) would be very nearly satisfied

for stellar material, and Rosseland's theorem might apply. But the satis-

faction is not exact. For oxygen, iron and silver nuclei, for example, the

values of (m^ — 'm^)l{v-^ + 1) are 1-78, 2-08, 2-25. In order to assert that

the electrical forces really maintain the isothermal stellar material at a

constant constitution, an almost exact equality would be required. We
may conclude that this effect will very much reduce the rate at which the

relative concentrations of the heavier elements increase towards the centre,

but on the stellar scale the concentration to the centre in an isothermal star

would still be overwhelmingly great.

As we have said, further consideration of large scale effects is beyond our

scope, and we pass on to the study of the properties of matter in equilibrium

at stellar temperatures and densities.

§ 16-2. Stellar material. In the radiative theory of the steady states of

a star the important quantity that must be provided by statistical theory

is the equation of state of the stellar material. The material consists of

atomic ions and electrons in dissociative equilibrium, and the equations

of Chapter xiv permit this equilibrium state to be calculated so long as the

density is not too high.

To a first approximation stellar material behaves like a perfect gas of

that number of constituents which is required by the dissociative equi-

librium. It is therefore customary to write its equation of state as the

perfect gas equation in terms of the temperature, density and the mean

molecular iveight fx. In the first instance this is calculated from the number

of atomic ions and free electrons, but any corrections to the pressure, for

example for electrostatic effects, can be incorporated as corrections to the

mean molecular weight. It is this corrected mean molecular weight [x*

which is required in stellar theory.

In addition to the mean molecular weight, the pulsation theory of

Cepheid variables requires a knowledge of the ratio y of the specific heats

of the material together with the radiation it contains—or in other words

of its adiabatic curves in p, V coordinates.

Both ^* and y can be derived at once from the formulae of statistical

theory given in Chapter xiv. The calculations however are somewhat

intricate and have not been completed on any reliable theory! except for

t Fairly extensive calculations were made by R. H. Fowler and Guggenheim, M.N.R.A.S.

vol. Lxxxv, p. 939 (1925), using an earlier less accurate version of the theory. Their results have

been used by Eddington, loc. cit., especially § 180, to check the more elementary approximations.

The alterations made in their results for fx* by the more exact theory will therefore be noted

here.
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/x*, for which some results are given in this chapter. Finally stellar theory

requires a calculation of the mean absorption coefificient of stellar material

in the state specified for the radiation passing through it, which is prac-

tically black body radiation of its own temperature. This calculation leads

us far afield into atomic theory and we shall not attempt to give it here.

We will now summarize the formulae to be used, with the notation of

Chapter xiv

:

I
- ^^jlog^ + l|+ S,, Jf.^jlog^ + l|+ ^^-^ + ^.

(1146)

The electrostatic contribution T^/Z; is not accurately known. Debye and

Hiickel's theory (1016) gives

^""^
{7^ + S,,,r2if/}t. (1147)

We have also, repeating former equations,

G{T)=2 (^'^f
^)*.

(1148)

F/ (T) = ^^^^^1 uf (D eiV+-+x',-.l/»r^ (1149)

u,' (T) = ^,' + ''rm'„_, (r + 1)'. S. {g__L__l*'

X e-{v+-+x'V + 5_ii/fcr^ (1150)

B = 1-017 X 1012, N = X,^,rM./. (1151)

We define s~, the average number of free electrons per atom of type Z, by

the equation
s'M' = s~-I.rM/ = I.,rM/, ( 1 1 52)

so that N = 'E,s'M'. (1153)

The pressure p is given by
p= TdYjdV, (1154)

the material (as opposed to the radiation) pressure by (1154) in which the

term arising from the radiative term aVT^ in (1146) is omitted. The density

p is given by
p^H.M'^m'jV. (1155)

If the dependence of F/ on V is ignored, so that the gas mixture is perfect,

we should have
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where R is the gram-molecular gas constant and m^ the chemical atomic

weight. As it is we have

V=^, (1157)

defining /x*.

The equations of dissociative equilibrium are obtained by making

^T = for all variation of the type

m = hM\^^ = - SM,~ = 8a. (1158)

If T, p and the ratios of the various M^ are then given (matter of given

chemical constitution, temperature and density) the equations can be

solved completely.

The actual procedure is rather to assume values for N/V and T, and

solve by successive approximations. It must be remembered that Planck's

theory is only shown to give a valid approximation to B (T) so long as in

all cases the private catching region of each ion is so large that on its

boundary the potential energy of an electron due to the central nucleus is

small compared with kT. This condition is (1032) in the simple case there

considered. It easily extends to

which may be taken with sufficient accuracy to be

l+i,.(|,)*<tT. (1169)

It must be remembered also that Te is not accurately given by (1147).

There are besides other electrical effects, such as the screening of the nuclei

by free electrons for which it makes no allowance. This effect can be

important, and will be opposite to the direct effect oiY^ itself. We have to

conclude at present that as soon as the terms arising from Te become

important in evaluating jjl* the present theory ceases to be reliable.

For simplicity in the actual calculations the equations of dissociative

equilibrium have been taken in their perfect gas form, ignoring the effect

of the variations on the u/ (T). It is easily verified that the omitted factors

never differ much from unity; the greatest value they take is about 10"'^.

Therefore their omission can hardly affect seriously or give an undue bias

to the calculated values of ^a*. It is not worth while including them until

we have a proper theory of the screening effect of the free electrons.

Calculations have so far been made only for stars composed of iron which

are given below in Table 55, and are shown plotted in Fig. 27.

The first six columns in Table 55 need no comment. The seventh gives

the /x* of (1157). When we apply (1154) to (1146) we find

p='±I^N + S,,,if/ + S,,,ilf/F p, log u.
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Now the various terms in u/ correspond to different numbers of excited

electrons, and therefore Vd log u//d V takes the simple form

24^ (^:Q 2^ \-^'^ r Iq 1(7 ^
2Hr

It follows that

and therefore that

,* _ _

hT
^ = -^ [N + S,., Jf/ (1 + ig/)},

/^

Y^^M^m^' li^M^m^"

N + 2,,,ilf/ (1 + Iq/) N + S.ilf^ (1 + ig)

when electrostatic effects are neglected.

2-6-

|/x>=



GO
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twenty times the sun's mass, and has increased to 3| per cent, for a mass

about 1-7 times the sun's mass. The average number of highly excited

electrons per atom is here about 2-4, calculated of course neglecting the

screening power of free electrons. Comparing /x* and /x' we see that we

have reached a mass at which the number of highly excited electrons has

an appreciable effect on /x*. For the reasons given we cannot claim that

our theory gives a reliable value for q (the true value being less), so that

we have here reached the limit of safety ; the next entries show that q and

the electrostatic correction are beginning to increase rapidly. We may
conclude that the values of /x* as calculated without electrostatic cor-

rections are sufficiently reliable down to masses twice the mass of the sun.

By a cancellation of neglected effects the values given for /x* without

electrostatic correction are probably nearly correct down to masses equal

to the mass of the sun. Below that mass none of our calculations can be

relied upon.

§ 16-3. Matter of great density. We have not yet investigated whether

matter of the densities and temperatures appearing in Table 55, or of still

greater densities, can really exist and still more behave approximately like

a gas of mixed dissociating constituents approximately perfect. We have

omitted all mention of excluded volumes in the foregoing discussion. It

is these, and the fields of force arising from permanent electronic structures,

which will make the mixture depart from perfection—in particular reduce

largely its very high compressibility. The highly excited electrons and the

electrostatic corrections do not have any such effect, and can be ignored

in this connection.

A complete formulation of the problem might have started by assigning

to every possible type of electronic structure with its electrons in their

lowest or at least in tightly bound orbits a definite field of force—with

sufficient accuracy an excluded volume, such that no part of any pair of

such excluded volumes may overlap. The characteristic function for such

an assembly can be written down to a first approximation, using § 8-6. It

is easy to see however that such elaboration is unnecessary, for the large

volumes of the more complex electronic structures will make them occur

on the average still less often than in the assembly for which the calculations

have been made, where their excluded volumes are all zero. If therefore

we take the simplified assembly for which the calculations have been made,

estimate reliable excluded volumes for the dominant tightly bound elec-

tronic structures, and show that such excluded volumes are insignificant,

the existence of perfect gas matter at such densities will be established,

and the foregoing procedure fully justified.

On examining the details of the calculations it appears that the most

important surviving electronic structure contains two electrons only in
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their normal orbits—that is helium-like iron. Apart from the excess

nuclear charges which contribute only to the electrostatic correction (the

complete electrostatic correction increases the compressibility) we may be

certain that the helium-like iron ions will interact as if the radius of their

excluded volumes bore the same ratio to the radius of the excluded volume

of two ordinary helium atoms as do the radii of the corresponding Bohr

orbits of the two electrons*. Allowing for screening, the ratio of the radii

of the orbits of helium -like iron and normal helium is about 1- 7/25- 7. The
excluded volumes for helium-like iron are therefore smaller than those of

helium by a factor (l-7/25-7)=^ or, isay, 1/(15)3.

For a gas of M helium-like iron ions in a volume V and N (= 24Jf ) free

electrons we shall have to a first approximation an equation of state

The electrons are practically without volume. The excluded volume for

a free electron and a core is v^^ and for two cores v^c . It is perhaps legitimate

to suppose that v^c = i^cc on the average. The ratio of the correcting term

to the main term is therefore nearly enough Mv^^V . In the same way the

ratio of the correcting term to the main term for normal helium is (say)

\M'Vcc'jV. The excluded volumes affect the pressure of ordinary helium

gas by 1 per cent, at a density of about 0-0043 gm./cc. The 1 per cent,

correction will therefore be reached in a gas of helium-like iron plus

electrons at a density of

0-0043 X ^f X (15)3 X 4 _ 349.

In two important respects we have probably underestimated the density

for a 1 per cent, correction in this calculation. The greater temperature of

the stellar material must diminish rather than increase corresponding

excluded volumes, and it is likely that the volume excluded to free electrons

may not be comparable with ^v^c • We may conclude that stellar material

will in general reach densities of the order of 1000 gm./cc. or more before

we find any departures from the compressibility of a perfect gas due to

those properties of finite extension of the constituent systems which make
the ordinary gases of our experience imperfect.

Whether we can go further than this—to densities of 10,000 or 100,000

with the same compressibility—the theory we have developed is unable to

say. Such matter can only be discussed when we have a proper method of

including electrostatic effects. At present there is only one further con-

tribution we can make to the nature of matter in white dwarfs, or rather

to its ultimate fate when they become black dwarfs. This however involves

the new statistics and is postponed to Chapter xxi.

* The radius of an orbit of the old quantum theory is a reliable guide to the position of

maximum density of electricity (the important region) in the new quantum mechanics.



CHAPTER XVII

MECHANISMS OF INTERACTION. COLLISION PROCESSES

§ 17-1. The nature of the equilibrium state. We have pointed out in the

introductory chapter that the equilibrium theory of statistical mechanics

is essentially of a thermodynamic nature. Its laws are independent of all

mechanisms of interaction. It has merely to be supposed that the necessary

interactions can occur. It is only when we begin to discuss the far more
difficult theory of (non-equilibrium) steady states of flow, that the actual

laws of the mechanisms acting become relevant, or can be deduced from

the experimental facts. It was pointed out further that the laws of equi-

librium, being thus in some sense universal, must be conformed to by the

laws of any mechanism. The actual details of the laws of interaction

between molecular systems and such systems and radiation are still some-

what obscxu'e. The best help that statistical mechanics can give at the

moment towards the development of the theory of steady states is to

analyse carefully the restrictions that its laws impose on the laws of inter-

action, so as to leave vague for further determination as little as possible

in these laws. This is valuable help, and this chapter gives an account of

such help as can be thus given to the study of the laws of interaction by
collision m assemblies of perfect gases, or between perfect gases and solid

walls. The laws of interaction with radiation are treated in Chapter xix. The
modifications introduced by the newer forms of statistical mechanics

conforming to the newer quantum theory are discussed shortly in Chapter

XXI.

It may be argued that, since the equilibrium laws (and therewith the

detailed relations of the laws of interaction) have been changed by the

new mechanics, the equilibrium laws are not the absolute things that we
have hitherto represented them to be and do in fact depend on the laws

of interaction of molecular systems. This argument is of course correct, but

it remains of the greatest value for a clear grasp of the equihbrium theory

to regard the equilibrium state as the primary thing and to use it to analyse

the form of the relationships among the processes of interaction.

In the classical kinetic theory the laws of interaction of structureless

molecules are all that interest us; we visualize molecular encounters as

purely conservative collisions either of elastic spheres or point centres of

force. This conception has of course long proved fruitful in the study of

transport phenomena initiated by the work of Maxwell. By way of intro-

duction to this chapter we shall present the classical theorems of Maxwell
F 27
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and Boltzmann, including the latter's famous fl'^-theorem, from this sUghtly

unusual angle.

In the equilibrium state of a perfect gas the positions and velocities of

each set of molecules satisfy Maxwell's law. The distribution function for

any one set is, let us say,

f (u, V, w) dudvdw (1160)

per unit volume, and the function/ must be the same whatever the mechanism

by which it is set up. This is the position at which we are left by the general

mechanismless equilibrium theory. It remains to examine whether the

usual mechanism of classical conservative collisions is a possible mechanism

which will preserve (1160). Now if a certain type of collision between

molecules 1 and 2 with velocities u^^, v^ , iv^ and u^, v^, w.^ transforms these

into 1*1*, Vi*, Wj* and U2*, v^, iv.^*, then the number of such collisions per

unit volume per unit time is

fifidu^ ... dw^V'pd'pdilj. (1161)

In this expression V is the relative velocity of the two molecules before the

encounter begins, and j) and ijs are polar coordinates, in a plane through one

molecule normal to the direction of V, which define the position of the

initial asymptote of the necessary relative orbit. The symbol /^ is short for

/ (%, Vi, iv^), etc. These collisions all destroy molecules of velocities %, fi, w^

and ^2' ^2' ^2 ^^cl create molecules of velocities u^*, v^*, iv^ and u.^, v<^, w^*.

Conversely, since any conservative orbit can also be travelled in the reverse

sense there are a set of reverse collisions, in number

/i*/2*^%* ••• dw2*V*p'^dp*di/j'', (1162)

which destroy molecules of velocities u^*, v^*, w^* and u.y*, v^*, W2* and create

molecules of velocities ^^i, Vj, iv^ and U2, V2,W2. The relation between (1161)

and (1162) can be simplified. By applying Liouville's theorem to the

element of phase space of the conservative system formed by the two

molecules we find that

dui ... dw^Vpdpdip = fZwi* ... dw2'^V'^p*d'p*difj* (1163)t

The proposed collision mechanism will therefore certainly conserve the

equilibrium state if this requires that

/i/2=/i*/2*, (1164)

a relation equivalent to Maxwell's law.

The classical collision mechanism is therefore a possible one, for (1164)

is a sufficient condition for the preservation of equilibrium. It is important

to observe that (1164) has also wider implications, for it asserts that there

is a detailed balancing of all the individual types of collision, as specified by

t Since the systems are conservative we have also V — V*. If the relative orbit is described

under a central force and so is plane and symmetrical about the apse dip = dip*, p=2^*> dp = dp*.

Thus in this simple case duj^ . . . dwo = duj* . . . div^*.
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the velocity exchanges. According to (1164) just the same number of

collisions of any one type and the reverse type must occur per unit volume

per second. This condition of detailed balancing is naturally sufficient for

the preservation of equilibrium. It does not necessarily follow without further

investigation that detailed balancing is also necessary and therefore equiva-

lent to the demand for the preservation of equilibrium. On certain assump-

tions however it is possible to prove this equivalence, and the proof, given

in the next section, constitutes Boltzmann's H-t\ieovem.. Thus for the

particular mechanism of classical conservative collisions with central forces

the two requirements of

(a) Detailed balancing,

(6) Preservation of equilibrium,

are equivalent. For other mechanisms it is not always possible to prove

this equivalence, and examples will be given where conditions for (6) are

definitely less restrictive than for (a). The two hypotheses provide alterna-

tive bases on which we may attempt to analyse the laws of any proposed

mechanism, and both should usually be kept in mind. The more restrictive

hypothesis of detailed balancing has a simplicity and inherent probability

which strongly recommend it, until, if ever, its consequences can be shown

to be in disagreement with experiment or with the requirements of the

new mechanics.

In classical kinetic theory molecules are structureless. In the extensions

now required their electronic structure becomes relevant and in general

more than one mechanism may be causing a specified change of state in

any system. The question then presents itself whether or not we can discuss

separately the effects of the separate mechanisms. The arguments that

follow are those of the classical radiation theory. Suppose we have a

system X which can undergo a specified change by interaction with other

systems Y or Z. Suppose we can effectively change the concentrations [Z]

and [Z] independently of each other, of [JC] and of the temperatiu-e. This

will be the case if Y and Z are separable in the equilibrium state from each

other and from X. They will be so separable for example if they refer to

different atoms, but not if they refer to different states of the same atom.

Interactions between X and Y and X and Z will then certainly occur with

unconnected frequencies. This still applies if Y means the temperature

radiation in the assembly, with the proviso that then the "concentration"

—the density of the radiation—cannot be varied in equilibrium indepen-

dently of the temperature. Let Py be the frequency with which {X, Y)

interactions occur per unit volume at unit concentrations, converting X
from a state 1 to a state 2, and Qy be the corresponding frequency of the

reverse process, for an assembly in full statistical equilibrium. We consider

now only an assembly of effectively perfect gases, and suppose that the

27-2
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systems are distributed entirely independently of each other, in accordance

with the ideas of classical statistical mechanics. Then we see that for

equilibrium we must have

[XJ {Prad + [Y] Py+[Z]P^+ .,. + [Yf Pyy + ... + [F] [Z] Py, + ...

+ [Y]Pr,r.a+-}

= [X,] {Qrad +[Y]Qy+[Z]Q^+... + [Yf Qyy + ... + [7] [Z] Py, + ...

+ [i^]Qr,rad+-} (1165)

We have here allowed for all sorts of interactions, radiative, simple and

multiple collision processes, and mixed radiative and collision processes.

Now so long as [ F], [Z], . . . are independent variables, and there is a unique

equilibrium relationship between [X^] and [Xg], this equation has important

consequences. If the ratio [Xi]/[X2] is independent of [F], [Z], ... and so

is a function of the temperature only, then

-Prad _ -r r + -Pr.rad _ ^Z + -P^,rad _
Vrad Vy + Q;F,rad Vz + V^,rad

Lyy -t^YZ LX2J
,(1166)

Vrr ^Yz [XiJ

The effects of plain interactions by collision between X and F and inter-

action by collision accompanied by the absorption or emission of radiation

cannot be separated, and such terms really occur in every fraction. Apart

from this however we see that the ratio of the frequencies of each separate

process and its reverse process must be equal to a definite function of the

temperature [Jli]/[X2]. We can go still further than this later. For the

present we can be content to note the independence of the different pro-

cesses, whose laws therefore can be separately analysed.

If the change from Xj to X^ is one of dissociation, the arguments are

the same, though the form is a little different. Suppose for example that

Xi dissociates into Xg and F. Then [Xg] [F]/[Xi] is a function of the tem-

perature only, and we have

Prad Py + -f*r.rad _
^rad Qz + V^.rad Qy + ^F.rad Qyy + Qyy rad

Pz + Pz,raa _ _[X,][Y]
.(1167)

Qyz + Vrz.rad [XiJ

Thus, naturally enough, no process in which no F is concerned can make
up an Xi from an Xg. The Q's of all such processes must vanish. More

generally every process must pair off with a reverse process in which one

more F is concerned—the F in fact which is to be caught by the X^ to

make it into an Xj . The pairing off is therefore such that it is possible as

a dynamical reversal of the original process, and the laws for such pairs

can in general be discussed separately.



17-2] Independence of Diffe7^ent Mechanisins of Interaction 421

It remains impossible by these general arguments to separate the effects

of, for example, two different states of the same atom, and these must be

considered together in any further analysis. We have however shown that

it follows merely from the assumption of a unique equilibrium state that

the laws of interaction between any molecule and radiation or any molecule

and any other group of atoms or molecules must lead separately to the

laws of statistical equilibrium. The precise /orw<s (1166) and (1167) in which

these conclusions are embodied are those for perfect gases. There are

analogous forms for the interaction of solids and gases which we shall also

discuss. The conclusions can be extended in slightly different forms to

imperfect gases, but these we shall not discuss here.

§ 17-2. The numbers of collisions of given type in a gas. The general form

of the number of collisions of a given type per unit volume per unit time

has already been given in (1161). To derive it we recall t\idi,t f-i^du-i^dv^dw^,

which we shall here contract to f^do^, is the number of molecules of the

first type in imit volume at any time, and near each of them there is a

volume Vpdpdifj in which the centre of the molecule of the second type

must lie in order to effect contact within the specified time. The number

of such molecules \^f.^do2 per unit volume; hence the formula. For elastic

spheres of diameter ct, if ^ is the angle between V and the line of centres

at collision, we have p= a- sin 6 and dp= a cos ddd. The element pdpdifj

can then be conveniently replaced by

0-2 cos 6dQ.,

where dQ. is an element of solid angle about a direction specifying the line

of centres at the instant of collision. The number of collisions then becomes

fJ^aW cos ddo^do^dQ.. (1168)

This is the number of collisions which destroy a pair of molecules % , vj , u\

and ^2, V2, w^ and create a pair u-^, v^*, w-^ and u^, v^, w<^. Since

do^do^ = doi*do2* and dQ. = c?0*, the corresponding number of reverse

collisions creating a pair Wj , Vi , w^ and U2,V2, iv^ and destroying u-^^, v^*, w^^

and -^2*5 ^2*5 ^^2* is

/i*/2*ct27 cos edo^do^dn. (1169)

In these collisions the velocities after collision are given in terms of the

velocities before and the direction cosines of the line of centres by the

equations
%* = % + Z P^ cos 9, W2* ^ U.2 — I V cos 9,

Vj* = v-y + mV cos 9, ^2* = ^2 — mF cos 9,

1^1* = iv-^ + nV cos 9, iv^ = W2 — nV cos 9, V ( 1 1
'^^)

72 ^ j;^^ _ ^^y2 + (^^ _ ^^)2 ^ (^^,^ _ ^^)2^

V cos 9 = I {U2— Ui) + 7n {V2 — i\) + n {W2 — w-^).
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We shall confine attention in this section to properties of the equi-

librium state deducible from (1168) when/ has Maxwell's form

/= y(^ ^1^ e-^^^^'+^'+^'^I^T^ (1171)

and V is the molecular density. The number of collisions per unit volume

per unit time in which the relative velocity lies between V and V + dV is

an important quantity. If the velocity of the centre of gravity of the pair

is U, V, W, and the velocity of 2 relative to 1 ^, r], I, then

U = 1 (t^i + u^), 1 = 7/2-%, etc.

If we transform (1168) to these new variables we find

do^do^ = dUdy dV/d^drjd^,

|m (%2 + Vi^ + Wi^) + |m {u^^ + ^2^ + iv^^) = w (U^ + V2 + W^) + \mV^,

and the number of collisions of the specified type is

y2 / _!^M%-!m(U2 + v- + w^)+imr2(/fcr ^27 COS edU ... dida.
ylTrkl J

(1172)

If we integrate this for all values of the motion of the centre of gravity of

the system, which is always unimportant in questions of collisions, we find

v2^^)*e-i'»^^/^2'a2Fcos6'cZ^fZ77fZ^fZn (1173)

If we express the relative velocity in spherical polar coordinates V, 6, cf>,

with the direction of the line of centres for axis, we find

v^- (^-!^_\^ e-i^^'l'^'^ gH^^ sin d cos edVddd^dQ (1174)

For a given direction of the line of centres 6 can range from to ^tt, and

(f>
from to 277, and

riTT rl-rr

sin d COS ddddcf) = -n.

.'0 Jo

The direction of the line of centres can then range over the whole sphere,

but every collision is then counted twice over, since every collision is

counted separately with the molecules interchanged. Dividing by 2 to

correct for this, we find the total number of collisions per unit volume per

unit time, with relative velocity between V and V + dV, to be

27r2,.2^2^—̂ j*e-i™^^A-2^ VhlV. (1175)

This is the important result. If we finally integrate over all relative

velocities we obtain for the total number of collisions per unit volume per

second the well-known formula

^^^(^)*. (1176)
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We shall require also similar formulae for collisions of unlike molecules.

Suppose these have masses m^ and m^, diameters o-i and o-g. The distance

apart of the centres on collision is now a^^^ ^^J^ where

If a is replaced by a^^ the form of (1168) is then still valid. The reduction

to the motion of the centre of gravity and the relative motion now however

requires the equations

(mi + m^ U = ^1% + mgi^gj ^ = "^2 ~ %j ^^c-

In these variables

do^do.2 = d\J cN d}N d^drjdt,,

imi («i2 + v^2 ^ ^^2) + 1^^^ (,j^^2 + y^2 + ^^^2) = 1 (^1 + ma) (U2 + V2 + W2)

^ m^ + mg
Formula (1173) is therefore replaced by

^i^>( o . "^i"^' M^)'^
'"^''"^

a,3^Fcos^^|^^rf^^Q,
V27r (mi + mg) ^^-/7

(1177)

and formula (1175) by

477 viv.,ai2
(^2^ ^^^ + m.,)kT)

^ ^ """^

'

(1178)

Since the molecules are now distinct, collisions are not counted twice over

as before. The total number of collisions is now

|2Jmn:m5W^H
^ *^ "

( mimg J

It is frequently convenient in applications to rewrite (1171), (1175) and

(1178) in terms of kinetic energy, or kinetic energy of the relative motion.

If we write

\m {u^ + v^ + w'^) = 7],

then Maxwell's law for the number of molecules per unit volume with

kinetic energy between rj and -q + drj becomes

„j!r^e-r,/A.r i^ (1180)

This will frequently be written fx (rj) drj, and the molecules with this kinetic

energy will be called t^-molecules. Similarly, if

^mV^ = 7],
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the number of collisions per unit volume per unit time in which the kinetic

energy of the relative motion lies between r) and rj + dr] is

^^U^fe-^l'^^rjdrj. (1181)

If i_!!^i^^ V^ = v,

the number of collisions between molecules of different types per unit

volume per unit time in which the kinetic energy of the relative motion

lies between tj and t] + drj is

Y e-^l^'^ -qd-q. (1182)

§ 17-3. BoUzmann's H-theorem for a simple gas. We have examined in

§ 17-1 the logical position of this famous theorem in the equilibrium theory

as here developed. We may enunciate it most satisfactorily thus.

Theorem 17-3. BoUzmann's H-theore7n. In an assembly of perfect gases

in which the only interactions between the systems are conservative collisions

with central forces, the preservation of an equilibrium state requires detailed

balancing.

Since detailed balancing (/1/2 = /i*/2*), which is equivalent to Maxwell's

law, obviously preserves the equilibrium state, the theorem tells us that

detailed balancing, Maxwell's law and the preservation of an equilibrium

state are in the case of this mechanism all equivalent. The idea of Boltz-

mann's proof is of course to construct a function H (practically the entropy)

whose constancy requires detailed balancing. We start with the simplest

case of a gas of a single kind of hard elastic spherical molecule of diameter

a in the absence of external fields.

For such a gas / can be changed only by molecular coUisionsf, so that

we can combine (1168) and (1169) and integrate over all the velocities of

the second molecule to give its time variation in the form

^ = <y'
ff(/i*/2* -/1/2) V COS edo,dn (1183)

The integrand is considered to be expressed as a function oi u^, ...,W2 by
means of equations (1170).

It will be observed that it is essential to the argument that the same
molecular distribution laws of the equilibrium state, whatever they may
be, should hold for specified volume elements near selected molecules as

for the gas as a whole. This is true according to the general equilibrium

t Except by the boundary fields or collisions with the walls. For the effect of these see § 17-8.

They are there shown not to affect the argument.
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theory. In discussions which seek to avoid the use of the general theory

it becomes a necessary explicit assumption.

Consider now the function

H=\h\ogf^do,, (1184)

an expression depending only on the number of molecules and the form of

/, and therefore constant in the equilibrium state. Then

= a^ [[[(I + log/i) Ui*A*-fiA) Vcosedo,do,da (uss)

But it is equally true that

and that
^f^

= a^
f [ (/^Va*

- /1/2) V cos Odo^dD.
;

combining these we find an expression similar to (1185) with log/2 ^ place

of log/i, and combining this with (1185) we find

k^
[[I

(2 + log/Ja) {A%'^-Af2)V cos edo,do,dQ (1186)

But by precisely similar arguments we can start with

^=//i*log/x*cfoi*

and find

dt
2^

(1187)

The variables of integration may now be changed from the starred variables

back to the old variables, and

F* cos 6* dOi* do^* dD.* = V cos ddo^do^dQ..

If we make this change and combine (1186) and (1187) we find

^ = - W \\\
(log/1/2 - iog/i*/2*) (/1/2 - /i*/2*) y cos edo,do,da,

(1188)

<0, (1189)

because the integrand is never negative. The equiUbrium state is possible

if and only if

that is if there is detailed balancing.

dt ~ ^

la2
\jj

(2 + log A*A*) ifJ, - A*A*) F* cos 0* (?o,*^02*^n*.
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We include for completeness the familiar proof that

logA + log/2 = const, (coll)

implies that / is Maxwell's distribution function. Let x (**> "? '^) ^^ any

function of the velocities of a molecule such that Xi + X2 is constant in a

collision. Then - i^„ /log/=X

is a solution of the equation for the distribution fimction, and log/— x
satisfies the same equation. The most general solution is therefore

log/ = «ix' + «2X" + «3X"' + ',

where the x's are all the functions of u, v, iv such that Xi + X2 is constant

in a collision. We know of five such functions, energy, three components

of momentum, and mass. There are no others possible, for the four con-

stant relations involving velocities give four independent relations between

the six %*, ...,W2* and the old u^^^, ..., tv^. Two relations must be left

unfixed in this way to depend essentially on the direction cosines of the

line of centres at impact. Thus

log/ = «! + a2'mu + a^mv + a^mw + a^ \m {u^ + v^ + w'^),

where A,j, Uq, Vq, Wq are constants, which is of the required form.

It will be observed that the detailed collision relations hardly enter

into this proof. It is only necessary that there should be some relations

giving the ^*, . .
.

, in terms of the u, ..., which conserve, momentum, energy

and the extension of the element of phase space of the system.

§ 17-31. Extensio7is of BoUzmann's H-theorem. The extension to the

case of a number of different types of molecules is very simple. In place

of equation (1183), when classical collisions are the only mechanism acting,

we find a set of equations of the form

^ = S,a,,2j| (/,*// -/J,) Fcos ddo.dQ (1190)

If we now define the function H by the equation

H ^I'sjfs'^OgfsdOs

and apply the same analysis we find

dH
H --i^rS,.̂ ,///f

(l0g/./s - log/,*//) ifrls-frVs'')

X V co^ 6 dOy-dOsdO. (1191)

From this it follows that H is constant if and only if

frSs = fr*fs* {all r, s),
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that is to say if we have detailed balancing for every choice of a pair of

molecules in collision. From the equation for a pair of similar molecules

Maxwell's law follows as before. From the dissimilar pairs it follows by the

same argument that the mass motion and temperature of each species of

gas must be the same.

Let us finally extend the theorem to general classical encounters under

central forces between molecules subjected to an external field of force.

The distribution function now depends on the position in the gas and we

may write it explicitly for a volume element dco (= dxdydz),

f {u, V, IV, X, y, z, t) doj,

so that llfdodo) extended to a unit volume is the molecular density there.

We will assume that force components X,. , Y^ , Z,. per unit mass act on the

molecule of the rth kind, so that its equations of motion are

X,. = Ur, u,. = X,., etc.

If we now consider all the molecules of the rth type in the element dodoj

at u, V, w, X, y, z, t, we see that, apart from collisions, after a time dt these

molecules will lie in an equal cell of the same space and velocity ranges as

before but centred about the point

Ur + Xrdt, v,. + Yj.dt, IV r + Z,.dt, X,. + Uydt, y,. + Vrdt, Zr + w^dt, t + dt.

Moreover since the motion is determinate these molecules are the only ones

(apart from collisions) which at time t + dt have the u, v, iv, x, y, z so speci-

fied. The number of such molecules is by definition

fr {Ur + X/lt, ...,Zj. + IV^dt, t + dt) dOrdix),

and we have just seen that this differs irom f,.dOrdco only by the collision

term. Thus proceeding to the limit dt -> 0,

^i_L I v _ _l V J_ y, _L It _L -3) _L j/t

dt

..(1192)+
dt coll

For general classical encounters under central forces we have

lloll
^ ^^Wl^frVs" - frf.) Vpdpd^/Jdo,, (1193)

where the starred velocities are given in terms of the initial velocities (and

p and ijj) by the detailed laws derived from the central orbit. Equations

(1192) and (1193) together form a very important integro-differential

equation for / which should be satisfied for all states (not merely equi-

librium ones) of a gas of molecules undergoing classical encounters. It is

laiown as Boltzmann's equation.
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§ 17-32. TJie equations of mean values. To derive the general form of the

Z?^-theoreni we must introduce the equations of mean values. These equa-

tions form the starting point for all accurate investigations of transport

phenomena in gasesf, but these He outside the range of this monograph

and we shall formulate them only to lead up to the ^-theorem.

Let
<f)

{u, V, w, X, y, z, t) be any function of the arguments specified,

such that all the integrals in the following arguments are absolutely con-

vergent. If we multiply every term in Boltzmann's equation for /^ by

(firdor and integrate for all velocities of the molecules in any specified

volume element, we obtain

4'r pT" ^<^r + Sa; % (j)^ ^— do^ + S^. Jl ^ (j)^ 3— do^

= H.jjjj ^^ (/r*/s* -frfs) Vpdpdi/sdo^dOs,

say. In this notation A^^
{(f)^)

denotes the rate of change in the average

value of cf>r in the given volume element for molecules of type r produced

by collisions with molecules of type s. We can express the last equation

more simply in terms of mean values if we remember that

\frlp,dOr = N^lfjr,

where ^ is the mean value of iff^ and N,. the total number of molecules of

type r in the given volume element. Then

Inserting all these expressions we obtain

+ X,A,ri<l>r) (119*)

These are the equations of mean values. Putting

i>r = log/r

t A general account in Jeans, loc. cit. chaps, vm-xiv. The main recent detailed investigations

are Chapman, Phil. Trans, vol. ccxi, p. 433 (1911), vol. ccxvi, p. 279 (1916), vol. ccx\ti, p. 115

(1917); Enskog, Inaug. Diss. Upsala (1917), Arlciv for Matematik, vol. xvi. No. 16 (1921), Kungl.

Svenska Akad. vol. Lxm, No. 4 (1922); J. E. Jones, Phil. Trans, vol. ccxxm, p. 1 (1922).
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we obtain for the right-hand side of (1194)

//'

or

log frdOr + 2s A,^ (log/r),

/,(Zo, + S,A,, (log/,).

(1195)

On referring to Boltzmann's equation, (1192) and (1193) we see that (1195)

can be written

(/r*/s* - frfs) V2)dpdipdoA dOr + S,A,, (log/,),

and the first terms obviously vanish. The equation of mean values reduces

here to

I (^rl^gTr) + 2,g|- {N,u, log f,) = S,A,, (log/,), (1196)

which is to hold for every volume element. Written at length this becomes

gj/r log fr do, + S^
g^ j

U,f, log f, do,

= 2, [[[[
log/, (/,*/.*-/./.) Vpdpd^do^do, (1197)

When there are space variations the function H is naturally defined by

H = i:,jjfrlogfrdOrdcO.

Multiplying (1197) by c^co, integrating over the whole gas and summing for

all types of molecule, we find

-^ + S,S^
I ^ J

W,/, log frdOrdco

= S,SJ [jjj log/, (/,*/.* - frfs) Vpdpd^d0,d0,d<O,

and by the usual repetitions

= - 12,S,
fjjl

(log/,/, - log/,*//) ifrfs-fr'^fs'') Vpdpd^dOrdo.do^ .

The last terms on the left must vanish on integration, for the integration

includes the whole gas and therefore extends to regions in which the

molecular density vanishes. In a volume element in which the molecular

density vanishes /, must also vanish and therewith I w,/, log/,c?o,. We

therefore end by obtaining

^ = - 1S,S,
f I [[[

(log/,/, - log/,*//) (/,/, - /,*/,*) Vpdpd^dOrdoJoj

.

(1198)

This is the general //-theorem and requires as before detailed balancing for

the equilibrium state.
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§ 17-33. The general form of Maxwell's law for equilibrium states. It is

not without interest to complete the argument and see how the laws of

the most general equilibrium state follow from /;./s = /r*/s* and Boltzmann's

equation (1192) which in this case reduces to

^^"-l + ^'^'i-"
<"'''

The form of fr for detailed balancing in each volume element is of course

f^ = v^ \~'-^) e-^"v!2K-«o)^),

but so far as detailed balancing is concerned v^,j, Uq,Vq, Wq may all be

functions of x, y, z. We may substitute this value of/,, in (1199) and require

the equation to be satisfied for all u^, v^,w^. On equating coefficients we
find
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§ 17-4, Collisions of the first and second kind*. The next mechanism

which we shall examine in detail is that of inelastic impacts between

electrons and atoms. It is well known from a variety of evidence that such

collisions are possible as soon as the energy of the electron exceeds a certain

minimum energy, which is that required to change the atom hit from one

stationary state to the next state of greater energy. It follows by the fore-

going arguments that any such process can only occur if it is accompanied

by a corresponding reverse process, the two together preserving the equi-

librium laws. In this case the reverse process turns out to be a superelastic

collision, called by Klein and Rosseland a collision of the second kind.

The frequency of occurrence of any sort of collision can be expressed

in terms of a certain coefficient, of the dimensions of an area, which must

be a function solely of the atom and the relative velocity and line of impact

of the electron hitting it. This coefficient, which represents the chance of

a successful collision, may also depend in an individual collision on the

orientation of the atomic axis relative to the line of impact and on the

phase constants of the electronic motions in the atom. The average coeffi-

cient however, which is usually all that matters, will be obtained by

integration over all these variables which are therefore no longer effective.

The electrons are so light and therefore their equilibrium velocities so

high that in a first treatment the velocities of the atoms can be neglected

and they may be regarded as fixed (or of infinite mass). If Vj is the density

of the type of atom or molecule under discussion, then the number of

collisions per unit volume per second between these atoms and 7^-electrons,

in which the line of impact lies at a distance between p and p + d]) from

the atomic nucleus (or centre of mass of the molecule), is by (1180)

v,.27Tpdp.(^^ffi{r^)d'n. (1200)

If Si^ {p, rj) is the probability that such a collision will be successful in

exciting the atom from state 1 to state 2 the number of such successful

collisions is /9 \i
V, . 2rrpdp . V iP, V) (^) H' (V) drj (1201)

If we now introduce the new function

S,^ (rj) ^ 277 r pE,' {p, rj) dp, (1202)
J

we find the total number of successful collisions of the first kind by 17-

electrons in the equilibrium state to be

^i^iM>?)(^)V(>?)^^- (1203)

* Klein and Rosselaud, Zeit. filr Phys. vol. iv, p. 46 (1921).
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This expression is only relevant when 17 > 7712, where 1713 is the extra

energy of the atom in state 2 over that in state 1. When 17 < rj^a, S^^ (17) = 0.

By the general discussion of § 17-1 the reverse process can only be one

which occurs with a frequency proportional to v^ and to the electron density.

It must therefore be some sort of collision. It is hardly possible to suppose

that any other sort of collision can be concerned except those which are

the direct reverse of the inelastic impacts. These are collisions in which an

77-electron interacts with an excited atom and removes its superfluous

energy, leaving it in its normal state. The energy removed is carried off by

the electron as extra kinetic energy of translation, so that the collision

may be termed superelastic. The total number of successful superelastic

collisions by 77-electrons per unit volume per second can be written

^2^2M^) (^)V (^) ^^. (1204)

where v^ is the density of the atoms in the state 2. It is possible that

8^ (77) > for any value of 77.

It must be noted that S-^^ (17) and 8^ (77) have a purely atomic significance

;

they may be called the mean effective target areas of the atom for 77-

electrons. It is important to observe that these areas by definition cannot

depend on any statistical parameter such as temperature or density*.

By considering the conditions for the preservation of the /n (77)-law for

the velocity distribution of the electrons a fundamental relation can be

established between 8-^^ (77) and 8^ {iq). The concentrations v^ and v^ are

connected by the relation (see (131))

V2/J/1 =
(W^i) e-W^^-^ ( 1 205)

The number 77-electrons destroyed by inelastic collisions is

ViS^^ iv) (^) H' iv) dr] {ri > 7712),

(77 < 7712).

The number of 77-electrons created by inelastic collisions is

v^S,^ iv + ^12) f
^"^^ "^''^

ff^ (V + ^12) drj (77 >0).

The number of 77-electrons destroyed by superelastic collisions is

'277\i
v,8,^ (77) (^)V iv) dv il > 0).

* It should of course be remembered that if we experiment with directed electron streams

and atoms orientated by magnetic fields (e.g. Skinner and Appleyard, Proc. Boy. Soc. A, vol. cxvii,

p. 224 (1927)) the target areas for a given switch may well be different from those for miorientated

collisions. It is obvious that this is in no way contradictory to the statements in the text.
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The number of 7;-electrons created by superelastic collisions is

v^S^ (rj - 7^12)
(-^^l—Jh^j

f^ (^ - ^12) drj {7] > 7^12),

(^ < ^12).

Putting in the equilibrium values of /x {7]) and VgM we see at once that the

action will balance and leave the equilibrium undisturbed if and only if

where F^^ (rj) = a [tUj_ (t) + r^,^) S^^ (rj + r^^,) - m^r^S^^ (rj)] {-q > 0),

= {ri< 0),

and a is a constant. But by a step by step argument this condition can

be shown only to be satisfied if

F^^ (7;) = {all rj).

Hence w^ {rj + 7^13) ^1' (^ + ^12) = w^rjS^^ (r)) (1206)

This is Klein and Rosseland's result. It guarantees the preservation of the

equilibrium distribution law of electron velocities for all T. It also

guarantees the preservation of the distribution law of atomic states (1205).

For the rate of destruction of atoms in state 1 by this mechanism is

and the rate of creation

These rates will balance when

Jo Jo

(1207)

which is satisfied for aU values of T in virtue of (1206).

It should be observed in passing that conversely (1206) can be deduced

directly from the fact that (1207) must hold for all T. Equation (1207) is

of the general form

rf (r)) e-^l'^T dr] ^ (allT), (1208)
Jo

and there exists the following

Lemma. If f {t]) is a continuous function of rj for 7^ > and satisfies the

general conditions of Fourier's integral theorem, and if

rf (r]) e-^l>^^ d-q ^ (allT),
.'0

then f{r]) = (7^ > 0).

F 28

v^jy,Hv)(^yf^iv)dv,
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This lemma is a direct corollary of Fourier's integral theorem. There is

no physical reason to question the applicability of the conditions of the

lemma to the function/ (?y) derived from the atomic target areas in (1207).

The relation (1206) just obtained on the hypothesis of the preservation

of the equilibrium state can be obtained at once on the hypothesis of

detailed balancing by equating (1203), with -q replaced by t] + 1712? to (1204),

Thus for this simple mechanism of interaction between electrons and atoms

with only two stationary states the hypotheses of preservation and detailed

balancing are again equivalent.

One might naturally hope to be able to deduce from the preservation

hypothesis that a relation of the form (1206) holds for the frequencies of

every possible switch by collision in an atom with n levels. It appears

however that no such deduction can be drawn. An atom with n possible

levels has \n {n — 1) possible switches, all of which we must regard as

forming a single mechanism.

A detailed presentation of the case ti = 3 is instructive. There are three

switches (to and fro) to consider. Sufficiently slow r^-electrons are created

only by collisions of the first kind at a rate

-1^1^ iV + ^12) |^^^^^}> iv + ^12) dr^

+ v,S^ {r^ + T^J
|

^(^ + ^^3
)p^ (^ _j_ ^^^ ^^ (1209)

They are destroyed only by collisions of the second kind at a rate

{u,S,^ (77) + v,S,^ (r,) + v,S,' (rj)} (^)V (rj) drj (1210)

The condition for the preservation of the equilibrium state can be written

e-n,,/kTp^2
(^) + e-V^T {F^s (rj) + F^^ (r))} = {all T), (1211)

an equation valid only when rj is less than the least of 17125 Vn ^^^ ^723-

When rj is unrestricted the first terms in (1209) and (1210) continue to give

the numbers of r;-electrons created by the switch 1-^2 and destroyed by

the switch 2 -> 1. There are now in addition

77-electrons destroyed by the switch 1 -> 2 and
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?y-electrons created by the switch 2 -> 1. There are similar terms for the

other two switches. The complete form of (1211) is therefore

- {^1^ {-n
- ^12) + F,^

i-n
- Vis)} + e-"-/'^^ {i^r iv) - F,^

i-n
- r,^)}

+ e-^is!^'^ {F^^ (rj) + F^^ {rj)} = {all T, -q) (1212)

This is equivalent to the three equations

F^' iv - ^12) + F,^ {rj - r?,3) = 0,

-^1^- iv) - F,' iv - ^23) = 0,

F^' iv) + F,^ (rj) = 0,

of which only two are independent. Thfey reduce to

F^' iv) = F,^ [r] - rj,,) = - F,' {r^ - 77,3) (1213)

We can infer that equation (1206), F^^ (rj) = 0, still holds for r] <r]^, but

we can infer nothing more as to the vanishing of the F's. The assumption

of only two stationary states is equivalent to making 7^23 infinite. If we

were to exclude all switches by collision of types 2 -> 3 and 3 -> 2 then

F^^ (ry) = 0, and we can infer that F^^ {-q) = and F^^ (rj) = for all ry. This

would be the expected generalization of (1206). But it can only be made
when by an arbitrary limitation we rule out the possibility of the cyclic

process l->2, 2^3, 3->l. Such processes seem quite natural*, and are

not incompatible with the hypothesis of preservation.

It remains to determine the conditions under which the distribution of

atoms between the three states is preserved. For state 1 this can be written

Jo .'0

and finally reduced to the form

[" {F^' {rj) + F^ {rj - yj^)} e-^l^^ drj = {all T).
Jo

(1214)

Condition (1214) is equivalent to one of the equations (1213) and gives us

nothing new. In the same way for states 2 and 3 we get

r {- ^1' (V) + ^2' iv - ^23)} e-^'"^ drj = {all T),
Jo

r {Fi^ iv) + Fo^ {rj)} e-V^r drj = {all T),
Jo

which are also equivalent to components of (1213). Equations (1213) are

therefore necessary and sufficient for the preservation of the equilibrium

state. In the general case we shall obtain on the preservation hypothesis

just?i — 1 necessary and sufficient relations between 1^1 {n — 1) functions F.

* In all atoms this particular cycle might be ruled out by selection rules, but other cycles

such as 1 ^ 2, 2 -> 3, 3 -> 4, 4 -> 1 will always be possible.

28-2
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This example is of some logical importance, since it is a simple case in

which the hypotheses of preservation and of detailed balancing are not

equivalent. On the latter the number of stationary states and possible

switches between them are irrelevant. The old argument will apply to each

pair of switches n -^ n' and n' -^ n giving the old result (1206) for each

separate pair. The hypothesis of detailed balancing can however be very

strongly supported as likely to be generally valid*, and its probability is

untouched by this example which impugns only its necessity. In attempting

to get a survey of the laws of mechanisms we shall therefore sometimes be

content with a discussion on the basis of detailed balancing alone.

§ 17-41. Inelastic and superelastic collisions betiveen heavy systems.

Owing to the small mass and high average velocity of the electron com-

pared with an atom it was legitimate to ignore the momentum of the

electron and the velocity of the atom in the last section. When both the

interacting systems are of comparable mass the calculations must be

revised. The action must now depend only on the relative velocity V of

the interacting systems. There are now obviously two sorts of interaction

possible—(a) An atom of type 1 may play the part of an electron and excite

an atom of type with expenditure of energy (170)12- (^) -^ excited atom
of type 1 may excite an atom of type with the expenditure of its energy

of excitation returning itself to its normal state. Such a collision may be

either inelastic or superelastic according as energy is taken up from or

surrendered to the relative motion of the systems.

Case (a). Ordinary inelastic collisions betiveen heavy systems. If we
replace the ttctij^ of (11 82) by the more general S-^^ (77) for the effective target

area for excitation, then the number of successful collisions per unit volume

per second will be

V^i/mo_+m,y^_^^,

We use Vo'i> to denote the concentration of systems in state 1. We
recall that

' ^ mQ + m^

the kinetic energy of the relative motion. This is the number of collisions

per unit volume which destroy members of Vq^^\ create members of Vo*^^

destroy pairs of molecules of relative velocity V and create other pairs for

which the energy of the relative motion is

V' = V-V12, (1216)

and the relative velocity

^„^^,_2(m^+m^
m^m^

* G. N. Lewis, Proc. Nat. Acad. Sci. vol. xi, pp. 179, 422 (1925).



17-5] Collisions of Massive Systems 437

The number of reverse processes creating Vq'^* out of ^q'-' by collisions with

relative energy iq' will be

{IcTf \27TmomJ I
2
\u i \ /

On the hypothesis of detailed balancing if 7] and 7^' are connected by (1216)

the expressions (1215) and (1217) must be equal. This gives on reduction

^1 iv + %2) S,' iv + ^12) = ^2^*52^ (V), (1218)

which is (naturally) the same relation as (1206), Here again if there are

only two states of the system of type concerned and no other complica-

tions it can be shown that, since S may not depend on T, (1218) is necessary

and sufficient on the hypothesis of preservation only. Relations similar to

(1218) may be expected to hold when the systems of type have a number

of stationary states.

We observe finally that

S,'{r}) = {ri<r},,), (1219)

that is when the energy of the motion relative to the centre of gravity is

less than 1712 • If momentum as well as energy is to be conserved, it is of

course only the energy of this relative motion which is available for

excitation. It is moreover easy to see that simple conditions for the pre-

servation of the laws of equilibrium are impossible unless they conserve

momentum as well as energy.

Case (b). Transference of excitation. This case is very similar, but the

direct and reverse processes are now practically identical. We start with

the system of type normal (vq^^^), and the system of type 1 excited (1^1'^'),

and end wdth the system of type excited {vo'-^^), and type 1 normal

(vi*^>), and conversely. The equation of relative energy is now

n' +ivA2 = l+{r]i)i2, (1220)

and the condition of detailed balancing as before

{rOo)A^i)2vS,^ iv) = i^o)2{^iMS^ iv'h (1221)

subject to (1220). One or other of the *S's will be zero for a range of relative

energies less than a definite limit depending on the relative sizes of (->7o)i2

and {r]i)i2. As before these relations follow from the preservation hypo-

thesis only, if there are no added complications.

§ 17-5. Practical applications of the theory of inelastic collisions. The

direct consequences of the suggestion of Klein and Rosseland have been

formally developed in the foregoing sections. It is hardly possible even

now to make quantitative applications, for until we have a quantitative

knowledge of one of a pair of S's or target areas, we can get nothing further

from equilibrium theory. But even before any quantitative knowledge is
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available the mere qualitative knowledge that one *S^ is not zero implies

that the other >S' is also different from zero, and this leads to the recognition

of the existence of processes which might otherwise have been overlooked.

In the hands of Franck and others the theory, mainty used qualitatively,

has been of first-class importance in the interpretation of a variety of

phenomena, some of which we shall mention briefly.

The most striking of such qualitative confirmations of the theory is

provided by the work of Carlo* on the excitation of special lines in the

spectra of thallium and silver by illuminating a mixture of the vapours

of mercury and thallium or silver with the resonance radiation (A 2536)

of mercury. It was possible to show with certainty that the thallium or

silver lines were excited when and only when excited mercury atoms were

present in the mixed vapour, and the energy relations were such that this

may be regarded as a complete proof of the process (b) of excitation dis-

cussed in § 17-41. It was shown further that the thallium lines must be

emitted by abnormally swiftly moving thallium atoms, in virtue of their

very small absorption in the thallium vapour. This confirms in a general

way the laws of conservation of momentum in the process of excitation.

For some energy is left over when the excitation is transferred and can

only be used up in increasing the relative kinetic energy, and so on the

average the actual kinetic energy of both atoms. These studies of excitation

have also been extended to other atoms such as Cd, Na, In, Sb, and As.

In addition to this it has been shown by Franck, and Carlo and Franck,

in other papers that excited mercury atoms can probably dissociate H2.

These authors have also thus accounted for many of the effects of pressure,

in particular the effects of foreign inert gases on the resonance spectra of

mercury, sodium and the iodine molecule. The strength of the resonance

radiation emitted in these gases is greatly reduced by too high a pressure

or by the presence of an inert gas. The energy of excitation is used up in

superelastic collisions instead of in re-emission of the resonance line. The

same authors have also given a theory of the red sensitization of photo-

graphic plates by a red-absorbent dye. All these phenomena are intimately

connected with the foregoing principles^. The same ideas are of importance

in a discussion of the mechanism of excitation underlying so-called uni-

molecular gas reactions.

§ 17-6. The process of ionization by electronic impacts. We shall again

start with fixed atoms, equivalent to atoms of infinite mass. We know that

processes exist in which an -ry-electron (or a-particle) can knock another

electron out of an atom provided that r] > r]o, where rj^ is the energy neces-

* Carlo, ZeiLfiir Phys. vol. x, p. 185 (1922); Cario and Franck, Zeit.fur Phys. vol. xvii, p. 202

(1923); Donat, Zeit.fur Phys. vol. xxix, p. 345 (1924).

t Franck, Zeit. fur Phys. vol. ix, p. 259 (1922); Franck and Cario, Zeit. filr Phys. vol. xi,

p. 161 (1922).



17-6] Ionization hy Electi^onic Impact 439

sary to remove this electron. This process of ionization can certainly occur

when -q only just exceeds 7]^, so that there is no reason to suppose that

radiation plays any essential part. It seems probable from a study of /S-ray

tracks, as photographed in Wilson's apparatus, that we must suppose that

the rest of the energy rj — r]^ can be distributed in any manner between the

two electrons after the collision, and that, whatever t], we may suppose

that a process of this sort can occur without the emission or absorption of

any radiation. Coupled with this process of ionization there must be some

process of capture which for all values of the temperature and concentra-

tions will preserve the laws of dissociative equilibrium. The only possible

(suitable) process of capture is, after § 17-1, a collision of three bodies, two

electrons and one ionized atom in which the two electrons so interact that

one of them is bound by the atom and the other is thrown off with the

kinetic energy of both before collision and the ionization energy tjq thrown

in. If the superfluous energy is not to be radiated it can only be carried off

by at least one other material body !

The number of impacts by t^-electrons on atoms with their line of impact

between p and dp is given by (1200). Let us suppose that the only possible

result (other than trivial elastic collisions) is ionization (provided rj> rjo),

after which there will be two free electrons, a new ^-electron and the old

one, now an {rj — rj^— ^)-electron. It is necessary that 17 — t^q — ^> 0. Let

Si^ {p, I,, 7]) dl, be the probability that such an encomiter gives rise to a

new ^-electron. If we introduce the function

foo

8,^{i,r^)^27T\ pi:,^{p,^,rj)dp, (1222)
.'0

then we find that the total number of such collisions is

{'^yi-(v)d-n.s,^{Lv)dC. (1223)

The total rate of production of ions in this way must be obtained by inte-

grating with respect to ^ from to 17 — 170 , and then with respect to 17 from

7^0 to infinity. There is a simple physical meaning for

S,' a, V) dl
.'0

It is the mean effective collision area for ionization by 77-electrons.

The reverse three-body process can be similarly formulated. Consider

first of all an ionized atom in process of being hit by a ^-electron on a line

of impact between p^ and p^ + dp^ . There are

'2C>
v,.2rrp,dp,.(£j'l^a)dC

of these occurrences per unit volume per second. The other electron is to

enter into collision on a path on which (if undisturbed) it would reach its
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apse at a time between t and t + dr seconds after the first electron reached

its apse. With every collision with a ^-electron there is therefore associated

a volume

in which a ^-electron may lie, whose passage through its apse on a 'p2-\m.e

of impact would occur in the specified interval. The number of ^-electrons

in such a volume is

'2Ai
dr . 2772?2#2-(—)^/^(l)^^

The number of three-body collisions in which ^-electrons and ^-electrons

on p^- and 2?2-lines of impact and time difference r are concerned is therefore

V, (§)V [Q d^ . (|)V (I) d^ ^nhdVi • ^-rrp^dp, . dr (1224)

This number has been so specified that it disregards the relative directions

of the line of impact of the electrons and the atomic orientation. Averaged

over all such directions and orientations there will be a certain definite

probability

that any one of these collisions will lead to a successful interaction in which

the ^-electron is bound and the ^-electron thrown off as a (|^ + ^ + t^q)"

electron. Writing

/"CO /"oo f + oo

4772 p^dpA p^dpJ ^2'{Pi,P2,rA,i)dr=S,^a,i), (1225)
.'0 JO J - 00

which wiU then be a purely atomic function of dimensions [LY [T], we can

express the number of successful triple collisions in which a ^-electron is

bound by the interaction of a ^-electron in the form

'2^Ni ,,, ,, /2Ai

^^\m)
^^(0.z^ (-|)v (^) di . s,^ a, I) (1226)

These collisions each create a neutral atom and a (f + ^ + 170)-electron at

the expense of an ion, a ^-electron and a ^-electron.

The appropriate law of dissociative equilibrium is, after (333) and (1013),

¥
-v*!*. (1227)

"1 •" <^i

If the suggested processes form a possible mechanism they must preserve

(1227) subject only to a purely atomic relation between 8-^^ and 8^, which

turns out to be very simple. On the hypothesis of detailed balancing we
must equate at once, subject to (1227), the numbers (1223) and (1226), with

the proper relation between 17, t, and ^. This means that we must write

T^Q + ^ + I for ri in (1223) and identify the ^'s in the two expressions. We
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then find after a simple reduction that the relation between 8^ and 8.^

must be

(>7o + ^ + I) 8^^ (L Vo+C + i) = ^^^ HS,^ a, i) (all L ^). -(1228)

It is however not without interest to see once again how far one can get

on the simple preservation hypothesis, supposing that this process of

ionization is the only process of the type that is acting.

Consider first the preservation of the electron distribution law for

^-electrons, ^ < -j^o
• By the process of ionization new ^-electrons are pro-

duced by 7y-electrons at the rate (1223) and the old Tj-electrons are con-

verted to ^-electrons when these new ones are (t? — >?o
— "Electrons. The

combined rate of production of ^-electrons in ionization by ly-electrons is

therefore

V, [^ffi iv) drq {S,^ [l, -n) + s,^ (r? - r^o - I, i)} dv {v>vo+ 0,

and otherwise zero. The total rate of creation of ^-electrons is therefore

(1228)'

per unit volume, by the ionization process. This holds for all t„ but when

i <riQ there is no destruction of ^-electrons by this process.

Taking now the capture process we see at once that it creates no

^-electrons (^ <'r]Q)r ^^^ the resulting free electron has always an energy

greater than 7]^. It destroys each time both a t,- and a ^-electron. The

number of ^-electrons destroyed by binding {l-ty^e) is therefore

2^\i ,^. ,. f" /2Ai

m >(OrfCJJ(|p,M^,^)M(|)^f

The corresponding number destroyed by conversion into fast electrons

(^type) is

The total rate of destruction of ^-electrons per unit volume is therefore

V, (|)v (0 ^^
fJ (I)*w {t, I) f s,- a, 0} ^ ii) dt

(1229)

for all values of ^. For preservation of the distribution laws for ^ < 170 we
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must therefore equate (1228)' and (1229), When we use the laws of the

equihbrium state the resulting equation reduces to

("00

e-"/*^ (^0 + ^ + «) {^i' il ^0 + ^ + «) + S,^ {a, Vo+^ + «)} ^«
.'0

w^ ir J

This holds for all T, and it follows at once from the Lemma that we must

have

{7)0+^ + a) {S,' a, yio+^ + a) + S,^ {a, rjo + C + «)}

= ^^1? «^W a, «) + S,' (a, 0} (1231)

for all a and all ^ <7]q.

It is necessary in addition that the rates of production and destruction

of atomic ions should balance. The condition is easily obtained. It is

Jrio \^nj Jo

^ '-'fj' (i)* (i)*'' «»'^ <^> '' <^' ^' '^'^ <''=*'>

which reduces with the aid of the lemma, and the laws of the equilibrium

state, to

(^0 + «)
f
"'^i^ (L Vo + «) dl = ^-^^'

f"
^ (« - ^2^ (L a-Qdt {all a).

Jo t<5i /i
.'

(1233)

This condition however is not entirely new. For if we write a — ^ for a in

(1231) that equation becomes

(^70 + «) {s^' a, ^0 + «) + S,' (« -^,Vo + «)}

1 67Tmw2
U« - W (L CC-0 + s,' (« - ^, O)-

If both sides of this equation are integrated with respect to ^ from to «,

it reduces to (1233), which will therefore be satisfied in virtue of (1231)

when (1231) has been established for unlimited ^.

It remains to consider the electron balance for t,> rj^. Expressions

(1228)' and (1229) still give the rates of creation by ionization and destruc-

tion by capture. There is now in addition a destruction of ^-electrons by

ionization at a rate

V, (^)V a) ^^^If"'^i' («' ^) ^«' (1234)

equal of course to the rate of formation of ions by ^-electrons. There is also

creation by capture. The first argument of 82^ {a, i) refers to the electron

that is bound. The energy of the electron left free on binding an «-electron
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in interplay with a ^-electron is ^ + a + t^q. If therefore ^ + a + 7]^ = I,,

we have to sum over all triple encounters of the type

«, ^-«-i?o (0<a<^- 7]q),

and shall so find that ^-electrons are created at a rate

v,dl\'~"'' (1)^'
|^^^~J~^"]V («) /. (^ - a - ^o) 8^ {a, C~cc- r^,) da.

(1235)

The electron equation now contains four terms, and equates (1228)' and

(1235) to (1229) and (1234). But on account of (1233) the extra terms (1234)

and (1235) balance by themselves. For they will so balance if

n °S^^ {a, da = ^^^^ \{C- a- r]o) S^^ {a, I - a - r]o) da,
Jo ^if^ Jo

which is (1233).

The hypothesis of preservation therefore demands only the necessary

and sufficient condition* (1231) for all a and ^; the hypothesis of detailed

balancing requires the somewhat more restrictive (1228). In the further

analysis of collision processes we shall be content to employ only the

hypothesis of detailed balancing. The foregoing examples will be sufficient

to put the reader on his guard against ascribing logical necessity to this

natural and sufficient hypothesis.

§ 17-61. The evidence of ^-ray results for the form of S^^ (^, rj) and

>SV (^, rj). The values of S^^ (^, -rj) and S^^ {C, t]) should in principle be directly

calculable on the new mechanics, but as yet the actual calculations can

only be formulated for the collisions of electrons with hydrogen atoms,

and even in this case they have not yet been carried through. It is still

necessary therefore to use elementary theory and experimental evidence of

some kind or other to estimate these quantities, and it is possible to estimate

the mean collision area S^^ (^, 17) for ionization with the ejection of a ^-

electron by a study of the theory of, and experiments on, the passage of

j8-rays through gases. The classical theory of this phenomenon, developed

by J. J. Thomsonf and BohrJ, seems to apply with quite considerable

accuracy. It leads to a F^-law for ranges, which is fairly closely obeyed,

though the absolute value of the numerical coefficient in the stopping

power to which it leads is somewhat too small§. A further slight extension

of the theory by the present writer] |, in which we require to know only the

* This result was first given completely correctly by R. Becker, Zeit. fur Phys. vol. xviii,

p. 325 (1923), eq. (34).

t J. J. Thomson, Phil. Mag. vol. xxm, p. 449 (1912).

X Bohr, ibid. vol. xxiv, p. 10 (1913); vol. xxx, p. 581 (1915).

§ C. T. R. Wilson, Proc. Roy. Soc. A, vol. civ, pp. 1, 192 (1923), especially pp. 196, 199.

11
R. H. Fowler, Proc. Camb. Phil. Soc. vol. xxi, p. 521 (1923).
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ratio S^^ {t„ rj)j8-^^ {I,' , rj), leads to the result that the average expenditure

of energy by the /S-ray, per pair of ions made, should be four-thirds of the

ionization potential. An analysis of the ionization made by a-particles in

helium, which is of course mainly due to secondary ionization by the slow

electrons (S-rays) emitted along the track, confirms this estimate. The
average energy spent by the a-particle is 33 volts per ion pair made*, and

four-thirds of the ionization potential is 32-7 volts. Lehmann has in fact

measured directly the average number of ions made by slowish electrons

with velocities between 200 and 1000 volts and found in helium that the

average loss of energy per pair of ions is still just 33 volts. This is the only

gas in which a comparison can be made which is free from all complica-

tions.

These experimental confirmations refer mainly to high velocities of the

electron, but it is really the lower velocities, especially those just greater

than tjq, which are of the main interest. In this region information is still

very scanty. It is shown in the next paragraph that the effective target

for ionization is on the classical theory

— (
) {l> Vo)

for each electron of ionization potential r]^ . This has a maximum for t] = 2i7q

when its value is ire^jiriQ^. For an atom for which

i7o = 10 volts = 1-591 X 10-11 erg.

this area works out at 1-56 x 10~i^ cm. 2, which is comparable with the area

of the whole atom, as determined from its behaviour as an imperfect gas.

This result fits in satisfactorily with the work of Franck and others on the

determination of ionization potentials. A point of great imcertainty how-

ever is whether the target area really tends to zero as 17 -^ 170 • Certain

experiments by Lehmannf on gases such as argon, which lead to energy

losses per^pair of ions much greater than four-thirds of t\\e first ionization

potential, seem to indicate that perhaps the target area has a non-zero

limit as 17 -^ 770 or even perhaps its maximum value there. This would

probably be in accord with the target area for ionization by the photo-

electric effect. One may hope for more light on this important point shortly.

In the meantime in a rough survey it seems legitimate to take the classical

theory as it stands for both high and low velocities, as giving correctly the

relative frequency of ejection of ^- and ^'-electrons and an absolute

numerical coefficient of the right order.

If then for the moment p denotes the distance of the line of impact of

* Lehmann, Proc. Roy. Soc. A, vol. cxv, p. 624 (1927); Lehmann and Osgood, ibid. p. 609.

t Lehmann, loc. cit.
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the 7^-electron from the electron which it is to laiock out of the atom, there

is a precise relation between this p and I,, namely*

-4

i2 = ?fe-0' •••••(^^*«'

776

This is the average effective target of the present theory for each electron

of ionization potential rj^. In the present notation S^^ {p, ^, -q) dt, = 1 for

this area and is otherwise zero. Thus

for each electron with some doubts as to the numerical factor it. For the

process of capture

^-^f?«W {L a) = (ryo + ^ + a) S,^ {I, % + ^ + «) = (^^^'

8^ (^, a) = T7?^ -, 7F^^2- (1239)
' ^^' ' 1677mm2 ai {C + i?o)'

This makes the mean effective collision "time-(area)'^" for capture tend

to infinity as a -> or ^ -> 0. This is perhaps unexpected, but in no way
physically impossible. It merely means that very slow electrons are very

good at being caught or at helping others to be caught.

§ 17-62. The general nature of elastic collisions between electrons and

atoms. It seems convenient to introduce at this point a few remarks about

the nature of collisions in general according to the new quantum theory,

and collisions between electrons and atoms in particular with reference also

to experimental facts such as Ramsauer's experiments. In our discussions

hitherto of collisions of atoms with atoms we have treated the action as if

it were a determinate motion in some particular field of force. In the dis-

cussion of the collisions of electrons with atoms we have formulated the

interaction more generally, by introducing a probability coefficient for the

production of a given result by a given type of encounter. From the classical

point of view this is merely an indication that we have not wished (or been

able) to make a closer analysis, and it is true that in § 17-61 we have made

such a closer analysis in a simple case and reduced the action to a deter-

minate motion. But from the point of view of the newer quantum theory

the formulation in terms of probability coefficients is probably fundamental,

and does not appear likely to be removed by further analysis. The spirit of

§ 17-6 would appear to be a proper spirit, and the other discussions should

perhaps be recast into similar forms. For example, our whole discussion

* See, for example. Fowler, loc. cit.
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of the familiar elastic collisions of the kinetic theory leading up to Boltz-

mann's theorem was based on determinate dynamical encounters. It is

likely that this should be discarded and the interaction reformulated in

terms of probability coefficients for a given exchange of momentum. It

will be easy to derive the necessary and sufficient relations between pairs

of probability coefficients for detailed balancing which will then also

preserve the same equilibrium state. It does not however appear worth

while to undertake such an analysis until we have more a 'priori knowledge

as to what functional forms the probability coefficients may be expected

to take.

50
^^=^ v.^ Argon.

Neon

30-

20- /-^—

6

He/wm
•--o*--o

Eig. 28. The Ramsauer effect. The curves show the relative effective cross-section of the atoms

named for collisions with electrons, as a function of the accelerating voltage. The line

marked G shows the cross-section deduced from ordinary transport phenomena.

In the case of elastic collisions between electrons and atoms however

it is already clear from Ramsauer' s experiments that some such radical

reformulation of the classical collision theory is necessary, at least for very

slow electrons. Ramsauer measures in effect the mean free path of directed

electrons as a function of their velocity—that is to say the average distance

they go before they suffer an appreciable loss of their initial momentum.
The determination of the mean free path is of course equivalent to the

determination of the target area in any atom for deflecting the electron

appreciably. The target area for an atom like an elastic sphere is a constant

independent of the electron velocity. The target area for a classical centre

of force varies with the velocity, but always so that the target area increases

as the velocity of the electron diminishes. The actual variation with velocity

observed by Ramsauer is shown in Fig. 28. Actually the target area for

some atoms becomes rapidly very small for small velocities. There would

be no formal difficulty in specifying a consistent set of probability coeffi-
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cients for electronic deflections based on these and similar experimental

results, but at present they only fix the integral of the probability coeffi-

cient taken over all angles above a certain minimum.

§ 17-7. General frequency relations for 2- and 3-body encounters leading

to dissociation and recombinatio7i. We will now reformulate the results of

the last few sections accurately for bodies of comparable masses. We have

already sufficiently analysed a 2-body encounter; we have now to extend

this analysis to 3-body encounters.

The nature of any encounter can only be a function of the relative

motion of the systems, and the motion of the centre of gravity of the

systems will be unaltered by any interaction in which momentum is con-

served. For an encounter of 3-bodies we therefore write

(mo + mi + mg) U = mo^o + tn-^u-^ + ^^2 "^2]

S2 "^ "^2 ^0 I

These equations can be solved at once for Wq, %, u.^,, and we find

19(U,^i,^2) = 1, . (1241)
19 (^05 %j '^2

'n^o'^Q^ + ^I'^i^ + m2'M2^ = (^0 + Wi + mg) U^

+ ,n A.^ ^m ^^1 (*^o + ^2) ^1' - 2mim2^i^2 + m2 (mo + mj ^2'}.
"''0 ~r iii^x ~r ''<'2

(1242)

We shall use similar equations for the other components, and 6 for the angle

between V^, H^, t)^, ^J and Fg, (^2. '?2, ^2)-

Now the number of triple combinations in which systems of types

€,1,2, masses mo,mi,m2 and velocity components Uq,u^,U2, etc., lie

.simultaneously in volume elements dcxiQ , doj^ , doj^. is by the usual formula

^o^i^^2 ," ,' 0- e-^l^'^ doodo^do^dcoodco^daj^, (1243)

where

7] = \mQ [Uq^ + Vo^ + w^o^) + 2^1 (%^ + Vi^ + w^^) + img {u^^ + v^- + iv^^).

Using the substitutions of the preceding paragraph this reduces to

+ 7 ; , : [m, (mo + m,) VW^ — 2m.nuV-,V» cos 6
{Mq + m^ + ma)

'-^^" ^' ^ i-iz

+ ma (mo + m^) V^^] dojodojj^dw^dU ... d^^ (1244)
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General 3-body collisions may be classified according to the position of

the lines of impact of bodies 1 and 2 on body (asymptotes of orbits) and

the time interval between the instants at which the midisturbed relative

orbits of (1, 0) and (2, 0) would bring these pairs closest together. To obtain

the number of triple collisions per unit volume per unit time in which the

lines of impact of 1 and 2 on lie between jp^ and p^ + dp^ and p^ and

2?2 + d'p2 with a time interval between t and r + dr we take

dcoQ= \, d(xi^= 27Tp-i^dpiVi, dco.2= 27r2>2^2^2^2^'^ (1245)

We next change (1244) into spherical polar coordinates for the relative

velocities, using the direction of Fj as the polar axis from which to specify

the angles defining the direction of Fg. Then

d^i d^ = V^^dV^ sin rjjd^dxVidV^ sin edddcf> (1246)

We are only interested in the relative configurations of the orbits, specified

by J?!, ^2 5
''^j ^iJ ^2 J ^iid d. The other variables may be eliminated by inte-

gration. We then find that the number of collisions so specified is

{womim2/(mo + my_ + mg)}*
^TT^V.V.V,

j^^^j^,

X exp
mi (mo + mg) V-^^ — 2m^m2V-^V<i^ cos 6 + m^ {rriQ + m^) Y<^'

2 (mo + mi + m^ kT

X 27Tp^d'p^27Tp^dp^drV^W^^Bm.edV^dV^dd. (1247)

The process of capture is a triple encounter of this type resulting in a

radiationless union of the bodies and 2. The relative motion of (0, 2) and

1 is to take off the superfluous energy. If Sa^ (Vi, P2>'^> V2, d, Fi) is the

probability of this event, and

S^ {V„ e, Fi) = 4772
f" p, r p, f

"""
X,^dp^dp,dr, (1248)

Jo Jo J -00

then the rate of captures per unit volume of the (V^, 0, V^) type is

(1249)

In this formula r] is the energy of the relative motion before the event,

which is given explicitly in [ ] in (1247). The energy of the relative motion

of the 2-body system (0, 2) and 1 after the event is 77 + -f^o? where 170 is the

energy of dissociation of (0, 2).

By analogy with (1178) the number of 2-body collisions of type {p, V)

between (0, 2) and 1 per unit volume per second is

j (mo + m2)mi |f_^ [ m^ (mo + m^) F^

^^»2^M27rA;T (mo + mi + m^)}
^""^

2 (mo + Wi + mg) kT
2iTpdpV^dV.

(1250)
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The suffix 02 refers to the body (0, 2). These colhsions are effective if they

result in the dissociation of (0, 2) into and 2. There are then three bodies

moving with certain relative velocities and the type of collision depends

on the distribution of the available energy. Let

*^"*^'
i:i'{p;V^,e,V)V^QYaddv.^de (1251)

mo + m^

be the probability that a body 1 with relative velocity V will so break up

(0, 2) that 2 is thrown off with velocity between Fg and Fg + (ZFg relative

to 0, and in such a direction that the angle between Fg and the velocity Fj

of the body 1 relative to the body after collision lies between 6 and

6 + dd. If F2 and d are arbitrarily specified, then V^ is determined by the

conservation of energy, which is

mo + m^ + ma

1 mi (mp + mg) F^^ - 2mim2FiF2 cos 6 + m^ (mp + mi) Fg^
n252)

^
mo + mi + mg

We now write as usual

S^^ (7^,6,7)= 277 r pJl^^dp. (1253)
.'0

The number of dissociations of type {V2, 0, V) per unit volume per unit

time is therefore

4^^ ^ [

(mp + m,) m, It jn^m.

X exp
mi (mp + mg) F^

2 (mp + Wi + mg) A;y_
F^Fa sin 6/ rfF<?F2<^0 (1254)

Let us now assume that there is detailed balancing. Then we must assert

here that if the F's are related by (1252) the expressions (1254) and (1249)

must be equal. The resulting relation between 82^ and S-^^ refers only to

the process (0, 2) ^^. 0+2, each body being in a unique internal state

before and after the interaction. To see that the process preserves the

equilibrium laws with a purely atomic relation between *S'2^ and /S^i^, we
must consider the equilibrium laws for just such a reaction. For bodies

with more than one internal state, including in this strictly speaking both

internal oscillations and rotations, the equilibria of the separate states must

be discussed with separate coefficients to S. For the bodies here considered

the law of dissociative equilibrium, after (333) and (1013), takes the form

f
mpma ]i {27TkT)i WpW^ ^_^^„^ ,

[niQ + mJ li^ C7p2

29
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Inserting this value of VqvJvq^ in the equation balancing (1254) and (1249)

we find

(1255)
On differentiating (1252) we find

F<^K^MF,(l-;^^cos«) (1256,

and, using this in (1255),

' ^ 2' ' ^1 W0 + W2F1
j

^ /_m^y2^^
An important special process of this type is ionization, in which m^ is

negligibly small compared with mQ. In that case when the body 1 is of

atomic (not electronic) mass classical dynamics requires that V^ < 2F,

while Fi and F are only slightly different. Thus V^jV^ is of the order unity

at most, ^2 == 2 and the { } reduces to unity. Thus (1257) becomes with

sufficient accuracy

F^V {V„e, V) = ^^^^ V,W,^S,^ (F„ d, V,), (1258)

with the energy relation

^Wo + m/ '^^ ' ^mo + m/^ + 2*^i2>^2 (l-^J)

These equations are the result of ignoring the momentum of the electron

in the equations of conservation.

Now that 6 no longer appears explicitly in (1258) and (1259), it is

possible and often convenient to reformulate these relations more in accord

with the relations of the earlier sections, where both the bodies 1 and 2

were electrons. We recall that Sg^ {Pi, Pz^ '^'> V2, 6, Fj) is the fraction of all

(Pi^ P2^ '^'> ^2' ^> Fi) -collisions that result in capture. The derived function

S^^ {7^,6, Fi) is the "target" {[Lf [T]) for {¥^,6, FJ-collisions to be suc-

cessful, and so leads to the number of successful (Fg, 6, Fi)-collisions when
these are distributed at random in Pi, Pz, and r. If ^2^* (Fg, T\) is the

mean value of this with respect to 6, so that

>SV* {V2, V,) = 1 rs,' (F2, e, V,) sin Odd, (1260)
.'0

then 82^* is the [LY [T] " target " for successful
(
V^ , Fg) -collisions distributed

at random in p^, p^, r and 6.

In a similar way S^^ (p; V^, B, V) m^V^ sin ddV^dd is that fraction of

{p, F)-collisions which result in (F2, d, Fi)-relative motions after causing

dissociation. Then
^1' {Vo, e, V) m^V^ sin ddV^dd
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is the [iy]2 target for F-collisions distributed at random in 2? to have the

result specified. If finally

^i'* {V^, F) = r^iM^2>^, V)smddd, (1261)
Jo

then 8^*m^V.^dV2 is the target for F-collisions distributed at random in

p to have (F.^, Fj) relative velocities after dissociation. The complete

ionization target for F-collisions distributed at random in 'p is

f (F2)max

>Si2*(F2, V)m^^dV^. (1262)
Jo

The relation between 8-^^^ and ^2^* must be

F2^i2* (7^^ V) = .^![^o^'
Fi^F^^^S^i* (Fa, Fi) (1263)

^02"

with the energy relation (1259). Expressed in terms of energy (1263) is

identical with the formula (1228) for electron impact. We shall not in

future distinguish these aS's by an asterisk.

§ 17-71. Experimental evidence for the form of Sj^ (Fg, F). The evidence

available for the form of S-i^ ( Fg , F) is provided almost entirely by the

phenomena exhibited by a- and j8-particles and so refers only to rather

high values of F. For definiteness we will suppose that the body 1 is a

nucleus of charge Ze (atomic mass) and velocity V, the body 2 an electron

and the body any particular atom or molecule, neutral or ionized, at

rest, at concentration j/q, containing a set of electrons any one of which may
be removed with expenditure of energy rj^ . Then

(1) The number of primary pairs of ions extracted from this group by

the body 1 in a length of track dx is

v,dx S,^V^, V)m^V^dV^ (1264)
Jo

(2) The energy spent on this type of ionization is

r ( V2) max
v,dx (rj, + ^m,V,^) S^^ {V„ V) m,V^dV^ (1265)

Jo

(3) The total resulting ionization is

/(F»)max
v,dx 9{V,)Si'{J\, V)m,V,dV^, (1266)

J

where g ( Fg) is the average number of (pairs of) ions made by a single

electron of velocity Fg, which is itself counted as one in g (V^). Under
certain assumptions it can be shown thatf

^(P^^)^3 2?cdli!^^' (1267)

t R. H. Fowler, Proc. Camb. Phil. Soc. vol. xxr, p. 531 (1923).

29-2
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approximately, if the only removable electrons are in the r^Q-group. If there

are other groups of electrons, -170 has to be replaced by a mean ionization

potential, and it is not yet known how this is to be calculated.

(4) The ratio of the number of Fg'Primaries to Fg'-primaries is

8^^{V^, V)V,dV,
.(1268)

Generally speaking only integrated effects of S-^^ are observed from which

the form must be estimated as best one may. It is therefore necessary to

start with some form of S-^^ given a priori, and all we possess at present are

the results of the classical theory of Thomson and Bohr. In this theory the

energy q actually transferred to an electron in the process of ionization is

identified with the energy q which would be transferred to a free electron

initially at rest in a similar encounter, obeying in full the classical laws.

If p denotes for a moment the distance of the line of impact from the

relevant electron*

9-1
7n^V^{p'^+ ZV/mg^F^)

Since q = 'r]Q + i^aFg^ it follows that

It follows at once as in § 17-61 that

where n is the number of equivalent electrons in the group, and that the

maximum energy transferable is 2m^V^, so that

(F2%ax=4F2- 2ryo/m2.

When F2 > (F2)inax, 'S'l^ = 0. These formulae are naturally practically the

same as those for ionization by electron impact, the only difference being

in ( F2)max . This formula for 8-^^ is not particularly successful in describing

the facts associated with the ionization and rate of loss of energy of a- and

j8-particles passing through matter. The form of dependence on Fg is the

most successful partf. Even when corrected by ThomasJ for the motion

of the electrons in the atom the results, though much better, are still some-

what unsatisfactory. The form is probably correct for very large F (^-

particle velocities), and we might perhaps put

^.MK..F)^ j;y;;.,, . (1270)

* See, for example, R. H. Fowler, Proc. Camb. Phil. Soc. vol. xxi, p. 526 (1923).

t R. H. Fowler, Proc. Camb. Phil. Soc. vol. xxn, p. 253 (1924).

I L. H. Thomas, Proc. Camb. Phil. Soc. vol. xxin, p. 713 (1927).
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where / ( F^) is some function of the velocity V which is practically inde-

pendent of F2, 170; ^ ^^^ ^5 ^^d approaches (1269) as F -> 00. More than

this we cannot do at present and must await the development of the new

mechanics. The corresponding form of ;S'2^ is

(
27^0 (mp + Wi)

_^ J/
2 + 7^, (wq + Wi) y ^\

C WT7 V \ - ^^02^^^M ^0^1
\

Wpmi ^
j

,(1271)
(r^p+im^F.T

§ 17-72. J'/ie Zai^;s 0/ detailed balancingfor general collisions. It is perhaps

worth while in conclusion to consider a very general formulation of the

laws of detailed balancing for collisions given by Dirac*, which brings out

the main features better than the discussion of § 17-7,

We start by observing that in its ordinary form Maxwell's law for the

density-in-velocity or density-in-momentum of systems per unit volume

is invariant for a transformation from any set of axes to another moving
relatively to the former with constant velocity. For relative to the old

axes the density-in-momentum is

f = ^e-(Pi2+P2^+P32)/2mfcr

and if the transformation is 2^1' = J^i + S, then relative to the second set

the density-in-momentum is

f = ^g-|(p/-«)2 + P2'2 + P3'2(/2mfcT

which is unaltered (f = f).
We then consider a general encounter between n material systems in

which the rth system has initially a momentum in a region (dp^^dp-idp^),.

,

and in which as a result of the encounter n' material systems leave the

scene of action, the rth having a momentum in a region {dp^dp^dpz')^

A material system may be of course any molecule, atom, or ion in any

specified stationary state, or a free electron, but not here a quantum of

radiation. The n' systems must have the same material constituents, but

recombined in any manner whatever. The velocity of the centre of gravity

of the systems both before and after is F. We then transform to a frame of

reference in which the centre of gravity is at rest, and use a zero suffix to

distinguish quantities measured in this frame, which we call the normal

frame. If we assume for the present that the momenta before and after

the encounter are all independent, the number of such encounters per unit

volume per second will be of the form

n/r {dp^dp^dps
1

.cf>.n{dp,'dp,'dp,')r, (1272)
1

* Dirac, Proc. Roy. Soc. A, vol. cvi, p. 581 (1924).
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where (/> is an atomic probability coefficient which must be independent of

T and V and depend only on the momenta of the systems in the normal

frame of reference both before and after the encomiter. It is unnecessary

here to analyse cj) further. It must be supposed to contain the velocity

factors for the speeds with which the various systems approach the scene

of action. In the same way the corresponding number of reverse en-

counters is

n/r' {dpi'dp2dp3')r .(/)'. n {dpj^dp^dpsl (1273)

By the principle of detailed balancing we may equate these two expressions,

and obtain

[A-Jn']o<f>=Ul -fn']o<f>'- (1274)

Our provisional assumption that all the momenta are independent is

not true. There are at least seven relations (energy, and zero momenta in

the normal frame before and after the encounter), and there may be more
in special cases. We can allow for this most simply by making ^ and </>'

zero except when these necessary conditions are fulfilled. There will then

be fewer differentials in (1272), but on account of the complete reversibility

the same differentials will drop out of (1273), and (1274) will remain

generally true. If we nov/ transform back to the frame in which the whole

assembly is at rest, owing to the invariance property of Maxwell's law, we
find the general collision relation

/1/2 •.•/„</>= //A' •••/.'</>'• (1275)

Now if i^i , ..., Fn are the partition functions for the internal energies

of the corresponding systems, and v^, ...,v„ their total concentrations, then,

in the equilibrium state,

, , . m,...w, v,...v. ^
- ^ \" + k '^'" ^ "'^ ^ "'^'11'"'

J1J2 • • • Jn V W n '

1

with a corresponding expression for f^'f^ •••fn- There is also the equation

of dissociative equilibrium

v: F^ ...Fj i ¥ /V h'
''

juation

mbining these equations we find the relation

^= ^r"^\ (^y-». (1276)

The relationships of the preceding sections are special cases of (1276)

Vi' ... Vn i^i' ... FJ 1 h

and the energy equation
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in which the coefficients S have been defined somewhat differently from

(f>
and ^'.*

§ 17-8. Laws of interaction of gaseous molecules with solid walls. We can

apply the general arguments of § 17-1 to show that collisions of molecules

with the walls of the containing vessel must separately be capable of pre-

serving the equilibrium state. For the equilibrium state of the gas is inde-

pendent of the shape of the enclosure containing the gas, and by var3dng

the shape of the enclosure the relative importance of the surface can be

varied independently of all other parameters. Collisions with the walls

vary in frequency as the surface multiplied by the molecular density and

therefore differently from collisions between molecules ([density]'^) or

radiative effects (density).

We have already made use of this principle in discussing the relation

between the emission and absorption of electrons at a metal surface in

§ 11 '2. It will therefore only be necessary to generahze the analysis of that

section here. If the gaseous phase is practically perfect, and contains a

set of systems (atoms, molecules or electrons) at concentration v, then the

number of such systems with velocities between c and c + dc which strike

unit area of any solid surface per unit time in a direction within a solid

angle dO. at an angle 6 with the normal to the surface is

vU^^^ c^e-^'^'I^^T QQ^ Q clcdQ. (1277)

This is the number of such systems which are destroyed in unit time by

unit area of wall. By the same reasoning an equal number moving in the

reverse direction must be thrown off by the wall in unit time in order to

preserve equilibrium.

As we are no longer dealing with single atoms and molecules we can

no longer argue that elementary processes must be independent of the

temperature.

In very high vacua collisions with walls are all important in controlling

the equilibrium state, and a series of researches notably by Knudsenf

Millikan| and Langmuir§ have been undertaken to elucidate the properties

of the equilibrium state and steady non-equilibrium states under such

conditions. These investigations have thrown much light on the nature of

the mechanism which we call "collision with a wall". The conclusion is

* Dirac, loc. cit., presents the argument somewhat differently and derives the equations of

dissociative equilibrium, etc., from the principle of detailed balancing by substantially the

reverse of the foregoing argument. The principle of the invariance of / which must be then known

a priori can, he shows, be deduced from the properties of the Lorentz transformation.

t Knudsen, Ann. der Phys. vol. xxvni, pp. 75, 999 (1909), and a series of other papers up to

vol. XXXIV, p. 593 (1911).

J MiUikan, Phys. Rev. vol. xxi, p. 217, vol. xxii, p. 1 (1923).

§ Langmuir, Trans. Faraday Soc. vol. xvn, pp. 607, 621 (1921).
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that in general the greater part of the molecules strikmg a solid surface

actually condense on the surface (stick to it) for a limited period and are

then thrown off again. Their direction and velocity of ejection will then

naturally have no connection with their direction and velocity of incidence.

If this idea of complete lack of correlation is correct, then the molecules

evaporating must be thrown off by the wall at a rate given by (1277). This

is a conclusion of considerable importance in the researches quoted. It

embodies what is known as Lambert''s law of diffuse reflection. It contains

however more information than Lambert's law which refers only to dis-

tribution with angle. When we study steady states in which we have

no longer a temperature equilibrium, the T in (1277) ceases to have a

definite meaning. The general form of the molecular emission law may be

expected to hold good, but T becomes a parameter determined by the

temperature of the incident molecules and the temperature and other

properties of the wall. A great part of Knudsen's researches deals with

particular cases of this type.

In other cases we have evidence, from the rate of transfer of momentum
to the walls during steady states of flow, that an appreciable fraction of the

incident molecules do not condense, or at least do not communicate momen-
tum to the wall on impact. In such cases it is usual (and probably adequate)

to describe the interaction by means of an accommodation coefficient /
which is such that the interaction proceeds as if the fraction / of all the

incident molecules condenses on impact and 1 — / is reflected according

to the laws of reflection of light ("specular reflection"). It is easy to see

that specular reflection also conserves (1277). It is usually assumed that

/ is independent of c and 6.

There is good evidence for condensation and consequent uncorrelated

re-emission obeying (1277). Beside this perfectly diffuse reflection the only

simple types of reflection which preserve (1277) are perfectly specular

reflection and reflection by direct reversal of path. The latter is physically

imacceptable. The former has imdoubtedly been used to supplement per-

fectly diffuse reflection on the ground of its simplicity. A more correct

analysis would doubtless fuse both the perfectly diffuse and perfectly

specular reflections together into a single law with a varying correlation

between the direction of incidence and all possible directions of re-emission.

It would present no difficulty to formulate such laws satisfying (1277), but

at present they do not appear to be of interest.



CHAPTER XVIII

CHEMICAL KINETICS IN GASEOUS SYSTEMS

§ 18-1. General nature of reactions in gaseous assemblies'^ . When gases

which undergo a chemical reaction are mixed, it is natural to look to the

collisions between the reacting molecules for the source of the rearrange-

ments that occur. The ideas and the formulae of the last chapter should

therefore enable a satisfactory account to be given of those gaseous

reactions which do not depend observably on radiationf, and proceed

sufficiently slowly for the calculation of collisions by the equilibrium theory

to be applicable. We shall see that this expectation is in general fulfilled,

but there is at least one quite exceptional example in explaining which the

theory is strained to the uttermost. It is probable that some other con-

siderations must enter.

Let us start by defining more closely what we mean by "sufficiently

slow" for the reactive collisions not to upset the numbers of collisions

calculated on the equilibrium theory. All reactions of course proceed to

their equilibrium point, at which all the considerations of the equilibrium

theory must apply. But in chemical kinetics we are concerned with the

speed of unbalanced reactions proceeding primarily in one direction, and

it is these which we try to record by observation. In order to calculate

such speeds from the equilibrium theory we have to assume that certain

types of collisions are effective, and that these types occur (in spite of the

one-sided reaction) with a frequency corresponding to that which would

be deduced from the properties of an equilibrium state. It wiU be best to

examine the requirements of this condition in the various special cases

discussed.

In the examination of a gaseous reaction the first point to be established

is that it is a reaction between gases (homogeneous reaction) and not a

reaction occurring primarily between gas molecules condensed on the walls

of the containing vessel—catalysed by the walls—(a heterogeneous re-

action). We shall only discuss homogeneous gas reactions here: hetero-

geneous reactions are more naturally discussed as part of the kinetic theory

of surfaces. There are not many simple homogeneous gas reactions known.

Catalysis by the walls dominates the \^ast majority of apparently homo-

* For a general account see Hinshelwood, The Kinetics of Chemical Change in Gaseous Systems

(1926). This chapter is based almost entirely on Hinshelwood's account and later work, except

that there is one of his quantitative interpretations which I do not accept.

f The best known example of a photo-sensitive reaction, or photo-chemical change, in gases

is the rea.ction Hg + do -^ 2HC1 under the influence of visible light.
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geneous reactions. Those that are known to be simple and homogeneous,

for which the velocity of a perfectly definite molecular event can be and

has been observed, are all described in detail by Hinshelwood*.

Having established the homogeneity of a reaction, its velocity is studied

as a function of the temperature and the concentrations. The dependence

on the concentration at once classifies the reactions into different orders

of which we need only consider two here, namely

:

First order or unimolecular reactions, with a velocity proportional to

the concentration so that

-! = - ('2^«)

where k depends only on the temperature.

Second order or bimolecular reactions, with a velocity proportional to

the square or product of the concentrations so that

dv „ dv, dvo /ir.f^rw\

- a = ""^ °-^ - w = - i = ''^"'- *i2'''

and K again depends only on the temperature. This function k is called the

velocity constant of the reaction. These equations of course only hold before

the products of the reaction interfere in any way such as by beginning the

reverse reaction. But k is usually measuredf under conditions in which

(1278) and (1279) are sufficiently exhaustive. We shall not discuss the

methods by which the k of these equations is determined in practice.

When we compare the observed rates of reaction expressed in numbers

of molecules per second with the numbers of collisions per molecule per

second we find that at most one collision in 10^ can lead to a reaction.

Gaseous reactions cannot ordinarily be quantitatively studied if the initial

concentration of reactants fall to half value in a time as short as one second,

and the usual time to half value is of the order of at least a minute. But

by (1176) the number of collisions per molecule per second is

\ m J

Inserting numerical values with o- = 3 x 10"^ k = 1-37 x 10-^^ T = 273,

V = 2-1 X 10^^ m= 1-65 X 10-^^^, where A is the chemical molecular

weight, this reduces to
1-3 X 10i«

* Hinshelwood, loc. cit. Recent additions to his list are: (1) "Decomposition of Acetone",

Hinshelwood and Hutchison, Proc. Roy. Soc. A, vol. cxi, p. 245 (1926). (2) "Decomposition of

Propionic Aldehyde", Hinshelwood and Thompson, Proc. Roy. Soc. A, vol. cxin, p. 221 (1926).

(3) "Decomposition of Diethyl Ether", Hinshelwood, Proc. Roy. Soc. A, vol. cxiv, p. 84 (1927).

(4) "Decomposition of Dimethyl Ether", Hinshelwood and Askey, Proc. Roy. Soc. A, \^ol. cxv,

p. 215 (1927).

I See Hinshelwood, loc. cit. p. 48, for a more general case.
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This is to be compared with a number of reactive collisions at most of the

order one per second. Thus reactive collisions are completely exceptional.

The clue to this behaviour is provided by the strikingly large tempera-

ture variation of the velocity constant k. Whereas the total number of

collisions varies as ^/T, that is hardly at all over wide ranges of temperature,

the velocity constant ordinarily doubles itself for a rise of temperature of

about 10° C. This suggests at once that the effective collisions are selected

not from all collisions, but only from all collisions with more than a certain

large minimum of distributable energy.

The actual form of k which can be successfully compared with observa-

tion is suggested by equilibrium considerations. Consider for definiteness a

bimolecular reaction between unlike molecules of types 1 and 2 which

combine to form two other molecules of types 3 and 4. There is an equi-

librium point which is given by

where K is commonly spoken of as the equilibrium constant. For all con-

centrations we know from the velocity measurements that the rate of

destruction of systems 1 and 2, with creation of systems 3 and 4, is kv-^v^,.

By the arguments of § 17-1 the rate of creation of systems 1 and 2 and

destruction of 3 and 4 must be of the form k'v^v^, and at the equilibrium

point these are equal, so that

K^k'Ik. (1281)

Now it follows thermodynamically* from the definition of K that

dlogK ^ q ^ Q
dT kT^ RT^' ^ ^

where Q is the "heat of the reaction". Therefore

d log k' d log K q

"'dT dT~~ ^ W^'

The form of this equation suggests putting

d log K _ t d log K I,'

~dT~^kT~^' dT ^W^'
where t, — i,' = — q

and the known approximate constancy of q suggests that perhaps I, and ^'

are also roughly constant. In that case we j&nd after integration

K = Ae-il'^^. (1283)

This is the well-known empirical equation of Arrhenius for the velocity

constant of a homogeneous gaseous reaction. As so far presented it is purely

* Or from equation (449) or its equivalent.
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tentative, but by plotting log k against 1/T for observations over a suffi-

cient range of temperatures, it is found that (1283) with A and ^ constant

gives an entirely adequate representation of the facts. The energy ^ is

called the heat of activation of the reaction, for, as we shall see, it is closely

related to the necessary minimum disposable energy present in a possibly

effective collision. We shall show in the following sections how the collision

mechanism gives an entirely adequate account of the phenomena we have

described.

§ 18-2. Simple theory of bimolecular reactions. Equation (1182) gives us

the number of collisions per unit volume per unit time in which the kinetic

energy of the relative motion lies between rj and r] + drj for simple unlike

molecules. Let us suppose that a {r]) is the fraction of these collisions that

lead to reaction. Then

20^(2^ (m, + m,)Ur-_^^,
(kT)^\ ^i»^2 J .'(1 '{kT)i

In order to mimic (1283) the simplest assumption is that

C7 (r?) = {rj< 0, a (ry) = « {rj > 0,

where a is a constant less than or equal to unity. On this assumption

This is very nearly of the prescribed form. It is to be observed that the

5^-variation of k is so dominated by the exponential term when (as in aU

actual examples) 1,/kT is fairly large, that the experiments cannot possibly

distinguish between
Ae-il^'^ and A'T'e-il^^

for any moderate value of s. The same difficulty has been already encoun-

tered in Richardson's thermionic formulae. This simple assumption there-

fore yields a formula for fairly large values of i,/kT,

K = A'T-ie-il^'', (1286)

mwhich A'=2aa^^^\ ^—^ -\ ~. (1287)

The theory thus gives us at once a satisfactory form for k. We have no

a priori knowledge of ^/k, and it must therefore be determined from

Arrhenius' equation. When this has been done the theory gives us k

completely in terms of a coefficient a which must be less than unity, and

a "molecular diameter" aia- For like molecules the first factor 2 drops out

and mi = m.^.

To proceed further we must consider an actual example, and choose the

decomposition of HI discussed by Hinshelwood. This is primarily homo-
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geneous and bimolecular from 550° K. to 780° K., and its temperature

variation satisfies Arrhenius' equation accurately with t^jk = 22,000

(Q = 44,000 calories). With ct = 2 x lO-^, m^ = m^= 128 x 1-65 x lO-^*,

and \^T = 25 this gives

A' = 2-5 X 10-8 a, K = 10-»ae-22'««o/^.

From the definition of /c ~^^= — kv.
V at

Therefore the fraction of molecules reacting in one second at a concentra-

tion of one gram-molecule per litre {v = 6*06 x 10^°) and a temperature

^^^°^i« 4xl0-««.

The observed value is 3-52 x lO^'^. The observed value is thus obtained*

if a= 1/11.

This is entirely satisfactory so far as it goes. It only remains for us

to verify that this fraction of reactive collisions is small enough for the

calculation of colHsions with energy more than ^ to be substantially

unaffected, i.e. to verify that the reaction is "sufficiently slow". A
certain proportion of collisions with relative energy more than ^ will

concern at least one molecule whose last collision was also one of the same

class. This is the phenomenon of the persistence of velocities'f. In default of

an exact theory of transport phenomena, correction for persistence of

velocities was successful in removing the greater part of the numerical

error in the simpler theory of these phenomena. In order to be certain that

the equilibrium calculations are adequate it is sufficient to assure oneself

that allowance for persistence of velocities is unimportant here. The pro-

portion of collisions affected can be fairly high, but even if it is nearly unity

only the fraction a at most will be removed by the reaction and the effect

on numerical values cannot possibly reach 10 per cent. At the same time

the numerical values might begin to be seriously affected if a were larger.

The interpretation given by Hinshelwood to his result a = 1 is therefore

hardly acceptable. It is necessary for a to be small for the simple theory

to apply at all. But of course the results of a more exact theory are not

likely to be widely different, and will only differ in a numerical factor.

Summing up, we may say that the simple theory of homogeneous

bimolecular reactions, namely that they are reactions by collision which can

only occur in a fairly small fraction of collisions in ivhich the relative kinetic

energy of the molecules exceeds a certain lower limit determined by Arrhenius'

equation, gives a most satisfjdng account of the observed facts. We have

discussed it only with reference to the reaction

(1) 2HI -H., + l2,

* Hinshelwood, loc. cit., concludes that approximately a = l, but he has used an inaccurate

formula for the number of collisions,

t Jeans, loc. cit. pp. 260, 275, 312.
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but the following other reactions have been shown by Hinshelwood to fit

equally well into the same theory

:
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energy between r\y and r\^ + dr]y we have to take out that part of the com-

plete integration which corresponds to

s

1

The number of molecules per unit volume with this internal energy is

therefore

v/ i (1288)

...
I

e-^l''^ dix^.-.dfXsi-oo <M,<+oo]

By the well-known procedure of Dirichlet* this can be reduced to

Too

.'0

^fc - X e~'^^^^ drj

or ^1- (llL\^'~\-vJkT±h (1290)

The number of molecules with internal energy greater than 7]q is

-^ ^r r y]i'-^e-n!^T^ (1291)
^(ls)(^•^)*^i.„ ' '

^
'

which, for r]QlkT large, is approximately

f

ii)(iif
"-'«''" <i^«^'

Let us now combine (1290) with (1182). We find that the number of

collisions per unit volume per second between a molecule of type 1 with

energy t]^ and a molecule of tjrpe 2 with energy 172 ^^^ relative kinetic

energy ^ is

(1293)

So far as energy considerations go it is conceivable that any collision in

which 7?i + '>?2 + ^> "^0 iii^y have a non-zero probability of producing an

active molecule or causing a reaction. The total number of such collisions

* Whittaker and Watson, Modern Analysis, p. 258 (ed. 3).

t It may be emphasized that s in these equations is the number of square terms in the energy,

not the number of degrees of freedom, so that any harmonic oscillation contributes 2 to s, and any

rotation 1.
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is therefore obtained by integrating (1293) over all r]^, -q^ and ^ satisfying

''?i + ^2 + ^> Vo' This number thus reduces by simple substitutions* to

'^^i^^cTu
\
27T{m, + m^) ]i 1 ["g-x/Jfcr ^y, + y, + i ^^

r (-i-5i + 1*2 + 2) 1 ^1^2 J (yl-T)^-*i + i^2 + fj,„

(1294)
which, for rj^/kT large, is approximately

2.,v2y
{

2^K + m,)
Y (VoY^^i^'-^^\-,jkT (1295)

If the two molecules are of the same species then of course nii = m^

and 0-12 = o- and the factor 2 must be removed, for every collision will as

usual be found to have been counted twice over in all the foregoing formulae.

The fraction of all collisions with "enough" available energy is easily

seen to be

(
^^/^y)K4-i.3+ie-W^y

(1296)
r(K + i52+2) '

which may be very large indeed compared with the fraction e~'^ol^'^, often

used in error in this connection.

If it is denied (as is perhaps natural in certain applications) that the

internal energy of the second molecule is ever available to serve towards

the activation energy of the first, then the formulae (1294) and (1295) will

still apply if we put «2 = 0. In fact more generally we can in these formulae

always use s-^ and 53 for the number of square terms in the internal energy

ivJiose energy content is available for redistribution in the collision.

The total number of reactions can of course only be expressed in terms

of a probability coefficient ex {7)^,7)2, $). Thus on multiplying (1293) by

a {t]i, 772, i) and integrating we find

_ 2(712^
[
277 (mi + m2) |i 1

" ~ r (i^i) r (i^a) t ^^^2 ) {kT)^'i + i'^ + i

the last few formulae arise from putting cr = 1 when 171 + 172 + I > '^o •

When internal energies are taken into account a more accurate investi-

gation of the precise use of Arrhenius' equation is necessary. In practice

the observations are used to plot log k against l/T and determine a slope,

which defines the activation energy ^ of the equation

d log /c _ ^

dT ^W^'
* Whittaker and Watson, loc. cit.
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The theoretical k derived by putting simple forms for ct in (1297) is however
generally of the form

k = b{^^ e-^ol^'^.

so that

Jct)

d log K __ r]Q t

dT ^hT^~T'

Thus T^o of the theory and t, determined by observation are connected by
the equation

r)o=C + tkT. (1298)

The apparent constancy of the experimental ^ in no way prevents ^ being

really of the theoretical form (1298), for the experiments could not detect

these variations, tkT being small compared with rj^ . In calculating whether

there are sufficient energetic collisions to give the observed rate of reaction

with a small efficiency a we must use the t]^ of (1298) with the observed

^ and a mean value of T. We thus retain the correct temperature variation

of K.

If we now examine how these considerations affect the typical homo-

geneous bimolecular reaction between simple molecules we see that for a

molecule such as HI we must have at least 5 = 2, or for a triatomic mole-

cule 5 = 3 at least. Thus for the reaction 2HI -> Hg + I^ (5 = 2 say) we
have to replace the factor

kT
3

of (1285) by the factor i f^) e-V*^^

of (1295), with rjo = ^ + SkT, I, having its observed value. There are there-

fore substantially more collisions with enough energy than the simple

theory indicates, the extra factor being about 13, which leaves an ample

margin.

§ 18-4. Homogeneous unimolecular reactions. There are well-known diffi-

culties in the theory of those unimolecular reactions which are apparently

insensitive to radiation. The simplest assumption which will account in

any way for the facts is to suppose that the reaction is not elementary but

consists of bimolecular activation and deactivation processes which by

themselves would keep up a normal equilibrium between activated and

inert molecules, while superposed on this there is a definite chance for the

spontaneous disintegration of the activated molecules. Provided this dis-

integration is slow compared with the activation process the equilibrium

concentration of activated molecules will be unaffected. This concentration

will therefore be proportional to the total concentration and the reaction

will apparently obey the unimolecular law. If this theory is correct then

F 30
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there should come a concentration for any unimolecular reaction below

which its rate begins to fall below the expected unimolecular rate, for the

underlying bimolecular process is there beginning to work too slowly. This

form of collision theory for unimolecular reactions is usually associated

with the name of Lindemann*.

The state of affairs according to this theory is formally very simple.

Let X and y be the concentrations of activated and inert molecules at any

time. Let the total number of activations and deactivations in time dt be

Z'ydt and Zxdt respectively. Let Bxdt be the number of disintegrations

of activated molecules. Then the differential equations which control the

process are

'^=Z'y-(Z + B)x,

%^-Z'y + Z..

1299)

On Lindemann's theory ^ is a molecular constant and Z and Z' themselves

proportional to a; + ^ or perhaps rather of the form Ax + By + Cz, where

z is the concentration of any diluents plus the gaseous products of reaction.

If we solve equations (1299), assuming that Z and Z' are constants, the

general solution takes the form

a; = i^ie-V + i.2e-V, y = if^e-V + Jfgg- V, (1300)

where A^ and A2 are the roots of the equation

D^- D{Z + Z' + B) + BZ' = 0. (1301)

Using the initial condition that the equilibrium is undisturbed by dis-

integration, which is {Z'y)^ = {Zx\, we find that the coefficients in (1300)

satisfy

Z' - Ai " Z - ZX,/X^ - {Z' - X,) XJX,
•

This is exact and the rate is of course not that of a unimolecular reaction.

If now we suppose that B/Z is small the values of A^ and A2 reduce approxi-

mately to

Ai = BZ'/{Z + Z'), X^= Z + Z'.

Since [x\y\ is in general rather small, Z'IZ will also be rather small and at

any rate less than unity. Then L^IL^ = O {BjZ) and M^jM^ = (BZ'/Z^)

which is still smaller. Therefore the second terms in (1300) are negligible

even initially and a fortiori at all later times owing to their much more

powerful exponential factor. They are still negligible initially and so always

if {xfyX is altered by terms of order BjZ. The solution then reduces to

x = X^e-^^'^M^^'^ y = Yoe-B^''l^^+^'\ (1302)

which is of unimolecular form.

* Lindemann, Trans. Faraday Soc. vol. xvii, p. 599 (1921).
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A more exact treatment of equations (1299) or more general forms can

be given by treating them as of the form

dx

.(1303)

^^=f{t)y~{g{t) + B}x,

%=-f{t)y + g{t)x,

the coefficients / {t) and g (t) being slowly varying functions of the time.

The precise variation of/ (t) and g (t) is only assignable a posteriori, but this

does not affect the argument. We can then apply the general theory of

such equations, which is equivalent to the theory of the asymptotic forms

of solutions of such equations for large values of a parameter*. It follows

from this theory that the first approximation to the solutions of (1303) is

of the form

- / \dt - / \dt - I \dt -
I
\dt

X = L^e J + L^e J
, y = M^e •' + M^e J

where A^ and X^ are functions of t which are the roots of (1301) with Z and
Z' replaced by / (t) and g (t). Smce Ai = BZ'I{Z + Z') = Bx/{x + y), Aj is

independent of the concentrations and therefore of t when B/Z is small.

The Li, L^, Ml, M^ are constants to this approximation. We obtain the

same unimolecular form as before, with an accuracy dependent on the

slowness of the variation of/ {t) and g (t). The fundamental condition for

the validity of the unimolecular forms is that B/Z should be small, or

BxjZ'y small, that is that the number of disintegrations in time dt should

be small compared with the total number of activations or deactivations

in the same time.

From equations (1299)

ldv_ 1 d{x + y) _ Bx __ BZ'
V dt x + y dt X -\- y Z + Z'

Thus in this theory k i^ B times the fraction of activated molecules. If

these are molecules with more internal energy than -q^, then by (1292)

B /r)„\i«-i
i^yr {\s) \kTj

e-V^^-^ (1304)

This will therefore fit the observed form of Arrhenius' equation if

Vo= C+ (Is- \)kT. (1305)

For the correctness of the theory there is also the over-riding condition that

Bx or Kv is smaU compared with Zx or the number of activating collisions.

The maximum number of such collisions is given by (1295), and the actual

number should be a small fraction of this.

* Schlesinger, Math. Ann. voL Lxni, p. 277 (1907); Birkhoff, Trans. Amer. Math. Soc. vol. ix,

p. 219 (1908); Fowler and Lock, Proc. Lond. Math. Soc. vol. xx, p. 127 (1922).

30-2
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We will now discuss shortly, in the order of the severity of their demands

on the theory, the five reactions already known to be homogeneous and

(apparently) unimolecular. References have been given in § 18-1.

(1) Decomposition of gaseous diethyl ether. This reaction proceeds at a

convenient rate between 700°-860° K. and is homogeneous and uni-

molecular down to pressures of 200 mm. Hg. Below that pressure of the

reactant the reaction proceeds more slowly and approximates to a bi-

molecular type. The final result of the reaction is roughly

C2H5.O.C2H5 ^ CO + 2CH4 + IC2H4,

though of course this does not represent the primary process which is

probably the formation of CO and two unstable hydrocarbons. Sufficient

admixture of Hg, for example a partial pressure of 300 mm. Hg at 800° K.,

will preserve the unimolecular rate unaltered down to a pressure of 40 mm.
Hg of the reactant. He, Ng and the reaction products have no marked

effects. The velocity constant observed is

log K = 26-47 - 5S,000IRT. (1306)

(2) Decomfosition of gaseous dimethyl ether. This is very similar. The

final result of the reaction is

CH3.O.CH3 -> CH4 + H2 + CO,

proceeding at a convenient rate in the range 700°-825° K. unimolecularly

down to a pressure of 400 mm, Hg. A pressure of 400 mm. Hg of admixed

H2 at 775° K. will preserve the unimolecular rate to a pressure of 30 mm. Hg
of the reactant. Ng, He, CO and CO2 have no such effect. The velocity

constant observed is

log /c = 30-36 - 58,500/7?!^. (1307)

(3) Decomposition of gaseous propionic aldehyde. The main feature of

the reaction is

C2H5CHO -> CO + [various hydrocarbons],

of convenient speed for 725°-875° K., and imimolecular down to a pressure

of about 80 mm. Hg. No effect of admixed gases has been detected. The

velocity constant observed is

log K = 28-56 - 55,000/RT. (1308)

These three reactions can be discussed together.

The molecules concerned are all fairly complicated and have a rather

large number of degrees of freedom which might have their classical

energies. We shall find in all these cases that Lindemann's theory gives a

completely satisfactory explanation of the observations even if we only take

into account the internal energy of the molecule to be activated and put

^2 = 0. By way of making the calculations precise we shall take 0-12 = 10~',

§2 = 0, and determine for what value of 5i the number of collisions given

by (1295) falls to 100 times the value of kv for the least value of v for which
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the reaction remains unimolecular. Since we deal with collisions of like

molecules m^ = m^ and the factor 2 falls out.

We find that this condition is fulfilled

:

For C2H5.O.C2H5, 1/ = 2-4 X 1018, with s^ between 6 and 7.

For CH3.O.CH3, V = 5 X 1018, with s^ between 10 and 11.

For C2H5CHO, V = 1 X 10i«, with s^ about 8.

These values of s^ are all acceptable. The molecules may be thought of

as consisting of at least three loosely bound structural units. The first of

these gives a rigid framework to which the others are fitted. Ignoring

tortional oscillations each of the others has 3 freedoms in this framework

yielding 6 square terms, and the rotations of the whole complex another 3.

Values of ^i up to 15 at least are thus to be expected. There is thus an ample

margin for an activation rate slow compared with the number of sufficiently

energetic collisions and a disintegration rate slow compared with the rate

of activation, even when we do not admit that any of the internal energy

of the other molecule is available.

In the case of the two reactions maintained by a sufficient pressure of

H2 , the activating collisions must be supplied by collisions between H2 and

the reacting molecule. There is no theoretical difficulty in this. The difficulty

is rather to understand why all diluent molecules do not act in the same

way. This point lies much deeper than the simple collision theory. It

appears as though similar molecules, and only in exceptional cases other

molecules, had specific powers of activation. One is tempted to expect that

considerations analogous to the resonance theory of Heisenberg will be

found to be important here*.

We now pass to two entirely different cases.

(4) Decomposition of gaseous acetone. This reaction is homogeneous and

miimolecular and of convenient speed for the temperatures 780°-900° K.

and shows no signs of deviation from the imimolecular law down to pres-

sures of 100 mm. Hg. No diluents tested have been found to have any

effect. The nature of the reaction is

CH3.CO.CH3 ^ CO + [hydrocarbons],

and the velocity constant observed is

log K = 34-95 - 6S,500/RT. (1309)

On carrying out the same calculations as before we find if we take v = lO^^

and «! = 15 that there are only just about twice as many possible activa-

tions as disintegrations. The unimolecular law could not possibly be main-

tained on this margin. Even if we assume s^ = 24 (24 square terms) we
have only a marginal factor of about 30. There might well be 15 relevant

* Heisenberg, Zeif. fur Phys. vol. xxxvnr, p. 411 (1926).



470 Chemical Kinetics in Gaseous Systems [18-4

square terms in the acetone molecule, or even so many as 24, but this is

hardly enough, and there is no evidence that the reaction does not remain

unimolecular to still lower pressures.

We have hitherto confined attention to the internal energy of the

molecule which is to be activated in the collision. But this is arbitrary, for

there is no a 'priori reason why some or indeed all of the energy in certain

coordinates of the other molecule may not in certain circumstances be

available for activation. The consequences of such an assumption of

availability are considered in the next section in the light of the theory of

detailed balancing. Such an assumption makes a large difference, for the

fraction of activated molecules in equilibrium depends only on s^ and is

unaltered, but the number of possible activatmg collisions is largely

increased. If we take s^ = .Sg = 15 there is a marginal factor of 3-6 x 10*

which is probably ample. A comparatively small value of s^ will increase

the previous margin substantially.

(5) Decomposition of nitrogen pentoxide. This, the best known and most

exhaustively investigated homogeneous unimolecular reaction, also shows

no signs of deviation from the unimolecular law but now down to pressures

of 0-05 or even 0-01 mm. Hg. The convenient temperature range is from
273°-340° K. No effect of any diluent has been recorded. The nature of

the reaction is NA - NA + iO„

and the velocity constant observed*

log K = 33-17 - 24:,100/RT. (1310)

For V = 3-55 x 10^*, 0-12 = 10~', and 5i = s.^ = 15 we find a maximum
rate of activation 40 times the observed rate of disintegration. It is quite

feasible to suppose that at these temperatures the energy content of N2O5

is even greater than is represented by 15 square terms, so that there is still

an ample margin. But the conditions for obtaining such a margin are

extreme. It is impossible practically speaking unless all the internal energy

in both molecules is available for the activation energy of one, and such

activations occur in something more than one per cent, of all sufficiently

energetic collisions.

§ 18-5. The requirements of detailed balancing. In view of the extreme

form of the theory required to account for the decomposition of N2O5 it is

desirable to examine the consequences of the assumption we have been

driven to, that all the energy in a large number of freedoms in both mole-

cules is available for the activation of one, and is actually so used in afraction

of all sufficiently energetic collisions which may be as large as 1/100 or even

possibly 1/10. Obviously not all "collisions with enough energy" can be

activations, for the class must include all deactivations as well.

* Hurst and Rideal, Proc. Boy. Soc. A, vol. cix, p. 526 (1925).
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When 1^1 + ^2 + I > '70 ^ collision with the initial conditions r]^, rj^, i

can yield a pair of molecules with energies between -^i^j-^i* + drji* (rji* > rjo)

and 7^2*5 V2* + ^^2*5 th® i'6st of the energy being absorbed in f*. The
effective target for such an exchange, in conformity with the notation of

the last chapter, will be taken to be

Then in the equilibrium state (or other state not seriously disturbed from

this) the number of collisions per unit volume and unit time which convert

7]i, 7)2, i into 171*, 7)2*, ^* is proportional to

(1311)

By the same argument the number of collisions which convert Ty^*, 7]2*, ^*

into 171, rj2, f is

(r?i*)^-'-i (772*)^-'^-i|* e-^^^*+-^-^*+^*'>I^Tdr]^*dr]2''di*

X S (i7i*, 7^2*, I*; 7^1, 772) dr)^dT]2 (1312)

By the principle of detailed balancing these must be equal. Moreover,

since
'>7i + 172 + f = "i?!* + ''?2* + l*> for given rj's, d^ = d^*. Hence

(^1*)*^^'-^ (^2*)*^^^-' ^* s ivx^ ^2*, P; ^1, ^2)

= 7?!*^.-! 772*^.-1^.^(771, 772, I; 77,*, 7^2*) (1313)

If now it is to be possible for the number of activations to be comparable

with the number of collisions with enough energy we must have

S {'r]i,r}2,t, 7^1*, 7^2*) dr}i*dr]2*

of the same order as Tia^^^ (equal to aira^^^ say), when •'71 + 7J2 + ^> '^o ^^^

Vi* > Vo ' For the sake of investigating orders of magnitude we will take

S constant over the ranges of 77^* and 772* in which it has a non-zero value.

Then, very roughly,

Jr,o Jo

or S (771, 772, $) = 2a77C7i27(^i + V2 + i - Vo)' (1314)

There is nothing unacceptable in (1314). Then by (1313)

^{Vx,V2,^ ,Vi, ^2) -
(^^ + ^, + I _ rj,f U,*j [rj^) }*'

(1315)

To find the corresponding total collision area for deactivations we have to

integrate with respect to 77^ and 772, the ranges being respectively to 770

and to 770 or 77^* + 7J2* + i* — Vi whichever is the lesser. It is not neces-

sary however to carry out this integration explicitly. We can see at once
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from (1315) that in certain circumstances the deactivation target must be

very large compared with the activation target aira^^^. Such a molecular

property is not entirely impossible and dismissible on a priori grounds.

Formula (1315) means that a very slow molecule or a molecule with

exceptionally little energy finds it exceptionally easy to bring about

deactivation. In the present state of molecular theory all we can do is to

bear such possibilities constantly in mind*.

§ 18-6. We have confined the foregoing account of homogeneous gaseous

reactions to the simplest collision mechanism. Interesting and important

questions are raised by following up the subsequent history of the products

of reaction which may often contain excessive amounts of energy, especially

when the reaction is thermodynamically exothermic with a large heat of

activation. In these cases we shall expect to find the formation of reaction

chains and explosion waves. It is however hardly yet possible to discuss

such phenomena with precision from the kinetic standpoint, and such

discussion as is possible would take us too far afield. Nor have we in this

chapter discussed photo-sensitive gaseous reactions. Some account of these

is given in the next chapter. It should be mentioned that the homogeneous

unimolecular gaseous reactions of this chapter have frequently been con-

sidered to be due primarily to a radiative process on account of their uni-

molecular character. It is however almost impossible to maintain such a

theory in the face of the abnormal molecular absorption coefficients which

it requiresf, which would have to manifest themselves in the absorption

of external radiation. When the attempt is made to modify such a theory

by claiming that these abnormal coefficients are only typical of the inter-

action of two molecules in resonance with one anotherJ, we are really

abandoning the radiative theory altogether and again groping after a theory

of molecular interaction, probably of the nature of Heisenberg's resonance

theory, which may just as properly be regarded as a collision process. This

is no doubt the direction in which the better deeper theory of the future

wiU be found.

* A valuable critique of the extreme collision theory here presented has recently been pub-

lished by Tolman, Yost and Dickinson, Proc. Nat. Acad. Sci. vol. xiii, p. 188 (1927).

f Christiansen and Kramers, Zeit. fur phys. Chem. vol. civ, p. 451 (1923).

t G. N. Lewis and Smith, Jour. Amer. Chem. Soc. vol. xlvit, p. 1508 (1925), G. N. Lewis,

Proc. Nat. Acad. Sci. vol. xiii, p. 623 (1927).



CHAPTER XIX

MECHANISMS OF INTERACTION. RADIATIVE PROCESSES

§ 19-1. The nature of radiative processes. The analysis of § 17-1 was

arranged to cover both collisions and radiative processes. We recapitulate

the conclusions as to the latter. If X^ and X^ denote two different states of

the same system such that the equilibrium ratio of the concentrations

[JTi] and [Xg] is a function of the temperature only, and if Prad and Qrad

are the frequencies with which an X^^ is converted to an X^ and an X^ to

an X^ by interaction with equilibrium radiation alone, then

Prad ^ [^2]
^ (1316)

If the change from X^ to X^ is one of dissociation, so that an expression

such as [Xg] [ r]/[iLi] is a function of the temperature only, then

Prad ^ [^2] [
y ] (1317)

Qy + ^F.rad [^1]

Here Qy means the frequency of interaction of an X^, and a Y to form an X^

without any radiative action, and Qj p^d ^^^^ of the similar interaction ivith

radiative action.

It is now possible to analyse this result a little further and see that in

general

In general there will be a difference of energy between the free X^^ Y
and the combined X^ . Consequently no interaction between X^ and Y is

possible resulting in X^^ and conserving energy. We have still every reason

to believe as heretofore that energy and momentum are conserved in every

atomic as in every molar process. In general therefore Qy = 0, and we haVe

Prad [X2] [i ] MQ1S\
Vr,rad L^lJ

In this interaction of course the radiation can adjust the energy balance.

We proceed to examine in detail the consequences of (1316) and (1318).

§ 19-2. Interaction of radiation with the stationary states of fixed atoms.

This problem was the first of such problems to be discussed in this way
—by Einstein* in a classical paper. Consider first an atom with only two

stationary states 1 and 2, of negative energies xi and X2 j Xi > X2 ? and weights

C7i and ^2. The atom can proceed from state 1 to state 2 with absorption

* Einstein, Phys. Zeit. vol. xvm, p 121 (1917).
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of radiation and from state 2 to state 1 with emission of radiation. Accord-

ing to Bohr's theory this radiation will be monochromatic, of frequency

V given by hv = Xi~ X2^ Bohr^s frequency condition. The equilibrium ratio

of the numbers of atoms in the two states from the properties of their

partition function is (Boltzmann's law)

^^g_(,/_,^,/,r. (1319)

We have now to make some natural assumption as to the dependence

of the rates of emission and absorption of the atoms in the proper state on

the intensity of the radiation of frequency v. Let / (v) dv be the intensity

of radiation of frequency between v and v + dv, that is the quantity of

energy in radiation of tliis type which crosses unit area normal to its path

per unit solid angle per second. It is connected with the density of this

radiation p {v) dv by the equation

I{v) = ^p{v). (1320)

We wiU then assume that the chance of absorption of one quantum by an

atom in state 1 in time dt is

B-,H{v)dvdt, (1321)

and that the chance of emission of one quantum by an atom in state 2

in time dt is

{A^'- + B^H {v)dv)dt, (1322)

the ^'s and 5's being atomic constants. They are commonly referred to as

Einstein's J.'s and 5's or Einstein's coefficients. The form of (1321) is the

obvious one to choose, that of (1322) is more obscure and the second term

might a priori be overlooked. It is necessary as we shall see for the mechan-

ism to preserve Planck's law for p {v), and it can be seen to be necessary

a priori by a deeper consideration of classical radiation theory*.

In equilibrium the absorption and emission of quanta and the numbers

of switches from 1-^2 and 2-^1 must be equal. Using therefore (1319),

Bohr's frequency condition, (1321) and (1322) this necessary and sufficient

equality is equivalent to

w^B^H [v) dv = w^e-^'I^T (^^1 + B^I {v) dv) (1323)

Solving for / {v) we find

On comparing this with Planck's law,

2hv^dv 1

^H^'^^^.W^^rTTi' (1325)

* Van Vleck, Phys. Rev. vol. xxiv, pp. 330, 347 (1924).
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we see that the form is correct and equilibrium will be preserved if

.,iJ,»=^,B,-=^,J,^27^:^^ (1326)

These relations are extremely important.

Some comment is called for on other arrangements of the foregoing

argument. It has been arranged here purely to derive the relations (1326)

and to verify that our assumptions form a possible mechanism. We may
note too that there is here no difference between preservation of equilibrium

and detailed balancing.

In the first place the forms (1321) and (1322), though the only forms

consistent with classical radiation theory, are not the only forms which

satisfy (1325). If we replace them by /« (/ (v) dv) and /^ (/ (v) dv) respec-

tively the functions /« and /^ have only to satisfy the necessary and

sufficient relation

fe (x) -
J fa {x). (1327)

In the next place we have actually assumed more results of the equi-

librium theory and atomic theory than are strictly necessary for the proof.

Einstein, in his original presentation, assumed the forms (1321) and (1322),

Wien's displacement law (a theorem of pure thermodynamics) and Boltz-

mann's law, and deduced from these premises Bohr's frequency condition

and Planck's law. Eddington* has recast the discussion and taken as his

premises Wien's law and Bohr's frequency condition, and deduced Boltz-

mann's law and Planck's law. These theorems however are of interest from

points of view different from that adopted in this monograph.

The discussion extends at once to atoms with any number of stationary

states. For each pair of stationary states which are connected by a radiative

transition there is a set of relations identical with (1326). Moreover this

is true whether we work on the hypothesis of preservation or of detailed

balancing. The difficulty of § 17-4 does not arise here, for in general we

may assume that every possible transition affects radiation of a different

frequency.

§ 19-21. Numerical values. The connection between B^^ and the mass

absorption coefficient is obtained as follows. Of the energy of radiation

/ (v) dvdco cos ddSdt

incident in time dt at an angle 6 within a pencil da> on a slab of area dS

and thickness dx, the fraction

k^p dx sec 6

will be absorbed, p being the mass density of the atomic distribution. This

* Eddington, Phil. Mag. vol. L, p. 803 (1925).
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expression defines the mass absorption coefficient k^. In terms of B^^ the

energy absorbed is

a-,dxdS X B.H (v) dvdt —- x hv,i i. ^ ' 4-77

where % is the number of atoms in the state 1 per unit volume. Equating

the two amounts we find

K = ^^y'\ (1328)
477/3

We can write p = ma, where m is the atomic mass and a the total con-

centration. Then

k, = ?p^. (1329)

Unless aja is small the mass absorption coefficients are extremely large.

The direct experimental evidence for the Hg line A 2536 {I ''-S — 2 ^P), the

Ca+ lines H, K AA 3968, 3933 {\^S - 2^P) of the chromosphere and the

Na lines D,{l'^S — 2 ^P), all lines for which in the conditions of observation

aja = 1, is that k^ is of the order 10^. Einstein's absorption coefficient is

then of the order 0-1 to 0-5.

In order to evaluate Ac^ numerically we have to know the value of dv.

The meaning of this is of course that B^^ is a sort of mean absorption

coefficient integrated through the line, no line of any set of atoms (even if

all at rest) being of mathematically zero breadth. The total absorption is

therefore the mean absorption coefficient B^^ multiplied by the mean

breadth dv, and it is B^dv or more strictly / a^d^ which is correlated
J Vq— CC

with the emission coefficient A^. If we estimate on observational evidence

the ordinary line breadth at 10-^° cm., then for A = 3000 Si/ = 3 x 10^,

B^dv = 1*5 X 10^. The numerical order of A2^ is then 2 x 10'^. There is

direct experimental confirmation of such a value, for we observe that 1/^2^

is the mean life of the atom in the excited state 2 before it spontaneously

radiates and returns to the state 1. This mean life t is therefore approxi-

mately
T = 5 X 10-8 sees.

Mean lives of this order or rather shorter are determined by experiments

such as Wien's on the light emitted by streams of positive rays and by the

theory of the chromosphere. This is also the mean time of radiation sug-

gested by classical radiation theory.

The stimulated emissions are often of negligible importance numerically.

The ratio of stimulated to spontaneous emissions is

B^^I (v) dv _ c^/ jv) _ 1

Z7 2hv^ ~ e^"!^'^ - 1
*
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For the region of the spectrum near Amax hvjkT is about 5, so this fraction

is negUgible and a fortiori for all higher frequencies. For very low frequencies

the fraction approximates to kTjhv and the stimulated emissions become
important.

The latest theoretical advances have enabled direct calculations of the

^'s and B's to be made for the hydrogen atom and to some extent for

helium and the atoms of the alkalis*, and have suggested the general order

of the coefficients for other elements, the exact evaluation of which is only

a matter of time. The results are in full account with the foregoing

experimental evidence and crude calculations.

§ 19-3. The photo-electric liberation of electronsfromfixed atoms-f . Besides

the line emission and absorption spectrum of an atom, associated with

transitions between stationary states, there is also a continuous emission

and absorption spectrum associated with capture and loss of electrons.

We will again consider the atoms as fixed, and at first for simplicity as

possessing a single stationary state of negative energy x ^-nd weight Wq.

The process to be analysed consists of absorption of radiation of frequency

V such that hv> x with the ejection of an electron of velocity v or energy rj

such that

7] = Imv^ = hv - X, (1330)

which is Einstein's law of the photo-electric efiPect. The relic of the atom is

an ion in its normal (at present sole) stationary state of weight Wi. If y
is the concentration of free electrons and Xq, x^^ the concentrations of (single

state) atoms and ions, the equilibrium state is characterized after (333)

and (1013) by
x^y {27TmkT)^ 2^^

Xn h^ Wn
-^1^^. (1331)

The mechanism is controlled by (1318) and the reverse process is the en-

counter of an ion and a free electron resulting in capture with emission of

radiation.

Let ifj {v) I (v) dvdt be the chance that a neutral atom will in time dt,

under the influence of isotropic v-radiation of intensity / {v) dv, become

ionized by absorption of a quantum hv. The total number of t^-quanta

absorbed in time dt will therefore be (per unit volume)

XqxJj {v) I {v) dvdt. (1332)

* See, among other authors, Schrodinger, Ann. der Phys. vol. lxxx, p. 437 (1926), Heisenberg,

Zeit. fiir Phys. vol. xxxix, p. 499 (1926), Sugiura, Jour, de Phys. vol. viu, p. 113 (1927), and Phil.

Mag. vol. iv, p. 495 (1927).

f Milne, Phil. Mag. vol. XLvn, p. 209 (1924). This is the most complete original account.

See also, Kramers, Phil. Mag. vol. XLVi, p. 836 (1923), and R. Becker, Zeit. filr Phys. vol. xvrn,

p. 325 (1923).
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By (1200) the number of collisions in time dt between 17-electrons and ions

in which the line of impact lies between p and 'p + dpi^

x^ . 2'7Tpdp .

(j^y ^ {7]) drjdt.

Let the probability that such an encounter results in capture with emission

of v-radiation be

/ iP, V) + I W 9 {P, V)-

We shaU find that stimulated captures are necessary here as for line

emission and absorption in order to conserve Planck's law. Then the total

number of captures with emission of v-radiation in time dt is

Xi . 27Tpdp .{f{p,ri) + I {v) g {p, 7])} (^j fi {t]) diqdt.

In order to conserve energy 17 and v are connected by (1330) so that we have

^1^0
dr^ ^ hdv.

Inserting the equilibrium value of /x (-7) from (1180) and writing

Too Too

F [t]) = 277 pf{p, rj) dp, G (rj) = 277 pg {p, rj) dp,
Jo '

we find the total number of captures of 77-electrons in time dt with emission

of i^-radiation to be

{F (t?) + I{v)G i-n)} (-)Ne-V^^ drjdt (1333)

Either for preservation or detailed balancing (1332) and (1333) must be

equated. On using (1331), (1330) and its resulting differential relation this

.i^W = ^.«(.)-,^^^W. (1334)

or 'AW = ^?^^')-f W (V = h.^x) (1335)

Of course ip {v) ^ {v < xl^i).

The ratio of stimulated to spontaneous captures is again l/(e'"'/'^^ - 1),

and is still less important than for line emission, since in this process we

are never concerned with frequencies less than xl^^-

§ 19-31. Extensions to complicated atoms. If we consider more compli-

cated atoms with more than one stationary state, then we can always write

the equilibrium relation between single states of the neutral atom and ion

in the form*
^ ^ _ t^vS^/ n

{^x)t y _ {27TmkT)^ 2 {w^)t ^_^^t/kT n^SQ)
iXo)s h^ {^o)s

* First pointed out explicitly by Milne, Phil. Mag. vol. L, p. 547 (1925).
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where ^s* is the ionization energy required to remove an electron from the

neutral atom in its 5th state and leave the ion in its ^th state. This can

be effected by radiation of frequency v ejecting an Tj-electron, provided

now that
hv= 7] + Xs^-

We introduce exactly the same coefficients F (17), G (17), and ifj (v) as before

for each such photo-electric process. On the principle of detailed balancing

it follows at once that the relations (1334) hold for each set of these

coefficients. On the preservation hypothesis matters are rather com-

plicated and it is hardly of sufficient interest to discuss them in detail. The

balancing of v-quanta and 77-electrons involves in general more than one

set of coefficients. Only the atomic balance involves a single set (and then

only when the ion is assumed to have only a single state), and the condition

of atomic balance for all T does not imply so much as (1334). We may
be content to expect that, as in § 17-4, preservation could be shown to

demand less restrictive conditions than detailed balancing.

It is obvious that the foregoing argument applies to any two consecutive

stages of ionization.

§ 19-32. Free-free transitions. In addition to radiative captures there

is ample reason to believe that transitions from one free orbit to another

are possible with emission or absorption of radiation. The greater part of

"white" X-radiation is undoubtedly of this nature. The new quantum

theory should enable us to calculate the probability of these transitions at

least for atoms with one electron. In the meantime the laws for such pro-

cesses can easily be formulated, but do not give much significant informa-

tion, since the process and its reverse are essentially the same, with change

of sign of V.

By (1200) and (1180) the number of encounters per atom per unit time

with (rj, 2?)-electrons is

The chance of a switch to an (tj', ^^O'^^^ctron with absorption of v-radiation,

hv = 7]' — 7], is naturally taken to be

/ (v) a- {7], p; 7]', p') cItj' . Iirp'dp'

.

If ^a iv, V') = 47r2 pp'a {7], p; 7)', p') dpdp'

,

. Jo

then the number of switches of T^-electrons to 17'-electrons per atom per unit

time with absorption of i/-radiation is

/2\i 2771^,W ^;;^f^-'^'^^(^)^'^«(^'V)^^^V (1337)
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In exactly the same way we must then take the number of switches of

T^'-electrons to i^-electrons per atom per unit time with emission of i^-radi-

ation to be

(|)*^;^e-''7^2-|i + aI{v)}r^'SAv',ri)dr)d-n' (1338)

On the principle of detailed balancing we must equate (1337) and (1338)

obtaining
e^^l^^ TjSa {-n,

7]') = iS, i-n',
rj){l + al (v)} (1339)

If / {v) is to satisfy Planck's law, then we must have

a = c^/2hv^, (1340)

vSa=^sV'Se- (1341)

The analogous process to this in Chapter xvii would be merely a simple

3-body encounter with energy exchanges between the 3 bodies, from which

we should have derived little of importance.

§ 19-33. Numerical values of continuous absorption coefficients. Little is

known experimentally or from direct astrophysical evidence as to the

numerical values of the mass absorption coefficient which is derived from

ijj (v) by the equation analogous to (1329),

faS^<..M^_
(1342)

47rm a

We do know that the continuous absorption grades off continuously into

the massed line absorption at the series limit and that there is no infinity

at the limit itself. Hence Lt rjF (r)) must be finite and non-zero. This means

that the chance of capture of a very slow electron must ultimately vary

like Ijrj or Ijv^. It does not imply however that ip (v) oc v-^ and k^ oc v~^,

and in fact these relations do not seem to be true. The X-ray evidence is

that k^ oc v~^'^ — v~^. We have however direct calculations of (v) and so

k^ for atoms with one electron, which probably apply to the absorption of

X-rays and roughly to the optical absorption by any simple atom or ion*.

It is now merely a matter of time before these coefficients are calculated

theoretically. Complications but not difficulties of principle are the only

remaining obstacles.

§ 19-4. General processes involving emission and absorption of radiation.

We have considered hitherto only simple radiative processes in which a

single quantum is absorbed or emitted. In order to generalize these con-

siderations on the basis of detailed balancing to apply to processes involving

two or more quanta such as the Compton effect (scattering of radiation

* Oppenheimer, Zeit. fur Phys. vol. XLi, p. 268 (1927); Sugiura, loc. cit.
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by free electrons) a convenient way is to generalize the method of

§ 17-72 to include radiation*, at first a single quantum only. To define the

encounters we must now specify in addition the solid angle dO. in which

the radiation is to proceed, and also when continuous ranges of frequencies

are concerned the frequency range dv. These specifications are first required

in the normal frame of reference {dQ,Q, dv^), the momentum of the radiation

being taken into account if it is significant. As before the probability

coefficients </> and 0' are to be independent of V and therefore also of / (v),

though they may of course depend on the direction of the radiation. We
find as before that the only simple assumption is that, in the normal frame,

the frequency of the absorption process is proportional to /q (vp) and the

frequency of the emission process to {1 + uIq {vq)}. The equation of detailed

balancing, see (1274), now reduces in the normal frame to

Iq K) [/1/2 •••/Jo <^ = {1 + «^ K)} [/I'A' •••/n'lo </>'•

Since / (v)/v^ is invariant under a Lorentz transformation^ this reduces, in

the original frame in which the assembly as a whole is at rest, to

* Dirac, loc. cit. (2). First discussed from the present point of view by Pauli, Zeit. fur Phys.

vol. XVIII, p. 272 (1923).

t See, for example, Einstein, Phys. Zeit. vol. xvin, p. 121 (1917).

The proof is simple and may be repeated here for reference. In the original frame K, in which

the assembly as a whole is at rest, the radiation is isotropic in all frequencies and of intensity in

a given range and direction

I (v) dvdco.

Consider a system at rest in a frame K' moving with velocity v in the frame K along the a;-axis.

A given bundle of radiation of intensity / (v) dvdoj in K will belong to an interval dv' and solid

angle doj' and be of intensity

I' (v', 9') dv'doi'

in K', where 6' is the angle between the x'-axis and d<o'. Obviously in K', I' is not isotropic but

depends on 6', not on (j>'.

Between these two expressions for the intensity or energy density of a given beam there must

obviously be the same relation as between the squares of the corresponding frequencies, so that

r (v',e')dv'dco''<
I (v) dvdio

The transformation equations (1355) give us at once Doppler's law and the aberration in the form

, v{\- (vie) cos 6} n, cos B - vie
" -^ — —'-^ ,cos Q — —

It follows that

(l-i;2/c2)* ' l-(v/c)cos0"

dv _ v' doi _ d cos Q'

dv v' doj d cos d

Therefore ( to all orders) ^
i",'?^ = f- Y-/ (v) \ vj

The full expression for /' (v', 6') in terms of / and 9' correct to v/c is

r (v', 9') = ll (v') + %' cos 9'
g^,j-

(" 1 - 3
I
cos 9'\ . (1343)'

An alternative method is to apply the general theorem used by Dirac (see footnote to § 17-72,

p. 455).

F 31
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It is of course only this form for the ratios of the emission and absorption

coefficients which it is necessary and sufficient to postulate. Writing

Planck's law in the form

2/i 1/3

c2 / {v)
+ 1 = eWtr^

we see that, if « = ^—3, (1344)

the equation (1343) of detailed balancing reduces to

^/i/2 -U = e'""'/!/.' -/n-'f (1345)

In this form only can the relation be satisfied with coefficients ^ and </>'

independent of T and V. It will be observed that vq, the frequency of the

necessary radiation, is measured in the normal frame and so is a constant

of the process independent of V. The rest of the argument proceeds exactly

as in § 17-72 except that the energy relation is

The final result of the introduction of the equations of equilibrium is now

£^2/.V w m
„_

We have considered above a process and its reverse in which a single

quantum is absorbed and emitted respectively. It is easy to generalize the

argument to cover processes in which any number of quanta are absorbed

and emitted with the corresponding emissions and absorptions in the reverse

that for any set of systems (here quanta) the law of density-in-momentum is invariant for a Lorentz

transformation. If the density-in-momentum of v-quanta per unit volume in K is

fj,
(v, d,

(f))
vdvdo),

then IX [v, 9, ^) is invariant. But since we are reckoning in quanta jn (v, 0, (f>)
v^dvdio and

(/ {v)jv) dvdoj are proportional. Therefore / {v)/v'^ is invariant.

We therefore give a proof of this general invariance theorem, which is of course only a

rearrangement of the proof above. Let the four space-time momenta of the particle of rest mass

»io be m^, wig, m^ and m^ connected by the relation

m^^ - (nij^ + m,^ -I- m^) = m^c^.

The density-in-momentum per unit volume of a set of particles is fi{mi,m2,ms) dnij^dm^dms.

This is the number per unit volume of a specified group of particles and therefore transforms

according to the same law as the reciprocal of a volume moving with the velocity of the particles,

that is, the same law as m^. Hence

nil

is invariant. But by the equations of transformation

Therefore dmidm^dmjmi is invariant, so that ju. (»«i, m^, m^) is invariant, which is the theorem.



19-4] General Processes of Emission and Ahsor2)tion 483

process. In the normal frame the equation of detailed balancing must
obviously take the form

n. {/o (i^o'*')} n, {1 + a, /o K<^))} uj, ... /Jo ^

= n,{l + as/o W^')}n,{/o W)}[/i72' -fn'\4^', (1347)

which reduces in the original frame to

= nJ ^y^ + 1}n,(^)/x72'.../n/f (1348)

Provided that all the "coefficients of stimulation" a satisfy

""' ^
27i(vo<«»)3'

"'' ^
2F(iV^3'

(1349)

equation (1348) reduces, on using Planck's law, to

/1/2 fn<i>

n, ^ ^ e^ii.^^-y'^Tfj^' ...j^y ^' (1350)

OJ, (i,
(s)\3

c

The energy equation is

and the final relation between the ^'s,

It is easily seen that in no other way can we eliminate T and V from the

equation of detailed balancing and so obtain a statistically acceptable

relation between the (56's. It is not necessary to take the exact form chosen

for the various emission and absorption coefficients as functions of Iq (vq).

Only the ratio of each pair is relevant and determinate. If however the

form chosen is accepted, thenwe must accept also the following general law

:

Any atomic process which results in the emission of one or more quanta

of radiation is stimulated by external incident radiation of the same fre-

quency as that of any of the emitted quanta, the ratio of the stimulated

to the spontaneous emission being proportional to the intensity of the

incident radiation divided by the cube of its frequency and independent of

the nature of the process concerned, the direction of the stimulated radi-

ation being the same as that of the incident radiation.

31-2
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§ 19-41. The Debye-Compton effect*. Compton's process of the scatter-

ing of radiation by free electrons is an example of a process to which the

foregoing general theory will apply. In this case there is one material

system, n' = n = 1, one quantum of frequency v is absorbed and one

quantum of frequency v' is emitted, the difference between v and v' being

of course controlled by the laws of conservation of energy and momentum.
The weights m^ and w-^^ are equal. Consequently the scattering process will

preserve the equilibrium state (Maxwell's law for the electrons and Planck's

law for the radiation) if

.(1352)
^'

I
^0

Here Vq and vq are the frequencies in the normal frame of the incident and

scattered radiation respectively. By (1347) the chance of one electron

scattering VQ-radiation into i^o'-radiation must be

|/o K) + 2^^ h M h K')| <!>, (1353)

which is the result first given by Pauli. Reduced to the ordinary frame,

the chance of the elementary scattering process must be

I{v) C^I{v)I{v'))
"73^ + 27.-^^^^° • ^^^^^^

Further details of the interaction are not necessary for formulating its

laws, but it is perhaps desirable to summarize the details here for reference.

In the original frame we have initially a quantum with energy E = liv, and

(vector) momentum r = Tivjc and an electron with (vector) momentum

G = moV(l-^T* (/3=lv|/c),

rr ,{, GMi moc2
and energy U = mnC^ - 1 H ^rur = r-

The quantum and the electron "collide" and go off with a new frequency

v' and new velocity v' in new directions ; energy and momentum are con-

served, so that
G + r = G' + r', E + V = E' + U'

.

We are not concerned here with the distribution of scattering with angle.

If the electron is initially at rest in the ordinary frame we derive at once

Compton's formula for the change of frequency of the scattered radiation

with angle d from the direction of the primary beam,

vv' (1 - cos^) =^ (^- ^'),

or . A'- A= -^ (1 - cos^').

* A. H. Compton, Fhxjs. Bev. vol. xxi, p. 483 (1923); Debye, Phys. Zeit. vol. xxiv, p. 161

(1923).
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In order to understand the nature of the interaction we reduce to the

normal frame. The transformation equations are of course typified by

(1355)

with similar equations for G and U. In the normal frame there is no

resultant momentum, so that

Go + To = Go' + To' = 0.

To reduce to the normal frame we choose the a;-axis in the direction of

G + r and take
V = c'- lG + rl/(^+ U).

When the total momentum is zero

hv, = 7n,c%/{l - ^o')K

and from the energy relation {Eq + Uq = Wq)

^" (TfoMoC')'+ 1*

It follows that jSo, and therefore Vq, and therefore vq are fixed by Wq, so that

in the normal frame

The nature of the interaction in the normal frame is thus simply that the

quantum and the electron make a head-on collision and rebound with

directly reversed momenta. The chance of the scattering process in the

normal frame must be

§ 19-42. Further inferences from Dirac's discussion. The discussion of

§ 19-4 proceeds throughout on the basis of detailed balancing, and the

requirement that the atomic laws in the normal frame shall be independent

of T and V . Certain of the conclusions implicitly drawn there deserve

further emphasis.

( 1

)

Every quantum of radiation concerned in every process must possess

both energy and momentum. For every one must transform according to

the usual Lorentz transformation in order that the atomic laws may be

independent of V. Thus all emitted quanta are directed.

(2) All processes, radiative or not, contemplated in § 19-4 preserve

Maxwell's law for the density-in-momentum of material systems and

Planck's law for the radiation. Thus in particular if we generalize the dis-

cussions of § 19-2 and § 19-3 and allow the atoms to move (thereby

exchanging momentum as well as energy with the quanta), the atoms will

take up (as they must) Maxwell's distribution law.
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We have arrived at these important results on the basis of detailed

balancing and the use of very general arguments. On account of their

importance it is worth while to pause here and consider the more specialized

but more direct arguments by which Einstein in his original investigation

was led to the conclusion that in the process of line absorption and emission

every quantum must be directed (have momentum), and that then Max-

well's velocity distribution law for the atoms would be preserved. Einstein

considered only the mean square atomic velocity. We shall give the dis-

cussion as completed by Milne*. From the present point of view this

discussion may be regarded as a study of the process of line absorption

and emission by atoms free to move on the assumption of the preserva-

tion hypothesis. It is satisfactory to confirm all the conclusions on this

narrower hypothesis in the simple case of an atom with one pair of

stationary states.

§ 19-5. Extensions of Einstein's argument to free atoms and the conditions

for the preservation of MaxwelVs law by line absorjitions and emissions. In

a frame in which an atom is at rest the radiation is as we have seen not

isotropic. The atom meets more radiation from ahead than behind, so that

absorption tends to slow it up while the emission (in this frame) is isotropic

and without mean effect. There is therefore on the average a deceleration

to the first order proportional to v, so that

dv .

The actual value of A will be investigated later. We might at first suppose

that each atom, apart from atomic collisions, would ultimately come to

rest, but this is not so. Superposed on the steady deceleration there will

be in any given time interval r a net gam of velocity u, arising from fluctu-

ations in the directions of absorption and emission. The mean value of u

by definition is zero, and obviously to the first order in v independent of

the slight anisotropy of the radiative field—that is independent of v. It

is then clear that a necessary condition for the equilibrium state is that

(ve-^^ + u)^ = v^, (1356)

which means that v^ is unaltered after time r by the two radiative effects.

The equation (1356) reduces to

^2^:^(1 _ e-2Ar)^ (1357)

or for small r v'^ =- u'^J2Xt. (1358)

The direct calculation of ^7^ is also simple, but is temporarily postponed.

In the foregoing, velocities may be interpreted everywhere as velocity

components in any given direction.

* Milne, Proc. Camb. Phil. Soc. vol. xxiii, p. 465 (1926). Compare the discussion of displace-

ments in § 13-8.
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When u^ and A have been calculated directly from the properties of the

assumed mechanism v'^ is determined by (1358), and Einstein showed that

it had its proper equilibrium value. This verification is not however, as

Einstein pointed out, a complete solution to the problem. But further

detailed investigation of this particular mechanism is rendered unnecessary

by the following general theorem*.

Theorem 19-5. // the centre of mass of the atoms moving with velocity

{or velocity component) v moves according to the equation

^=-A^, (1359)

a?id if in addition in any small interval t each atom acquires a velocity {or

velocity component) increment u, independent of v, such that u = 0, then in

the steady state the velocity {or velocity component) distribution function

f {v) dv is given by
'' ^

' ^ ^
f {v) = ce-i'^'y, (1360)

where v^ is given by (1358) and c is a constant.

This theorem is of somewhat wide importance since it applies under

the conditions stated, wliich need not correspond to statistical equilibrium.

In the present application it justifies confining a discussion of the particular

mechanism to the values of A and u'^. We take its proof next, confining the

discussion to one dimension, or one velocity component.

Of the atoms moving with velocity v at a given instant let the fraction

cf) {v, w) dw acquire increments of velocity between iv and w + dw during

the succeeding interval t. Consider the atoms at the end of this interval

which are moving with velocities between v' and v' + dv'. Those of them

which were originally t^-atoms have had an mcrement w, where

w = v' — V, dw = dv'
;

they therefore form the fraction ^ {v, v' — v) dv' of the v-atoms, which were

originally a fraction / {v) dv of the whole. Hence \i F {v') dv' is the new
distribution function,

F {v')dv' = dv' \^^f{v)cl,{v,v'- v)dv (1361)
J — CO

The condition for the preservation of equilibrium (or more generally a

steady state) is i^ =/ or

fW) = \''^f{v) cf, {V, v' - V) dv (1362)

The increment lo is given by

w = {ve~^'' — v) + u,

or for T small w ^ — Xtv + u.

* Milne, loc. cit., whose account we follow. See also Fokker, Ann. der Phys. vol. XLn;, p. 810

(1914); Planck, Berl. Sitz. p. 324 (1917).
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The function <^ {v, — \tv + u) du is by definition the fraction of v-atoms

which acquire by fluctuations increments between u and u + dum. time r.

By hypothesis this fraction is independent of v, and we therefore write

(f)
{v, - Xtv + u) = ip (u). (1363)

The function j/r (u) satisfies

r + oo r + oo _
i/j (u) ^ ifj (— u), ifj (u) du = 1, uifj (u) = u = 0,

J - 00 J — CO

and we shall write

/2
r + co __

u'^i/j {u) du = u^
J — CO

In order to make use of (1363), and this is the point of Milne's proof,

we make the substitution

V = (v' - x)/{l - Ar).

Then equation (1362) becomes

and after using (1363) this becomes

We can now for small t expand / in powers of x and integrate term by

term. We find

-/'«')-A'[/(d:x.)-_/(";'-(rS)^/"(r^T>-

It is necessary to assume that w*, u^, ... are of a higher order in t than

u^. Letting now r -> we find that

U" (v') + Uiv') + v'f {V')] Lt ^ = (1365)
T-^OU^

Let us now put Lt ^ = /x.

T-^OU^

Then the complete solution of the differential equation (1365) is

f {v') = e->^^'^

rv'

A e'^«' dq + B
.Jo

Since I / {v') dv' = 1
J — 00

and the ^-contribution does not converge, we must have

A = 0, B= (/x/tt)^.

Then V = (^]^ [^°°
v^e-'^^'dv = ^,
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and finally

§ 19-51, Corollaries and extensions of Theorem 19-5. A more exact

treatment of the theorem, not confined to small r, is of considerable interest,

at least mathematical. The ip defined in (1363) though independent of v,

depends on t, as of course does u'^. When t is no longer restricted to be

small we must everywhere replace 1 — At by the exact e~'^''. Equation

(1364) then takes the exact form

f{v') = e^- f^°°/[(v'- x)e^']i/j{x,T)dx (1367)
J — 00

This equation must hold for all v' and r and the right-hand side must be

independent of r. We can show that these conditions serve to determine not

only/ (v') but also ifj {x, r), that is both the steady distribution law and the

law of diffusion of random velocity among a subgroup of atoms, moving

initially all with the same velocity.

By the study of small t we have already shown that

/<«)-(.^y

Inserting this in (1367) and changing the variable of integration we find

r + co

g-^«'2 = g-^«2
^|, (^' _ ^e-^'', t) dv.

J — 00

If we differentiate this with respect to t and simplify by integration by
parts we find

in which the variable x has the value v' — ve-^'' after differentiation. This

equation thus reduces for fixed r to the form

[ ^
g {v" - v) e-f^^- dv = (all v")

J — (X)

which requires that gr = 0.* We thus have

1\q-2Kt
^ ^XX=^r, (1368)

which (on the proper time scale) is equivalent to the standard equation of

diffusion. It is reducible to the ordinary form by the change of variable

t= 1 - e-2^^

* For a proof see footnote on p. 496.
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Its solution for a "point source", that is for an initial concentration of all

the particles at the origin of x, is, when the constant is adjusted so that

'+00

ijj {x, t) dx = \,
«

jXYZ t, giXT^Y
i/j{x,r)^(^y ,e

'"-'-'
(1369)

This function exhibits the growth of the distribution law for the random
velocities. Its initial value is zero except for x = 0, and as t -> oo,

i/j{x,r)^{^^je->^-\

Thus the subgroup of atoms moving initially -with a given velocity ultmiately

acquires a Maxwellian distribution, which is naturally independent of its

initial velocity.

§ 19-52. Einstein's calculation of A and u^. We proceed next to the

calculation of A. By (1321) the number of absorptions of isotropic radiation

per atom in state 1 per unit time is

B^^I (v) dv.

This can be generalized for radiation in a given solid angle, thus applying

to anisotropic cases. The number of absorptions is then

B^H' {v', 6') dvda>'/47r,

measured in the frame K' moving with the atom. The coefficient B^^ cannot

depend on orientation unless there is a field orientating the atoms. The
number of absorptions per atom in unit time averaged over all the atoms

is therefore*

Every such absorption conveys to the atoms X'-momentum to the amount

— cos 6 .

c

The stimulated emissions must also be anisotropic for they must take

place always in the direction of the incident radiation. We have as yet not

considered this point, but it is required by the classical analogy discussed

by Van Vleckf. More forcibly, unless the stimulated emissions are in the

same direction as the incident radiation, they will not concern light of the

same frequency in all frames of reference, and the whole argument of

* We recall that Xi and X2 are negative energies and f {T) = Wy e^'''''^ + Wg e^'^^'^.

t Van Vleck, loc. cit. in § 19-2.
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§ 19-4 applied to this process must break down. Due to the radiation

incident in dco' there are

-^^ B^H' {v', 6') dv'dco'/4rr

such emissions per atom per unit time, each contributing to the atom the

recoil momentum
hv' „,

cos 6 .

c

In the frame K' the natural emissions must be isotropic and contribute

nothing to A.

If now we collect these results and recall that rn^Bj^ = w^B^ we find that

the total average momentum contributed by the radiation to each atom
per unit time is

hv'

^TTCfiT)
m^B^^ {e^il^T _ ex#r| ^i^'

f j' (^'^ ^') ^os 6' dco'.

Using (1343)' and carrying out the integration we find that this rate of

transfer of momentum is

The coefficient of — v is by definition inX, and the formula now contains

only the isotropic / {v'). Using Planck's law and the relation hv' = Xi ~ X2

we reduce this to

h^v'^ w^eM^ Bll^r^^'~^
~JW) 3mytT •

^^'^'^>

We may observe that in this calculation we have for simplicity used a

frame K' and neglected the change of mass of the atom on absorbing hv.

This is sufficiently accurate here, but the exact method is of course that of

§ 19-4.

We have finally to calculate u^, the fluctuational increment of velocity"

in time t, to an approximation which ignores the slight anisotropy and

treats the atom as at rest. A single absorption or emission exerts at an

angle d^ an impulse {hv jc) cos 6^ on the atom in the X-direction. Thus

for any atom
7nu = (hv jc) 2^ cos d^,

and averaged over all atoms u = 0, and

.-^ h
m-u^ = -^ (S. cos^ d, + 22, cos e, cos ^,).

The average value of the product term is obviously zero. The average value

of the square terms is \n, where n is the total number of emissions and
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absorptions in time r, that is double the number of the absorptions. Thus

by (1370)

^ = T ' y. B^H {v)dv ,

and finally m^ = -^ -i-^^,:^

^^^^^
t. (1372)

Comparing (1371) and (1372) we find

2At~ m '

so that by (1358) \mi^ ^ ^kT,

as required for preservation of the equilibrium state.

If we did not assume Planck's law for / {v) in reducing (1371) and (1372)

we should eventually find

^^ (l-e-n(3-^,-)

§ 19-6. T'/ie emission and absorption of solids. A solid body, or for that

matter a liquid or a sufficiently dense gas, can generally be regarded as

emitting light of all wave lengths (e.g. incandescent filaments, electric arcs,

the sun). In an assembly in equilibrium this is a surface effect, and there-

fore must preserve equilibrium independently of all volume effects.

In unit time the energy of r-radiation within a solid angle day at an

angle 6 with the normal to a unit surface which strikes the unit surface is

I (v) COS ddvdoi.

In order to preserve equilibrium (isotropic radiation) the same amount of

v-radiation must be sent back in the reverse direction. This must hold for

all V and all T. The surfaces of condensed bodies are usually described by
an absorption coefficient k {v, 6), which is the fraction of t'-radiation incident

at an angle 6 that they absorb. The rest of the radiation, the fraction

1 — k {v, 6), is reflected in some manner, but with a definite phase relation

to the incident light. The existence of a phase relation is the defining

property of reflection, and forces us to distinguish between the reflected

radiation and the radiation re-emitted after absorption for which there is

no such phase relation. It is this point which leads (at least on classical

theories) to a discussion somewhat more complicated than that required

for the impact of particles on walls. If there is absorption there must of

course be emission as well, and the emission coefficient e {v, 6) is so defined

that the v-radiation emitted in unit time by unit area into a solid angle doj

at an angle 6 with the normal to the surface is

€ {v, 6) cos ddvdco.
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The radiation reflected from all incident beams into the same solid angle

may be defined to be
r {v, 6) cos Odvdco.

The hypothesis of the preservation of equilibrium requires that

I{v) = e{v,e) + r{v,e). (1374)

According to the hypothesis of detailed balancing we should be entitled to

assert separately the equality of the absorbed and re-emitted fractions and
of the unabsorbed and total reflected fractions, i.e. that

T{v,d)^{l-h{v,e)}I{v), (1375)

e{v,d) = h{v,d)I {v). (1376)

This is a familiar result of the classical radiation theory. It will be true on

the hypothesis of preservation alone if for example the reflection is perfectly

specular or perfectly diffuse, or obeying any mixture of these two laws, or

if the surface is such that Helmholtz's reciprocal theorem on definite beams
of light holds*. It does not seem that Helmholtz's theorem can extend to

the most general condition of reflective scattering contemplated here, but

it is undoubtedly true for most reflections actually found in practice.

A body for which k {v, ^) = 1 is usuaUy caUed a black body, or, since

e {v, 6)=^ I (v),

a full radiator, A body for which k {v, 6) is a constant (less than unity) is

called a grey body. It emits radiation distributed according to Planck's law,

but at less than the normal rate.

The surface coefficients actually depend on the state of polarization of

the incident beam. It is necessary to imagine / (v) broken up into two plane

polarized components, one in the plane of incidence and the other at right

angles to it. The theory is easily extended to cover this distinction.

§ 19-7. Photo-electric emission of solids. There is a well-known mechanism,

apparently completely distinct from the radiationless thermionic emission

of Chapter xi, by which electrons are ejected from solids when illuminated

by light of a suitable frequency. The elementary process is undoubtedly

that a quantum of energy hv strikes a solid surface and is absorbed by an

electron in the solid which is then ejected from the solid with an energy rj

given by Einstein's equation
r] = hv-x, (1377)

where x is a constant. If i^ < x/h there is no effect. In practice electrons are

apparently ejected with all velocities up to a maximum of -q, but this is

naturally accounted for by losses in collisions on the way out and will not

be further considered here. The threshold potential x bears no close relation

* See Lorentz, Problems of Modern Physics, Note 17 (1927)



494 Mechanisms of Interaction. Radiative Processes [19-7

to the potentials of the atoms composing the solid when in a free state, so

that the phenomenon may properly be classed as a solid and not an atomic

property.

The phenomenon (in particular the value of x) is extremely sensitive to

surface impurities, as are thermionic phenomena. The thermionic work

function and the photo-electric threshold potential are on the evidence

obviously closely related and it is probably a legitimate induction to

identify them. The conditions of observation are different, for the tem-

peratures of the solid are different in the two classes of experiment, and the

observed mean x can change slowly with the temperature.

The converse of this effect is the emission of i/-radiation when an elec-

tron of energy hv — x strikes the solid. Such effects have never been

recorded and are too scarce and too difficult ever to observe. That radiation

is emitted in stopping the electrons strildng a metal target (X-ray emission)

is familiar enough. The radiation of continuous frequency so obtained is

probably almost entirely atomic in origin, arising from free-free transitions

in the field of a single atom; the characteristic radiations are obviously

atomic. The interest of the converse photo-electric effect would lie in hv

exceeding (by a few volts) the energy of the impacting electron.

We shall not give the details in this case, but it follows at once by

arguments now familiar and the use of (789) that if (/> is the chance that

a v-quantum striking the solid shall produce a photo-electron, and

^'(l + 2t3^w)

is the chance that an ry-electron (17 = hv — x) striking the solid shall be

absorbed with the production of a t'-quantum of radiation, then

In the region of A 3000 ^ may be numerically comparable with unity,

but </)' is then of the order 10-^-10^^. The converse effect is very small. It

must also be remembered that the calculations leading to (1378) refer to

the equilibrium state, and that a solid is no longer (like an atom in a given

state) a definite system, but itself depends on the temperature. The solid

may be capable at high temperatures of capturing impinging electrons in

this way with the calculated frequency, but it does not follow that the

same solid cold, bombarded by electrons, will be able to achieve the same

fraction of captures. There may be no vacant orbits for the electrons to

occupy.

§ 19-8. Photo-chemical reactions and che7ni-luminesce7ice. It is a familiar

fact that certain gaseous reactions are initiated by the absorption of external
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radiation—usually light of the visible region or nearby. It is however very

difficult to find simple unambiguous examples, in which we can be perfectly

sure of what is happening, so that we shall be content to discuss such

mechanisms and their converses in general terms without attempting

precise applications of any theoretical results.

In the photo-chemical mechanism the primary action is the absorption

of a single quantum of v-radiation. There is no known case of dependence

on a power of / {v) higher than the first, so that only a single quantum can

normally be concerned. The result of this absorption may be either

(1) An activated molecule.

(2) Immediate dissociation.

In either case we may expect (and find) a threshold frequency v^ below

which radiation is ineffective. We may observe further that, whether

v> Vq ov V < Vq, v-radiation must be ineffective unless it is absorbed by the

molecule and therefore that only the lines and continuous stretches (if

any) of the absorption spectrum of the molecule can be effective photo-

chemically. This point is well brought out by the practice of sensitizing

photographic plates to red light by staining them with red-absorbent dyes.

The plates are normally insensitive to red light not because vred < Vq but

because they do not absorb the red light. Once absorbed the energy of

the red light is transferable by other mechanisms, and the photographic

reaction occurs.

In simple cases we shall expect to find with either mechanism (1) or

(2) that just one molecule is transformed for each quantum of effective light

absorbed. This is called Einstein's law of photo-chemical equivalence. There

is however no reason to expect its universal validity, owing to secondary

effects such as the formation of reaction chains carried on by the products

of the primary photo-chemical act. Einstein's law is found to hold in many
•cases, but there are marked exceptions, such as the reaction

Ha + Ck - 2HC1,

in which the number of reacting pairs is many million times the number
of light quanta absorbed.

The converse reactions are either

(1) Emission of i^-radiation and deactivation.

(2) Recombination of two free atoms or molecules with emission of

v-radiation to get rid of the excess energy.

Experiments will certainly be able to distinguish between (1) and (2)

and no doubt will do so soon, but owing to subsidiary effects this is never

easy. In the meantime we may be certain that examples of both types of
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mechanism occur in natm-e. A quantum of visible light represents a heat

of activation per gram-molecule of 50,000 calories, more or less, which is

just of the order of the heats of activation with which we are familiar in

reactions proceeding by collision. On the other hand, examples of the con-

verse mechanism (2) are known, though not in the gaseous state. This is

the phenomenon of chemi-luminescence*.

Here, as to some extent in Chapter xvni, detailed application of the

theory must await more precise experimental facts.

* See, for example, Noddack, Handb. der Phys. vol. xxni, p. 631, art. Photochemie (1926).

Footnote to p. 489. A simple proof of this theorem can be given under sufficiently wide

conditions by connecting it with Fourier's integral theorem. We assume that g is differentiable
r+CO

and that / | g'
|
(^a; exists. Then from the hypothesis of the theorem to be proved

J -co
/•+00 /•CO f+<xi rco

= dx e'^^ g{x-v) e-^-' dv = d^ i <^+^'> '^
g (^^)

g-^"
dv,

J -oo •' J -<x> J

dv)(j "gi^e'^UA—v^+ivt

The first integral factor is equal to ^Jire~"' and never vanishes. Therefore

+ 00

sm9{^)t?^md^ = (allt).

But by Fourier's integral theorem (Hobson, Functions of a Real Variable, vol. ii, p. 727)

, /-oo /•+«

gr(a-) = -
I

dv \ g {t) COS {v{t-x)] dt = 0,
^ J J -ca

since the inner integral vanishes.



CHAPTER XX
FLUCTUATIONS

§ 20-1. We have hitherto, in calculating average values and asserting

that they represent properties of the assembly, normally observed in or

characterizing the equilibrium state, generally ignored the fact that actual

examples of the assembly will all deviate more or less from the average

value. From the definition of average value the average of these deviations

must of course vanish, but the average numerical value of the deviation

will not vanish, and will be a measure of the closeness with which the

assembly really conforms to the theoretical equilibrium state. It was
necessary for the logical development to point out at once, as we did in

Chapter ii, that in general these average deviations are insignificant com-
pared with the average values themselves. This at once justifies our treat-

ment of the equilibrium state and the possession of all its average values

as a normal property of the assembly in the sense familiarized by Jeans.

We have also had occasion to prove certain theorems, particularly in

Chapter xix in connection with Einstem's discussion of the interaction of

radiation and atoms, which are closely concerned with fluctuation problems

and will be applied further.

It is therefore our primary object here to develop systematic methods
of calculating such average deviations, (a) for the sake of the logical

development of the whole subject, and (6) for direct application where

possible to physical observations such as Brownian movement and
opalescence near the critical point. In taldng up these calculations we find

at once that the average value of the numerical deviation is awkward to

handle and is naturally replaced by a calculation of the average of the

square of the deviation. This is moreover the quantity ordinarily required

in applications, and we have usually spoken of this quantity hitherto as

the fluctuation. If P is any quantity whose average value is P, then the

fluctuation in this sense is (P — P)'-. In devising general methods of calcu-

lating these fluctuations, we find it almost equally simple to calculate

(P — P)" for any positive integral value of n. We shall therefore speak of

all such quantities in this chapter as fluctuations, and refer to particular

ones as fluctuations of orders-, the "fluctuations" of other chapters being

here fluctuations of the second order. Fluctuations of orders other than

the second are not of much immediate physical importance, but the results

are elegant and perhaps not without intrinsic interest. They generalize in

many cases the corresponding results due to Gibbs*.

* Gibbs, Elementary Principles in Statistical Mechanics, chap. vii. The results for non-dis-

sociating assemblies were given by Darwin and Fowler, Proc. Camb. Phil. Soc. vol. xxi, p. 391

(1922), but the discussion there given for dissociating assemblies is inadequate and is here revised.
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§ 20-2. General fluctuations in the 'partition of energy. We start by dis-

cussing fluctuations of energy, and can obviously achieve full generality

by considering an assembly of two types of quantized systems. The results

extend at once to any number of types quantized or classical, in the absence

of dissociation which we consider separately later.

In the notation of § 2-6, and by a repetition of the arguments there given,

we have at once

CE^
dz d

'-"=2sL^i^£jf/(^)nf^(^"'' (!«'»'

We could at once evaluate the dominant term or terms in E/^ from (1379)

by the usual apphcation of steepest descents. But what we really require

is the dominant term in {Ej^ — £'^)", and in passing to this by expansion

and use of Ej^ a number of the leading terms will cancel and a more or less

complete expansion of Ej^ must be used. We avoid this difficulty by first

constructing an exact integral for C {E^ — E^y-, which can be simply

evaluated in the usual way.

A change of notation is expedient. Put

2 = e«, / {z) = e^(">, g (z) = e^^'^K

We shall usually omit the arguments of F and G. Then

If {/ d y^ 1

CE^^ = ^ .

^ 277^

,NG-Eu d Y
duj

^P^du, .(1380)

where the contour y' is now the straight line from log ^ — in to log ^ + irr.

This contour is of course that required in the application of steepest descents.

To form the integral for C (E^ -W^Y we replace E hyW^ +E^ and use

Leibnitz's theorem ; thus

C {E^ - E^r = C [E/

2tti

C,E/^-^ E^ + ,C,E^--^{EJ^- ... (-)« {E^Yl

d \

duJ
^^'^^ {du) ^du,

- ...{-riE^r

,MF

1

2^ \duj
qMF-E^u du. 1381)

This is the desired integral. We know that effectively the whole value of

this integral is provided by a small element of the contour near u = log ^.

We therefore write u = log ^ + i^ and F for F (log 0-), etc., and recall that

in this notation
dFjuy
du log^

^^ = M MF'.
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Then

MF - ¥^u = M {F - log d-F') - \MF"l,^ - ^iMF'"^^ + ...,

with a similar expression for NG — E^u. The integration is now with respect

to ^, and while I, is still small we may suppose that {MF" + NG")^ ^ ranges

effectively from — oo to + oo, while all other terms such as MF"' ^^ remain

small. Thus

C {Ej^ - E^)^ =^ exp [M {F - log ^ F') + N {G - log ^ 6*')]

' + °° ,...,,,„., . ^ ,,..„.. rd
X I e iNG"i2{l + o {NC^)}(-^y\e-i^^''i'{l + iMC^)}]di:,

in which the 0-terms may be differentiated. If we take the special case

n = we obtain C, and the 0-terms cannot contribute to the leading term

in the integral, which is

Thus

/* + * / 2tt \h

j_«.^ ^ \MF" + NG")

=— fMF" + NG"\k r+«'
{E^ - E^r = (^)-" (-

2I j j_^
''^^ ^' ^^ + ^ ^^^')^

X
(jlfl^~^^''"'^"{^ + <^ (^C')}]^^ (1382)

The further approximation to (1382) depends on the parity of n. It is

clear in any case that the first differentiation of the bracket {1 + (Ml,^)}

does not alter the order of the integral. Instead of the leading term 1 we
have then M^^. But every time we differentiate e-*'"*^^ "^^ we multiply the

integrand by Ml, and increase its order after integration by \/M. Thus the

highest order term arises from differentiating the exponential n times and

the 0-terms are both of lower order, 'provided that this highest order term

does not happen to vanish identically on integration. It does not vanish

for n even, but does vanish for n odd, when further consideration is required

to which we return. If we now put n = 2v we find for the required asymp-

totic form of {Ej^ - E^f",

=— /MF" + NG"\i f+'^ , fd\^'»
{E^ - E^Y^ = {-Y

( 2I ) j_^
'"^^^ ^'

\m)
'"^^^ ^' ^^-

(1383)

To evaluate this integral let us write

r + oo r+oo

h = (-)W </'2</'l'^"* di = i-Y^r 0.^(r)^^(2.-.,
^^^

J — CO J — CO

the latter form following by repeated integration by parts, and <^i and ^2

32-2
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being short for e-i^^"^' and e-i^'?"^^' respectively. Then since (f)i'=-MF"C(f>i >

(/.g' = - N0"l^(f>2 we find that

On integration by parts the right-hand side becomes

J — CO

and by continued repetition

j — CO

or (2v-l)/,_i.

Thus
/ MF"NG" \^. /. f 277

I,= {2v- 1)...3
Vifi^" + NG''

n ]
-*

I
-^ MF" + NG"

;i384)

/ MF"NG"
(E^ - ^J^^ = i2v - 1) ... 3 . 1

(^^. ^ ^^.j ,

{2v- l)...S.l{{E^-J^J^r. .(1385)

FinaUy {E^ - EJ MF" + NG" ~
dd- [ ^dE/d^ J

.(1386)

Fluctuations of the energy of all even orders are thus completely deter-

mined.

We now return to the odd orders. To an equivalent approximation

these all vanish, and they are actually of order lower by -y/M or \/N than

the corresponding even orders. We must retain the exact Ml,^ and N^^

terms in (1382), the M^^ and iV^* and higher terms being neghgible. We
then find after simple reductions

=—
-^ _ {-r (

MF" + NG"\i
{E^ - E^r-' =

MF'

27T

e-iNG"C'
( ^T ' {^3g-pfj"'^2j dl

+ «
+ NG'"

I

^3g-J^G"^2
I

-
I

Q-lMF"i2 ^^
J -00 \dU

d \2«-l

But pg-iMF"i2 d\^ d

M^F"^\dU M^F"^di_
g-iMJ"'^2_
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Therefore

= {-\o-'i- fMF" + NG"\h
6 V 277

r + oo / 1 Q \

- {Av-
^)-"^-^\mF" + NG") \M^G^^ j^ - (ii; + 1) -^^„ ^ ^^„

MF"
f .,

JNTG^" ]

(1387)

This expression is of order {v — I) in. M or N, that is | {2v — 1) — i
^ while

the order of {Ej^ — lE^Y^" is | (2v).

When the systems of type A are in a bath of B's, that is when N is

very large compared with M, (1387) reduces to

{Ej^ - E^y^"^-^ = M^ - 1) (2^ - 1) .... 3 . 1 {3IF'y-'-MF"' (1388)

The corresponding formula in the even case is

{E^ - E^f^ = {2v - 1) ... 3 . 1 {MF'y (1389)

We recall that

MF"^%-'^^, MF'"=U~Je^. (1390)

These formulae give the dominant terms of the formulae given by Gibbs*,

which alone are relevant when M is large. The general formulae (1386) and

(1387) hold for all values of the ratio N : M.
We may observe in conclusion that

C {E_, - E^Y (E^ - E^r

which can be evaluated in a similar way.

§20-3. General fluctuations of cl^. A similar but slightly more com-

plicated investigation evaluates (a^ — a^)", where a^. is as usual the number
of systems of type A in the assembly in their rth state or ceU. By § 2-6

Ml Nl
C {a^ - a,)" = lla.i—J—^, C7i«itU/2 ...

•

Pi^^p-i"^ ... (ttr - UrY.
U^\ U.2- ••• U^\ 0.2- ...

(1392)

There are only a finite number of terms in (1392) so that C {a,. — a^Y' is

* Gibbs, loc. cit. p. 78.
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{n !) times the coefficient of x" in the expression obtained by replacing

{a^ — a^Y in (1392) by e^^'^r-V. This relationship is conveniently expressed

by the notation

C {a, - arY = Coef„ E
" '^''ailaj

m-^^vi^-i. Pl^Pi^^ ... ea:(ar-"r'.
-6,! 6,!

The series 2^6 is now of the standard type with w^ replaced by tu^ e^ and
an extra factor e-^-r^^. Therefore in the usual integral the partition function

/(.) is replaced by
/(,) + ^^,e, (^^ _ i).

We therefore find at once in the notation of the last section

C {a, - drY = Coef„ j—. e-^^+^^+^^-^r^^ {1 + ro.e^/-"-^ (e'^ - 1)}^ du.

(1393)
The terms containing x in (1393) can be written

exp [- ci^x + M log {1 + w^e'r^-^ {e^ - 1)}], (1394)

and X can be fixed as small as we please. On y' u = log ^ + it,, where t,

is small on the only effective part of the contour. If x is sufficiently small

the presence of the x terms does not affect the choice of the w-contour.

Inserting
_^ _ ^^^ ^.^ i„g ^ _ j, (i„g ^)

in (1394) we obtain after reduction

exp {i^x a, (e, - F') + Ix'' (a, - (a,)V^) + {M^^x) + {Mix'') + O {Mx^)}.

When 71 = we can at once put a:; = in (1393) and obtain C. Using this

fact, and approximating as in the last section, we find that

, /MF" + NG"\i r+'=° - - -
{a, - drY = Coef„ (

)

e-K2W^"+^<?")+icrxa,(e,-J")+Ja=2(a,-(a,)2/ilf)

X {1 + O (MC^) + {MC^x) + (MCx^) + O (Mx^)} dl,

= Coef„ exp <^x
{a,Y J^rY i^r - FY
M MF" + NO"

X {1 + {M-i) + O {x) + (if^a:2) + [Mx^)} (1395)

We require the highest order term in (1395), and it is obvious that when n
is even all the 0-terms are negligible. Thus

{aY {drY i^r - F'Y'
(tty — a^Y" = Coefav exp Hx'^

2v\

M MF" + NG"

{clrY {arY i^r - F'^
M MF" + NG"

{a^ - UrY" = {2v - 1)

= {2v - 1)

3 . 1

3. 1

M \ ^ ^dEIdd- Jd-dEJd%-

{drY {^ddJd^Y
'

M ^dEjd^ _

= {2v- 1) 3. l{(a, - drYY

.(1396)

.(1397)

,(1398)
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When n is odd the approximation must be carried one stage further to

obtain (a^ — 0,^)^^"^, but we shall not give the analysis. By an obvious

extension we can also calculate all such expressions as

by evaluating the coefficients of x'"y^ in the integrals

—
.

(
t?we--^»+^^+^^-«r^-«*?' [1 + C7,.ev«-^ (e^ - 1) + rD^e's^-^ (e^ - 1)}''',

TTtJ y'

TTlJ y'

27rt

1

respectively. We content ourselves with giving the results required in

calculating second order fluctuations in the external reactions of the

assembly. They are

J^^ier- F') (e, - F']
{a J. — a^) {(Is — «s) = ~ f^r« M ' MF" + NG"

~M ^dEjd^

^jij^- F') {rj, - G')

.(1399)

,(1400)
_ _ i^ddr/d^) i^dbjd^)

^dE/dd-

§ 20-4. Fluctuations in the external reactions. The generalized reaction

of the systems of type A on an external body is given by

r = S,(-|^^)a,, (1401)

where y is the corresponding coordinate defining the position of the external

body. The average reaction is

_ M d_

log l/S- dy

the usual form. The second order fluctuation of Y is

(7 - 7)2 = S,
(^g^^j

(a, - a,Y + ^^r,s^^ («r - ^r) («. - a,).

Applying the formulae (1397) and (1399) we find that

Y = S, (- ^) ar = Mi:, (- ^^) m.^V/ (^). (1402)

log/(^), (1403)
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This expression can be simplified, for on differentiating (1401) and (1402)

we find

-'©^'^-sM'^'r-S-SA^'/*^ <'^«*>

Therefore

^^^^(rf)/'-V.-m-^ a.oa,

Gibbs* gives a formula for {Y — Y)'^ equivalent to (1405) without the last

term, which is of course negligible under his condition that N is large

compared with M.
With the help of (1400) it is easy to show that (1405) is formally un-

altered if Y refers to the total reaction due to all groups of systems instead

of to the partial reaction of a single group.

In (1405) all the terms except yy/d^/ or S^a^ (— d^e^jdy'^) have an obvious

interpretation. This term lies deeper and is compared by Gibbs to an

elasticity.

In illustration we shall apply these results to the limiting case in which

the reaction is a pressure. It is sufficient to consider the reaction with a

part of the wall only, which may be taken to be plane and represented by

a movable piston in a cylinder of cross-section A, which completes the

enclosure. We cannot progress without some definite assumption as to the

field of force near the wall. We shall suppose its potential is Djd^, where

d is the distance of the molecule from the wall, and D and s are constants.

If D is small and 5 > 4, this will adequately represent an intense local

field. If y is the length of the cylinder and x-^^, Xo, x^ rectangular cartesian

coordinates, x-^ along the cylinder, then

^r = 2^ iPi' + V2' + Vs')r + [Dliy - ^lYl, (1406)

{2rrm)iA r\_iii^D_^l
•^ ^ ^ F(iogi/^)tio M "" ' iy-^iYl

When the field is sufficiently local, or D nearly zero, we have the usual

result,

^^{2nmlAy
•^ ^ ^ h^ (log l/a-)t

By direct differentiation of (1407) we show further that to the same

approximation

\^=l (1409)
f^y y

It follows at once from (1403) that as usual

7= M/{y log l/^), Yy=PV=MkT (1410)

* Loc. cit. p. 81.
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We see then that we arrive at (1410) whatever the law of force. But
when we come to calculate dYjdy we find that it depends essentially on

the form of the law. Thus

JY
f d^eA_ M{yDs{s+\) f , ^.. D |,

y }Dly^\DJ

Now Dfy^ is the potential of the wall field at the other end of the cylinder,

and is indistinguishable from zero. Therefore

eT_ {s+i)M r(i + i/^) ,.,.,.

dy yD^l' (log 1/^)1 + 1/5* ^ ^

This depends essentially on D and s and moreover must tend to infinity

if Z) -^ or s -> 00 . The largeness of dY/dy and therewith the fluctuation

{Y — y)2 is however then to be expected, for in the limit the reaction of

the boundary with a single molecule must itself become infinite, although

Y retains its usual value. In spite of this, however, if we calculate rouglily

the order of (7 — Y)^/{Y)^ for reasonable values of D and s, we find that

it is still negligibly small. Equation (1411) and the usual form for E for

a monatomic gaseous assembly lead to

M sM r {2+ l/s)
(Y- i^)^=-t.-:^7T::7rT7ar.+y^ (log 1/^)2 ' yD^I' (log l/'8-)2 + i/s'

(7)2 ~ (^)2 ~m\ 2 + «M- i- N^) ^ ^DlkT)^'

A reasonable assumption as to the wall field is to take 5=4 and suppose

that {DjkT)/{y — x^)^ is small, IO-2 say, for y — x^ = 10-' cm. Thus

D/kT = 10-30. With F = 1, ^ = 1 and ilf = 2-7 X lO^^ we have

(7- 7)2/(7)2 = 4-7 X 10-12.

Other second order fluctuations involving reactions, such as

{Y-Y){Z-Z), {Y-Y){E^,-E-^),

both mentioned by Gibbs, may be similarly calculated. We find

(7 - 7) (Z - Z) = \'dz~^)r''^
^'^ WdEjd^

'

(1412)

(r-r,(..-.-,^.f(i-^^*) (UI3)

Of course since the forces have a potential

a7_8Z WJdZ
dz dy ' dz dy'
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§ 20-5. Fluctuations of concentration in dissociating assemblies. If we
take for simplicity of exposition the assembly of § 5-3 and transform

equation (305) by writing*

z = e«, Xi = e%, x^ = e-2, /, (e") = F^ {u) = F^, ...

,

we have at once

X 'X ' r/TC=
^
^'

I' 1 1 dudv^dv^ exp [-XiV^^-XaVa- ^^ + e^ii^i^- e''2i^2 + e^i^''^ 6*].

(1414)

On comparing (305) and (308) we see that the integral for Cilfj, which in

this notation contains the extra factor e^'i F^ , was obtained by operating

on C with lis ^^ ;s

—

I
This operator had the e£fect of inserting the necessary

lig a/ mider the original summation sign. Obviously this operation may be

repeated any number of times with the same result. The integral for CM-^^

is therefore obtained from (1414) by use of the operator Sj Wg^ ^—j . This

can be more simply expressed by observing that the operator acts only

on the term exp (e^i F-^) and that

V 1 ^

It follows at once that

cf>{e-iF,) = ~cf>{e^^F,)^^{e-^F,).

Cil^i'* = y ".

|
- /

/
1 dudv^dv^ exp [- X^v^ - X^Vc^ - Eu + e^'^F^ + e^i+^s 6-']

xfAyexp(e'^ii?^i). (1415)

Therefore, by a familiar argument,

C {M^ - M,Y = ^^l-jjj dudv,dv,
(J^J

exp {e^^F, - M^v,)

X exp [- (Zi - M^) Vi - X.^v^ - Eu + e^2i?'2 + e^i+^'a G^] (1416)

We have now to evaluate (1416) after the plan already adopted in

§ 20-2 for similar simple integrals, using the methods of § 5-3. The operator

(d/dvj)'^ inserts of course only trivial extra factors which do not affect the

determination of the saddle-point. In this notation the values oi v^, v^, u
at the saddle-point are log ^^ , log f2 > log i>, and on y' we put

^1 = log ^1 + *«iJ ^'2 = log I2 + *«2J -i^ = log ^ + il;

* The reader must remember that this F, the most convenient for dissociating assemblies^

is not the F of §§ 20-2 sqq. They are related so that

F (§ 20-5) = log {F (§ 20-2)}.
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the variables a^, a^, ^ range effectively from — oo to + oo close to the

saddle-point. Carrjdng out the usual approximations we find that

C {M, - M,r = exp [- Xi log i, - X, log ^, - E log ^ + ^^F^ + ^^F^ + U2 ^l

X [1 + {{a, 0^ F}]
(^^J

[exp {- ^M^a,' - E,a,Q (1 + {{a, l^f F})].

(1417)

We have written E^ for i^F/ + ^^F^" + ^^^^G" which is ^ dEjdd- calculated

for constant ^^ and fg and as usual E-^ for li-Z^i' and E^^ for Iil2^'- As before

when 71 is even the 0-terms are negligible. We shall not further investigate

the case of n odd.

Certain conclusions as to the form of {M^ — ifj^w ^an be drawn at once

without detailed calculation. We first transform from % to %' so that the

differentiated terms take the form

d \2«

(a<) "
^=^P (- 4^'<^)-

We then transform from a^ and ^ to ag' and ^' so that the exponent of the

other exponential is a sum of squares of «i', 0:2' and ^' without product

terms, and carry out the integrations for a^ and ^'. All these operations

are independent of n, and the form of the result must be

It follows at once that

= (2?i - 1) .... 3 . 1
\ 1_ [ . (1418)
(P + ifil

This is the familiar form of all such results, but to evaluate any one

fluctuation explicitly P must be known, and the foregoing (or equivalent)

transformations actually carried out. Perhaps the simplest method is to

evaluate C and G {M-^ — M-^Y by direct calculation of (1417) without the

0-terms for n = 0,2. The exponential term in both reduces to

exp {- 1 [E^l,^ + Xi«i2 + x^a^^ + 2E,^^a^^ + 2E^,^a^C + 2Na^a,]},

in which we have written for shortness

E,,,= E, + E,,^{i,dEld^,),j^,

E212 = E2 + ^12 = i^^dE/d^^j^.
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The extra factor iov n = 2 is

{M^^(M^a^ + E^m. (1419)

The reduction is of course largely arbitrary. There is some advantage of

symmetry and parallelism with § 20-2 in using

a, = «i

N

a.

X,X, - N^
r,

NE.-"112 y'
,(1420)

X,X, - N^

^ = r.

This reduces the quadratic exponent to

WXi-WHX,-N^lx,)-i^^ E.~
X,E,,,^+X,E,,,^- 2NE,,,E,,,

X^X, - N'

and the value of C can be at once obtained by integration. On applying

the transformation (1420) to the extra factor (1419) we obtain

M (m ' ^^^r.'4-h M X,E,,,-NE,,,
] y

It is not necessary to evaluate C. We observe merely that in the ratio of

the two integrals a constant term repeats itself, a product term vanishes

and a square term appears, divided by the coefficient of the corresponding

square in the quadratic exponent. Thus after a little rearrangement

{31, - M,r =
X^X, - N'

E,- M,-JTF- X^E,,2— ^ -^212

X,X, - m
E.

X, E^J + X,E,,i - 2N E,,, E,

X,X, N'
(1421)

This is rather complicated, and there is no very simple general form.

The last denominator can be cast into the form

^
dE\

+
M.M'N

:^a/ '

' ' - (a-^log/.

where k is the equilibrium constant F-^F^fG, and the numerator is

X^X^-NV \ o^ ^

We can therefore write (1421) in the form

{M, - M,r =
XiX, - N'

1 -
X,X^-N^\ 9^

a ^2
d- 7^ log K

a- ^ + i ^-=- a- v-^ log K
dE\

d^)Ti,N ' X^X,

.(1422)
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This shows the type of formula we should expect in more complex examples.

We note as a check that if there is no " molecule '" N = and the fluctuation

vanishes. We may note also that the argument is unaffected by the pre-

sence of other sets of systems in the assembly so long as these do not com-

bine with or are not formed out of the systems of the types already under

discussion. Th^ only residual effect of such other systems will be to increase

{^dEld^)Mj^ , which will continue to refer to the whole assembly, though

it may not retain this simple form. When the whole assembly is large

(bath conditions) we may therefore simplify (1422) by the omission of the

last term, and write

{M, - M,Y = - ' (1423)
A1A2 - iV2

From the symmetry of this result {M^ — M^Y has the same value, as also

does {N — NY, since in this simple case N — N -^ — (ilf^ — M-^).

§ 20-51. Fluctuations of energy in dissociating assemblies. The fluctu-

ations of the energy can be studied in a similar way. To obtain CE^ we
have to insert the extra factor Sga/es^ in the original sum for C. This is

effected by the operator

y 1 1 ^

Similarly, by repetition, CE-^"' is obtained from C by use of the operator

d
S 1^ 1

777 e
W^

In (1414) this operator again acts only on exp {e^i F^ (u)} and by a similar

argument may be replaced by {djduY. Thus corresponding to (1416) we have

C {E^ - Elr = "^2l^'

'

//]
,^^^^i«^^2exp[-ZiVi-X2^'2-(^-^)^ + e''^^2

(277*

+ e^i+^2 G](^Y exp {e^i Fj^~ Ej^u) (1424)

The further study of (1424) follows exactly the same course as before. The

form of (1418) is preserved. In the explicit calculations the extra factor for

(^1 - :^)2 is _ _ _

where [Ej)^ means ^dEJd^ calculated for constant ^'s. In the new variables

this becomes



.(1425)
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We thus obtain _

X^X, - N'^

To reduce this to a more intelligible form we use

calculated for constant ifj, which is equal to

{E[),~{E,r/M;.
Then

l(

'mx X1Z2 - iV2 Vilf^y

, dEA El M^M^N - a ,

8^ /Mi JfiZiX2-iV2 8^ 6
.(1426)

In this form the relationships of the new formula to preceding ones are

obvious. If F- it reduces to (1386). If (^dE/d^) is large, so that the

whole assembly is large compared with the systems under discussion, then,

using (1423), _

or the energy fluctuation is equal to the energy fluctuation for fixed dis-

sociation plus the fluctuation of energy due to the fluctuation of the

dissociation. This additive result is not however true in general, since for

not very extensive assemblies the fluctuations in M^ and in energy content

for fixed M^ are not independent.

§ 20-52. Other fluctuations. It should now be sufficiently clear how to

construct exact integral expressions for any fluctuation such as

{M, - if,)- {N, - N,r, {M, - if,)- {E, - E,Y, etc.,

for the most general gaseous dissociating assembly. We shall not write

down these integrals or attempt to evaluate them here, as they are obviously

complicated. It is sufficient to have established a simple method by which

they can be calculated if required.

It remains however to indicate the changes necessary in § 20-3 to adapt
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it to dissociating assemblies. These are slight. Using y instead of the x of

§ 20-3 we find in the same way that

X. \ X \ n [

C (a/ — a^^Y = Coef„ V -J' dudv^dv^ exp [— X-i^v^^ — X^v^ — Eu

+ e^ii^'i + e^2i^2 + e*i+^2 G - a^y + ta/ev'"+^i (e^ - 1)] (1428)

Approximating in the same way as in § 20-3 we find easily that the dominant

term for an even order fluctuation is given by

C (a/ - ^f- = Coef2„ ^^^^^ ei^^^jJI^" da^da^d^ exp - i [E^^ + X^a^^

+ X^a^^ + 2^ii2ai^ + 2E,,,a,^ + 2Faia2 - 2^^^/ i^rK + «i)] (1429)

We must remove the linear term from this quadratic form by the usual

substitution. When this is done we find at once that as usual

(a/ - a/)2" = (27^ - 1) 3.1 (a/ - a/)^,

and on carrying through the calciilations it can be shown that

(a/ — a/) 2 = a/ —

(1430)

Remembering the different meanings of i^i here in § 20-3 we see that this

reduces to (1396) when iV = 0.

§ 20-6. Formal consequences of general fluctuation theorems. An interest-

ing consequence of the general form, e.g. (1418), of our fiuctuation theorems

may be noted here. Retaining only terms of the highest order we may say

that if

(P - P)^ = fX,

then (P - P)2n-i = (|Li"-i) {1 + (1/^)},

(P~^rp)2^ = 1 .3. ... (2^- l)/x"{l + 0(l//x) + 0(1/^;)}.

(1431)

We may pass at once from these equations to a general distribution law
in P for examples of the assembly with the accuracy of (1431) by means
of a theorem due to Polya*, which we quote here.

Theorem 20-6. The distribution function f (x) is continuous. The moments
i.n of fix),

tm= r'"x-^df{x) (m=0, 1, 2, ...),

Polya, Math. Zeit. vol. vni, p. 171 (1920). The integrals must be taken as Stieltjes' integrals.
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are assumed to satisfy the condition that

A / {Hm)

Lt ^
m->0 ^

is finite. If then a sequence of distribution functions f^ {x), ... ,fn (x), ...

satisfies the infinite set of limiting conditions

Lt [
""
x'^df^ (x) = t„, [m = 0, 1, 2, ...),

n —>co J — CO

then Lt /„ {x) = f {x)

uniformly in any interval.

In equations (1431) let us substitute

P= P^yVf^'
Then we have proved that

1.3....(2„-l){l+0Q+0(i)[

^^^^-o(-^] + o^^

Now let E, fi tend to infinity in fixed ratios, which means taking larger and

larger assemblies. The y-moments tend to the moments of the distribution

function

(277)2

Polya's theorem applies, and it follows that this is the actual limit of the

distribution function of examples of the assembly for infinite assemblies,

and that too uniformly in any fixed interval of y. In terms of P the dis-

tribution fimction therefore tends to the limit

/ (P) dP =—^, e-i(P-pr-i^ dP, (1432)
(277/x)2

uniformly in any fixed interval P ± z ^/lx.

This theorem provides us with the simplest means of completing the

proof that the possession of P is a normal property of a sufficiently large

assembly. It will be a normal property provided only

rF+p
f{P)dP=l-e{p),

J P-p

where e can be made very small while p/P is still itself very small. But

this equation is obviously equivalent to

1 f^ 1
Q-tx^lt^ dx = e {p),
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of which the left-hand side is i- e-^'/^'^
j

. This can be made small com-

pared with imity for small values of pjP provided only {P)^liJi is very large,

which is the general result of this chapter.

The elegant formula (1432), which we have just obtained from the

purely analytical side, really gives no information not already contained

in Einstein's quasi-thermodynamical formulae (434) and (435), Taking
these in the form (434) and comparing with (1432) we see that these two
equations are attempting to assert the same relation and that they succeed if

- {m8)/k = UP- nii^-

In this chapter we are only working accurately for comparatively small

displacements from the true equilibrium. If we further confine our atten-

tion to a small part of a large assembly then this equation is equivalent to

^^J = -l,
(1433)

or (P-P)2==-^yp. (1434)

It is easy to verify that (1433) is correct in the simple cases to which

alone all the calculations apply. For example, if P = E^, then in bath

conditions [x = kT^dW^ldT and dS/dM^^l/T, which verifies (1433).

Similarly if P = a^ in a gaseous assembly, then aS as a function of a^ contains

ofy {log [/ (T)/ay] + 1}, /z = a^, and (1433) is again verified. A similar

verification holds for M^

.

§ 20-7. Special cases. The special formulae that are of primary import-

ance among those of this chapter refer to bath conditions and are

. ^W ^Jfi

{E-EY^^^ = kT^^, (1435)

{a, - 0^)2 - a; (1 - a'rlM), (1436)

{M^ - MlY - ^^^^^_
, (1437)

and in particular (1435). The form taken by (1435) for special systems

should be noted.

(i) A gas of structureless atoms

{E - ¥)2 = ^NBT^ = (Efl^N. (1438)

(ii) A set of Planck's oscillators

F 33
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(iii) Temperature v-radiation in unit volume

^TThHHve^^l^T
(p (v) dv-p {v) dvY = ^^n.ikT^

1)

= hvp (v) dv + ^^g^Ja
• (144^)

Formula (1440) has played an important part in the history of the

theory of radiation. It will be observed that hvp (v) dv = h^v^n (v), where

n (v) is the number of v-quanta in this volume. On referring to (1436) we
see that this term gives Just the fluctuation we should get if the extreme

light-quantum view of radiation as particles could be adopted. On the

other hand this term cannot be interpreted on the classical wave theory,

for all fluctuations by interference must depend on the square of the energy

density. For the second term the reverse is true; the extreme light-

quantum view cannot account for it, the classical wave theory accounts

for it naturally by interference. These critical remarks of course apply not

to the result itself as a property of the equilibrium state, but only to the

mechanisms proposed for th'e maintenance of that state. The new mechanics

gives a satisfactory account of the formula.

§ 20-8. The scattering of light by liquids and gases. Opalescence near the

critical point. When a beam of light is passed through a homogeneous gas

or a liquid, a certain small proportion is scattered out of the beam by the

molecules of the gas or liquid in each element of the path. The amount
scattered is very small for a gas or a liquid not near its critical point, but

still of measurable intensity, e.g. the blue of a clear sky. As a liquid nears

its critical point the intensity of the scattered light increases and at the

critical point itself the liquid glows strongly with a peculiar shine known
as the phenomenon of critical opalescence. Owing to its more striking

character attention is often concentrated on the phenomenon of critical

opalescence, but all the phenomena of the scattering of light by liquids

and gases when the wave length of the light is long compared with the

average distance apart of the scattering agents (molecules) form a single

whole and may be discussed together.*

It can be shownf that the scattering of such light must depend on the

irregular spacing of the scattering centres, and that it is therefore a problem

of the fluctuations in the distribution of molecules in given small volume

elements. If the molecules were regularly spaced at their average spacing

as in a crystal there would be no scattering at all. Any scattering actually

observed in crystals can be traced to imperfections or foreign bodies.

This absence of scattering persists until the wave length falls to molecular

* Perrin, La theorie du rayonment et les quanta (1912); Les preuves de la realite mole'culaire.

f For a simple account see Lorentz, The Problems of Modern Physics (1927), § 21.
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dimensions and we have a true scattering, but only in definite directions,

more commonly known as X-ray reflection or diffraction.

From the statistical point of view therefore the phenomena are best

approached as an example of molecular fluctuations in the manner of

von Smoluchowski*, using the general formula (435). We consider a fluid

which in its normal equilibrium state contains n^ molecules in a volume v^

at a pressure p^ . The actual volume at any given moment occupied by tliis

body of molecules is v, only small values of {v — Vq)/vq being important.

The rest of the fluid is a large volume, the whole being isothermal. Then

by general thermodynamical theorems "LAA is the maximum work which

the assembly can do in returning to its normal equilibrium state ; since for

any body in an isothermal expansion dA = — pdv,

liAA = {p ~ Pq) dv.

The fraction of examples of the assembly in which we shall find these n^

molecules at a volume between v and v + dv is therefore

J.
'kT

'{p-Po)dv
dv.W (v) dv = {jlc

where /x is a constant, fixed by the condition I Wdv = 1 . Without specific

assumptions as to the equation of state, we may expand p — Po and write

{p-Po)dv =

We write also

(v-Vo)^ dpo
,

(v-Vo)^ d^po
,

{v

2! dvo
+

3! dVo'
+

4!̂ 'i:f.o((-«.«.

y={v- Vo)/vo,

so that y is the accidental condensation (strictly expansion). Then omitting

fifth order terms

_kT\ 2! dvo S\ 8V 4! dv^^^
W (y) dy ^ fidy exp

144r

The further development now depends on whether the normal equilibrium

state does or does not refer to the critical point. Away from the critical

point dpo/dvo ^ 0, and it is sufficiently accurate to take

W (y) dy = fidy exp

If the fluid is a perfect gas

'^o^y^ ^Po

2kT dvo_
.(1442)

dpo

dVn

rtokT

Tr(y)^y = |tirfye-^"«^' ,(1443)

* von Smoluchowski, Ann. der Phys. vol. xxv, p. 205 (1908); Einstein, Ann. der Phys.

vol. XXXIII, p. 1275 (1910).

33-2
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In this simple case we find a result which we can also obtain at once from

(1432). Putting there P ^ n, the number of molecules in a given small

volume, we have P = jj, = n^,

f{n)dn= (2777io)-^e-i'"""''''/'^»(^?*. (1444)

But y = {v — V(j)/vq for constant n and therefore equally y = — (ti — 71^)171^

for constant v, so that (1443) and (1444) are identical.

The value of y^ is easily calculated from (1442). We find

At the critical point dpJdvQ = d^pJdvQ^ = 0, so that

W (y ) dy = ixdy exp
24kT dvo\

For the sake of a numerical estimate we may use Dieterici's equation of

state (606), which yields after reduction

99.9 '

W (y) dy = fjidy e
"'"^ "

;

from this we find

^= 1-6/wo*- ....(1446)

The next step is to make use of a formula which dates back to Lord

Rayleigh,* and states that if light of unit intensity and wave length A,, in

a medium of refractive index jUq is incident on a small volume Wq in which

the refractive index is /jl, the dimensions of v^ being small compared with

Ag , then the intensity of the light scattered at right angles is

27TW (f±JZj^\\

To make use of this formula for the light scattered by spontaneous fluctu-

ations we must combine with it a relation between /x and p the density of

the fluid in Vq. For gases, and probably with sufficient accuracy for liquids

also, we may use Lorentz's law of refraction

-p j;^^2 = ^^"^*-'

from which it follows that for small values of {fi — ixo)IH'o

The intensity of the light scattered by a fluctuation to an accidental con-

densation y in a volume Vq is therefore

^. (^.^ - DMmo^ + 2)« (1447)

* Rayleigh, Phil. Mag. vol. xii, p. 81 (1881); Scientific Papers, vol. i, No. 74.
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In unit volume of the liquid the number of such scattering volumes is

l/i'o and the average value of y^ is y^ given by (1445). It follows that the

average intensity % of the light scattered by unit volume of fluid at right

angles to the incident beam of intensity / is given by

§ 20-81. Comparison with observation. We begin with some qualitative

remarks. The great difference in intensity between critical opalescence and

ordinary fluid scattering follows from the different orders of y'^v^ in the

two cases (1445) and (1446). Roughly we may say that this factor is greater

at the critical point than in the perfect gas state (or any not nearly critical

state) by a factor of the order of V^o- For a volume Vq small compared

with the \ of visible light, say a cube of edge 10"^ cm., n^ = 10'* for a gas

at normal pressure and temperature and 10^-10'^ for a liquid. Again

formula (1448) shows that there is a strong selection in favour of the scatter-

ing of light of the shorter wave lengths. The scattered light from incident

white light should look blue. This is of course in accord with aU the facts

(blue of sky, etc.). The fact that at the critical point the scattered light

becomes white shows that the theory is there breaking down because the

scattering elements, that is volumes in which the fluctuations are sensible,

are no longer small compared with the wave length. We see in fact from

(1445) and (1446) that for a cube of edge 10"^ cm. comparable with the

wave-length the mean square fluctuation \/y'^ in a perfect gas at normal

pressure and temperature is only 2 x 10~^, whereas at the critical point

it is 10-2. A 1 per cent, density change leads to a sensible change of

refractive index.

Equation (1448) for a perfect gas in which fx^ is very nearly unity leads to

This formula, generalized for intensities at any angle to the original beam
and integrated through the atmosphere, can be applied to calculate the

nature of the scattered sunlight incident on the eye at an angle a with the

vertical and ^ with the sun. It is completely successful. It can of course

be used inversely, treating k as unknown, to determine k from measure-

ments of i, and has been so used with success.*

A complete quantitative test of (1448) is afforded by the experiments

of Keesomf. He studied ethylene {Tc = 11-18° C). He verified first that

for p = Pc and T = 13-6° C. the ratio of the intensities of scattered light

of two wave lengths was still proportional to (A^/Ag)^ so that this tempera-

* Perrin, loc. cit. •]• Keesom, Ann. der Phys. vol. xxxv, p. 591 (1911).
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ture still lies in the region of validity of the theory.* For the same wave
lengths i^Jii falls to 1-18 at 11-43° C, showing that by that stage the

scattering elements are, as statistical theory requires, no longer small.

Again near the critical point, since {dp/dv)e = {d^p/dv^)^ =

dp— % ^- -V (^^) (T-T (1450)

Hence near, but not too near, the critical point the intensity of the scattered

light should vary like \j{T — T^). This prediction is well verified.

Table 56.

Scattering of light by ethylene near its critical point (T^ = 11-18° C).

T°C.(p=^,)



CHAPTER XXI

THE NEW STATISTICAL MECHANICS

§ 21-1. Introduction. We have hitherto developed the whole theory of

statistical mechanics in a classical way—that is on the basis of Liouville's

theorem and the obvious generalizations imposed by the classical quantum
theory. We were led in this way to derive all the equilibrium properties

of our assemblies by averaging over the whole of the accessible phase space

of the assembly. Though our confidence in this principle is partly based on

its success in applications and cannot be referred entirely to a priori argu-

ments, we have no grounds for loss of confidence in applying it to any
assembly which is strictly classical. We have in fact no grounds for

questioning the principle at all, provided we can define exactly what parts

of the phase space are accessible for the purpose of averaging. In the

classical theory we took as accessible the whole phase space of the assembly

subject only to the energy (and momentum) integrals and the conditions

assigned by given total numbers of the structural units—atoms or electrons

and nuclei according to the nature of the problem. This may be wrong even

classically, but as we have said we have so far absolutely no theoretical or

empirical reason to suspect it. In our exposition hitherto we have taken

over this definition of accessibility essentially unaltered into the classical

quantum theory. The only modification imposed by the classical quantum
theory is to divide up the classical continuous phase space into cells and
replace these cells by discrete stationary states. The whole of the

accessible classical phase space is replaced by corresponding accessible

stationary states.

Even if our definition of accessibility is classically correct, its adoption

in the quantum theory was only justified as an experiment, in our complete

ignorance of the nature of the laws of interaction of quantized systems

prior to the advent of the quantum mechanics. Now that the laws of non-

relativistic quantum mechanics are fairly completely known, at least

formally, it remains to examine the old definition of accessibility in the

light of these laws. W^e find quite simply the interesting and somewhat
surprising result that the accessible regions of the phase space must be

drastically cut down, in a way which has important consequences for the

deduced properties of matter in certain limiting cases.

The difference between the new statistical mechanics and the old is in

fact confined to this difference in the accessible regions of phase space over

which the averaging must be taken. Once the accessible region has been

specified averages are taken in the same way in all forms of the theory.
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The arguments from Liouville's theorem which suggest and more or less

justify the use of a weight proportional to the extension of phase space in

averaging in the classical theory persist in a strictly analogous form in the

newer theory, and show that our choice of weights for quantized systems

was correct. But we must only include accessible complexions.

After a general account of the corrected form of statistical mechanics

required by the new mechanics we give the main applications which have

so far (April 1928) been made of it, in completing the theory of temperature

radiation, and in reviving in a most promising way the electron theory of

metals.

§ 21-2. Accessibility. To fix ideas it will be convenient to start by con-

sidering an assembly with two different sets of similar systems practically

without interactions, as in Chapter n. A gaseous assembly with two different

sorts of molecules, which is practically perfect, is an example of the assembly

proposed. The statistical state of the assembly was specified in Chapter ii

by the set of positive numbers a^, ... , a^, ... , 6^, ... , 6^, ..., describing

the distribution of the various systems among their possible stationary

states. These states would previously have been taken to have energies

ei, ..., et, ..., 7yi, ..., 77^, ..., and weights taj, ..., Wt, ..., pi, ...,pt, ..., and

we shall see that they can continue to be so described. If there are M
andN systems in all of the two types and a total energy E, then we have of

course in the classical theory

2,a, = M, 2,6, = N, X.a.e, + H^Vt = E (1451)

The total number of weighted complexions, equivalent to the extension of

the phase space, representing the specified statistical state is

M\N\

An essential feature in the foundation of these formulae and all those

of like nature hitherto used is the ultimate independence of each other of the

separate similar systems in the assembly. It is used in the enumeration of

the possible arrangements ilf ]/n,a, ! corresponding to a given statistical

specification. It is essential to the argument of Boltzmann's ^-theorem
(Chapter xvii) which establishes Maxwell's distribution law as the neces-

sary and sufficient condition of equilibrium in a gaseous assembly in which
the particles possess this ultimate independence of each other and undergo

occasional classical collisions. It is precisely this ultimate independence

which the newer theories are forced to deny. This denial is in fact the most
fiuidamental feature of the new mechanics, and, as Bohr* in particular has

emphasized, it lies behind Heisenberg's principle of uncertainty, according

to which a coordinate and its conjugated momentum can never both be

determined exactly in the same experiment. We must now examine in

* Bohr, Nature, vol. cxxi, p. 580 (1928).
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detail the way in which this denial of ultimate independence affects

statistical mechanics. We shall find it acts simply, by severely limiting the

region of accessibility over which averages have to be calculated.

Let us consider first a single conservative isolated system whose

classical Hamiltonian function would be H {q, p), and energy integral

H {q, p) = E.

The variables q, p are to be taken as a shortened form of q, q', q", ...,

p, p', p" , ..., being any suitable set of Lagrangian coordinates and their

conjugated momenta. Then in order to discuss such a system exactly

according to the new mechanics we form Schrodinger's differential equation

//(j,-«4)-^ i/r=0, (1453)

in which h = /i/27r. All the properties of the system are determined by
the function i/r and the condition that i/f must be bounded* and one-valued

in the g-space (configuration space) of the system. Not every value of B
need be admissible. Values of E for which possible values of i/f exist corre-

spond to possible states of the system. These values of E may be discrete

or continuous or sometimes one and sometimes the other according to the

nature of the system. For the systems for which stationary states were

successfully postulated by the old quantum theory, the possible values of

E are discrete, and we shall generally be concerned only with discrete values

of E in this chapter. These will be supposed to be enumerated by a suffix

taking the values 1, 2, ..., so that no two values of E with different suffixes

are equal. Corresponding to any possible value e^ of E there exist one or

more proper solutions \\}a of equation (1453). The number of such inde-

pendent solutions may be called Wa , since we shall see that it corresponds

exactly tO' the weight w which we have previously used. If the system is

degenerate (ra^ 4^ 1), we can often reduce it to a non-degenerate one

{w„, = 1) by including suitable perturbing fields, if it is convenient to do

so for purposes of discussion.

Let us suppose next that our assembly is built up of two such similar

systems with very weak interactions, so that to a first approximation the

Hamiltonian of the pair is the sum of the separate Hamiltonians. Then

the complete wave equation is

It is obvious that the equation separates into two parts and that the per-

missible values of E are e^ + e^, and the corresponding solutions

W^^Aqi)^r{q2), (1455)

* This is probably not quite correct. The correct condition is probably that
J | fA |^ </<? taken

over any finite part of the configuration space should exist, and that ip should behave suitably at

infinity, the precise behaviour there depending on the nature of the system.

Y - (1454)
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where e„ and Cr are possible values of E in (1453) and j/r^, j/r^ corresponding

proper solutions. Such values of E are called characteristics (eigemverte)

and the corresponding solutions characteristic functions {eigenfunktionen)

,

or more commonly in view of Schrodinger's interpretation wave-functions.

It is of the utmost importance to observe that in the limit of vanishing

interaction the pair of systems is essentially degenerate except when a = t

even if the single systems are not degenerate. For if ct 4= '' ^^ least two

wave-functions

^x = 0. (gi) -Ax iq-,), ^2 = -A. (^2) ^r {q^),

obtained by permuting the individual systems, correspond to the charac-

teristic E = €a + Cj. If the single systems are degenerate (tn^, w^) then

obviously the total number of distinct wave-functions corresponding to

e^ + Cr is 2m„mr (o- =|= t) or w^^ (a = r).

The argument is quite general. If the assembly consists of M weakly

interacting systems, the complete wave equation is

+ «(««,- ihg-' ' E Y=0 (1456)

To the characteristic

^= €<,+ e, + ... -f- e„, (1457)

no pair of the sufhxes a, t, ..., w being equal, there corresponds a set of

Ml wave-functions obtained by permuting the systems 1, 2, ..., M among

the suffixes of the characteristics a, r, .,., co. The simplest wave-function is

Ti = ^^ (q,) <A. (q,) ... ^. (q^). (1458)

For degenerate systems the total number of wave-functions corresponding

to the characteristic (1457) is

M\ ta^ttJr ... w^.

If finally we consider the completely general characteristic

E = %e, + a^er + ... + a-<ea, («i + a^ + ... + «« = M), (1459)

where the individual characteristics are equal in groups oi a^, a2, ..., at^

then there are sets of

M^
~T^r r

(1460)
a^la^l ... atl

distinct wave-functions obtainable by permutation, of which

^1 = VV (qi) '" ^c (qa^) ^r (qa^+l) ' ^r {qa^+a.^ ••• 'Ao, (^i,/) (1461)

is typical. The total number of distinct wave-functions in the degenerate

case is

Ml (ta„)«i (ro,)«2 ... (cjj««

%! a^l ... atl
,(1462)



21-2] Accesslhility of Complexions 523

If to the assembly thus constructed we add another set of similar

systems distinct from the set hitherto considered, we obtain obviously a

new set of wave-functions similar to (1461) each of which can be combined

by multiplication with each one of (1461) to give an independent wave-

function of the complete assembly. We may not of course permute a pair

of distinct systems, for we do not so obtain a solution of the wave equation

of the assembly. Thus for an assembly of two distinct sets of similar

systems the total number of independent wave-functions corresponding

to the characteristic

E=a,e,+ ... + 6i77„,+ ... (1463)

iq
-XKf . XV . [10^) 1 ... [f}„') ^ ('1464')'^

a,[...b,l...
•

^ ^

So far no new point has emerged. In fact on comparing these sets of

wave-functions with formulae like (1452) we find as we might expect that

the numbers exactly correspond. If we define the weights as in this

section, then each weighted complexion corresponds to one wave-function

of the assembly. If therefore the introduction of weak interactions between

systems of the assembly allows the assembly to pass from a state corre-

sponding to any one of these wave-functions to any other, no modification

will be introduced into the statistical calculations. But this is not so. It

has been shown, principally by Heisenberg*, to whom we owe the first

appreciation of the importance of this type of exchange degeneracyf, that

the wave-functions (1461) of a set of similar systems, after reorganization

into suitable linear combinations, necessarily divide into a number of

groups A, B, ..., 8. These groups contain between them all the wave-

functions belonging to all the characteristics, and they possess the extremely

important property that no interaction between the systems, of whatever

type or strength, so long as it is symmetrical (as it must be) in the co-

ordinates of the similar systems, can ever change the assembly from a

wave-function of one group J. to a wave-function of any other group B.

Thus if the assembly is originally represented by a wave-function of group

A for the first set of systems it will be for ever confined to wave-functions

of group A. Only the states corresponding to this group are accessible,

and the average equilibrium properties of the assembly must obviously

be determined by averaging over the states of group A and not over all

states as hitherto.

* Heisenberg, Zeit. fur Phys. vol. xxxvm, p. 411 (1926). See also the references to § 21-21,

and Dirac, Proc. Roy. Soc. A, vol. cxn, p. 661 (1926).

t It has recently been pointed out by Heitler, Zeit. fur Phys. vol. XLVn, p. 835 (1928), that

one should distinguish between exchange degeneracy {Austauschentartung) and resonance degene-

racy {Resonanzentartung). The type of degeneracy here considered has often been referred to as

resonance degeneracy, but the two types of degeneracy are distinct except accidentally in certain

of the commonest cases.
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§ 21-21. Existence theorem for non-combining groups*. The general form

of Schrodinger's equation for W, the wave-function of an assembly of M
similar systems to the zero order of approximation in which interactions

of the systems and external perturbations are neglected, and from which

the operator d/dt has not yet been eliminated, is

7/(ft.-ihg|) + ff(g„-ihl

H i qj^j ,
— ih. ^— I

— ih T«= (1465)
dqj^J dt

The wave-function here must retain its time factor e*^*/^; its presence is

recorded by the affix t. The solutions of this equation are expressions such

as (1458) (with the time factor), or, since the equation is symmetrical in

all the systems and linear in T*, any expression which can be derived from

(1458) by permuting the systems and taking linear combinations of any

of these permutations. Any such wave-function we will denote for shortness

by T* (1, 2, ..., M), the order of the suffixes of the systems being in general

significant.

If equation (1465) were exact, the assembly, once represented by a

given wave-function, would remain so represented for all time. Owing
however to interactions and perturbations this permanence does not exist

and T"* will pass from (approximately) one zero order form ^\^ to another

Tg* or rather to one of a number of other forms in a manner which can be

best specified by certain probability coefficients. It is not necessary to

enter into this here beyond observing that the exact T* has to satisfy

exactly an equation of the form

d'

«-^^. T* = 0, (1466)

where H includes the interaction and perturbation terms and is completely

symmetrical in all the systems.

Let P be any operation of permuting the systems in a given wave-

function W^ (1, 2, ... M), and taking given linear combinations of these

permutations, and let PT* be the result of the operation. Then since H
is completely symmetrical PT* is also a wave-function. Suppose that at

any given time t = t^ PT* = 0. But [H] = 0, so that

|(PTO = (1467)

or PT* = for all time. This is all that is required to establish the existence

* A proof not involving explicit appeal to group theory was first given by Hund, Zeit.fur Phys.

vol. XLiii, p. 788 (1927). See also Heisenberg, Zeit.fur Phys. vol. xli, p. 239 (1927), and especially

Wigner, Zeit.fur Phys. vol. XL, pp. 492, 883, vol. XLin, p. 624 (1927). These detailed investigations

of the structure of the non-combining groups are required for the theory of the structure of atomic

and molecular spectra, but are not necessary to us here, where all that we require can be obtained

very simply as suggested by Ursell, Proc. Camb. Phil. Soc. vol. xxiv, p. 445 (1928).
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of non-combining groups of wave-functions. We say that T is symmetrical

in the systems a^ , «2 , . .
.

, «a if ^ does not alter when any one of these

numbers is interchanged. For example, if

T(l,2, 3, ...,Jf) = T(2, 1,3, ...,il/),

then T is symmetrical in the systems 1,2. If

T (1, 2, 3, 4, ..., if) = T (2, 1, 3, 4, ..., M) = Y (1, 3, 2, 4, ..., if),

then T is symmetrical in the systems 1, 2, 3 and so on. But then P^ = 0,

where Pq is the operation of interchanging 1 and 2 and taking the difference

of these wave-functions, so that the wave-functions representing the

assembly if they are ever symmetrical in any pair of systems must always

be symmetrical in that pair. In the same way we say that T is anti-

symmetrical in the systems a^, a^, ..., a^^^ changes to — T when any

pair of these numbers is interchanged. It then follows as before that if

T is ever antisymmetrical in any pair of wave-functions it is always

antisymmetrical in that pair. The different non-combining groups can be

specified by the various groups of systems in which they are symmetrical

or in which they are antisymmetrical, but we need not examine the struc-

ture of these groups here.

§ 21-22. The symmetrical and the antisyminetrical group. From among

the various non-combining groups two stand out conspicuous for the sim-

plicity of their properties and their mathematical form. One is the group

of wave-functions which are symmetrical in all the systems. This group

we shall call simply the symmetrical group S. The other is the group of

wave-functions which are antisymmetrical in all the systems. This we shall

call the antisymmetrical group A. These groups are unique in that for

non-degenerate systems they alone contain at most one wave-function for

any given characteristic 'Le„. There is always exactly one member of the

S group, and there is one member of the A group if all the cr's are different

or if all the a^ are or 1, and otherwise no member. This is easily verified

if we observe that the antisymmetrical wave-function must take the form

of the if-row determinant

"At {qii'pr (ga) ••• "A- fev)

'Ao, (gi) ^Au. (^2) ••• 'A-(?.i/)

while the symmetrical wave-function is the same expression with all the

signs taken positive.

These very simple enumerations for assemblies of non-degenerate

systems can be generalized directly to degenerate ones. For example, if

w^ = 2, the other ta's being 1 as before, there are just two alternative ^^

which may be used in constructing T. There are therefore in the A group
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clearly 1, 2, 1 or wave-functions according as a^ = 0, 1, 2 or aj > 2. In

the 8 group there are (^i + 1) !/% ! or % + 1 wave-functions instead of 1

as before. The general formulae can be given, but it is simpler to pass from

non-degenerate systems to degenerate ones at a later stage. General

formulae are therefore omitted here, and we shall confine attention for the

present to non-degenerate systems.

We know as yet no a 'priori reason why wave-functions of only one

group or of one group rather than another should be found in nature. To
determine the proper group we must appeal to observation, and the proper

group may vary from system to system. When the systems are electrons

or protons (hydrogen nuclei) it is certain that the proper group is the anti-

symmetrical. For electrons this follows from the fact that the laws of inter-

action of electrons must embody Pauli's exclusion principle which is

fundamental to the interpretation of spectra. According to this principle,

as we know, two electrons in an atom may never possess the same set of

quantum numbers, or as we should now say may never have the same wave-
function. The group A is the only group of wave-functions of the assembly

which possesses just this property, that it has no member whenever two
systems have the same wave-function. Since the wave-functions for the

electrons in any atom belong to the group A one must suppose that this

is due to the nature of the electron and that the wave-functions for the

electrons in any other assembly will also belong to group A . For protons

the evidence is not so extensive, as it depends only on the interpretation

of the hydrogen band spectrum and the theory of the specific heat of

hydrogen at low temperatures (§ 3-4). It is however sufficient to be con-

vincing.

Since all atoms and molecules are presumably built up out of electrons

and protons, the nature of the wave-functions for other material systems

should be deducible from the antisymmetrical nature of the wave-functions

for assemblies of electrons or of protons. It is of course true that any
material assembly may be considered as an assembly of electrons and
protons (for which we know already the nature of the wave-functions) and
not as an assembly of atom and molecules. But equally of course this is

not particularly illuminating for the ordinary nearly perfect gaseous

assembly. If therefore we have an assembly of atomic systems which can

be treated properly as practically independent we may ask what will be

the nature of the wave-functions for groups of similar atoms, molecules

or ions, which represent their motions as wholes, not their internal struc-

ture. It is easy to see* that these wave-functions must be antisymmetrical

if the system contains an odd number of electrons and protons and sym-

metrical if it contains an even number. For when we interchange a pair

* It is assumed that the same laws govern the structure of the nuclei as govern the external

a.tomic structure, so far at least as the combining properties of the wave-functions are concerned.
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of atomic systems we really interchange a number of electrons and protons

and therefore subject the wave-function to a number of changes of sign

equal to the total number of electrons and protons in the system. In

particular the wave-functions for gaseous assemblies of practically inde-

pendent neutral atoms or molecules must be symmetrical for each set of

similar atoms or molecules.

Besides material systems we have also to consider radiation. As is now
well known, while material particles such as electrons have many of the

properties of waves, radiation has also many of the properties of particles.

We cannot therefore be satisfied unless we can account for the equilibrium

properties of radiation both from the wave and from the light-quantum

point of view. We have already given an account of temperature radiation

in an enclosure based on its wave aspect in § 4-3. In order to treat it

satisfactorily as a collection of quanta we must use a modified statistics.

We shall find that light quanta must be assumed to behave, in contra-

distinction to electrons, in such a way that their wave-functions always

belong to the symmetrical group 8.

§ 21-3. The analogue of Liouville's theorem and its consequences. At the

close of Chapter i we pointed out that LiouviUe's theorem guarantees the

invariance of any element of volume of the phase space of an assembly

during any dynamical motion. This includes the natural motion of the

assembly and its motion under any mechanical perturbation from without.

We may derive from this some sort of principle of consistency which sup-

ports the actual choice of weights proportional to elements of phase space.

For if we compare the motions of the perturbed and the unperturbed

assembly and consider the regions of phase space in which a group of

representative points lies at corresponding times in the two motions, it is

natural to expect that the averaging should be unaffected by the per-

turbation and should attach equal weights to corresponding elements.

LiouviUe's theorem shows that the weights actually chosen have this

property. There is an analogue of this invariance in the new quantum
mechanics.

In the new quantum mechanics each independent wave-function corre-

sponds to a stationary state of unit weight in the older quantum theory,

and this again corresponds to a certain constant extension of classical

phase space. It is therefore natural to expect that the proper method of

averaging will be to average over aU accessible wave-functions assigning

an equal {unit) weight to each. Having therefore proposed this convention

we require it to satisfy a consistency theorem, similar to that provided by
LiouviUe's theorem in the classical theory. Such a theorem has been given

by Dirac*. The proof is as follows.

* Dirac, Proc. Roy. Soc. A, vol. cxii, p. 661 (1926).
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Suppose that at some moment {t = 0) the assembly is in a state repre-

sented by some particular wave-function (T')«=o of the set of accessible

wave-functions. The assembly then carries on with or without perturba-

tions. If there were no interactions between the systems and no perturba-

tions we should always have the same wave-function. In general however

the wave-function will change and at time t we shall have

T*=i:„a„(OT,', (1468)

where S„ is extended over all the accessible T„*.

This equation may be established by the method of variation of para-

meters. Including interactions and perturbations the wave-equation takes

the form

" («" ~ *a|) + ^ (*" " * k) + - + ^ (?«' - * ai)

- * I + ^ ('' *' ?- - '^ k' ' - *4)] ^' = "• ••'""''

This is written expressly for an assembly of M similar systems when A
must be symmetrical in all the M suffixes. The YJ are the solutions of

(1469) without the term A. It will be obvious that what follows holds

equally for assemblies in which there are any number of such groups. On
substituting (1468) we see that it satisfies (1469) if

i:,aAt)[A]'¥J = ihi:,d,{t)YJ (1470)

We shall assume for simplicity that the T„ of equation (1456) which lack

the time factor form a complete set of real normal orthogonal functions

in the configuration space of the assembly*. Then we may assume that

[A] Wn^ with its time factor can be expanded in a series

^m-^m, n V') ^ m •

The equation (1470) is then reduced to

which is satisfied if and only if

ihd^ {t) = S„a, {t) A^,, (t). (1471)

The A^ n (0 ai'G given by the usual integrals which fix the coefficients of

any expansion in a series of orthogonal functions, here

j...j[i:,Ar^,{t)YrnW^dq,...dq^^A^^, (t) e'^^'l^

=^e'^'^'l''j...JY„dA]'V,dq,...dq^^, (1472)

* The consistency theorem we shall prove is true more generally, without the restriction to

reality which requires the differential equation for ^^ to be self-adjoint. If this equation

[H{1)+ ... +H (3I)-E]'i^^=0 is not restricted to be self-adjoint the expansion of [^] ^„*

must proceed in terms of the characteristic functions of the adjoint equation. This equation may

be the conjugate complex of the original equation and its characteristic functions are then the

conjugate complexes of the 4'„, but it may be still more general. For the modifications in the

theorem then required see a forthcoming work by Dirac.



21-4] Analogue of Llouville's Theorem 529

where the • • • are extended over the configuration space. Equations ( 147 1

)

and the initial conditions serve to determine the a^ (t) uniquely.

The regular interpretation of any such equation as (1468) proposed by
the new quantum mechanics is that

|
a„ (t) \^ represents the probability

that the assembly, initially in a given state at ^ = 0, will be found in the

state represented by T„' at time t. This interpretation requires the con-

sistency theorem

2Ja„|^= 1, (1473)

which is true and is the required analogue of LiouvOle's theorem. For it

shows that if we attach unit weight to the state represented by each wave-

function we attach the same unit weight to the group of states that succeed

any given state at any time, whether or not there are perturbations.

To establish (1473) we have to show that

S==ihj^i:^\ a, {t)\^= ihH^ [a„ it) rt„* {t) + d„ (t) a„* (t)] = 0,

where a* denotes the conjugate complex of a. We restrict ourselves of

course to the same special case as before. The conjugate complexes of the

a's are defined by
T** = E,a/ {t) T„**

and satisfy the differential equations

- ihd^* (0 = 2:„an*(0^,n,.* (t), (1474)

where ^^,„* (t) = ^ " ^ (^« " ^'») ^/^
[... [t^ [A'^W^dq, ... dq,^. ...(1475)

With the help of equations (1471) and (1474) it follows that

-= ^n,man* (0 «m (t) [An,m (/)
" A^^^"" (t)].

On comparing (1472) and (1475) we see that An^„^ (t) = A^ „* (t) whenever

J. is a function of t and the g's only (when it must be real). The same
relation can be shown to hold also when A contains terms in — ihdidq with

constant coefficients. These cover all the examples commonly required.

Actually the relation A^^^ (t) = A^ „* {t) is essential to the interpretation

of the quantum mechanics and must be true in general, as it is the analogue

of the reality of the interaction or perturbation in the classical problem.

Our consistency theorem is thus established.

§ 21-4. Average values in an assembly obeying general laws of acces-

sibilityf. The result of the foregoing investigations is that in enumerating

t For the sections immediately following a very useful reference is Uhlenbeck, Over statistische

Methoden in de Theorie der Quanta, Thesis, Leiden (1927). The general method was given by
Fowler, Proc. Roy. Soc. A, vol. cxiii, p. 432 (1926).

F 34
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the accessible complexions of a group of similar non-degenerate systems

in an assembly we have to replace the classical

,

^•' , (1476)

by 1 when the wave-functions are confined to the group 8, and by

1 [a^ < 1 {all t)], [a« > 1 {some t)]

when the wave-functions are confined to the group A. We shall proceed

therefore to study the equilibrium state, using the general expression

n,7(a,) (1477)

in place of (1476) in calculating C. This covers at once all the cases yet

proposed. It is obvious that we must always take

y (0) = 1.

To make the calculation sufficiently representative we shall consider

in detail an assembly of similar systems of two types A and B, which can

also exist in combination, type AB. There are then three different groups

of similar systems, all at first non-degenerate, of characteristics

^i, €3, •••, Cj, ..., T^i, ''^2^ '•'! Vti •••} bl5 S2j •••? bis •••?

respectively. The number of systems assigned to each characteristic is

specified by
a^, a2, '•., citi '•'} 0^, O2, ..., Otj •••> Cj, C2, ..., C(, ...,

respectively. This set of numbers specifies completely the statistical state

of the whole assembly which is therefore represented by

n,y{a,)U,y'{h,)U,y"{c,) (1478)

complexions or independent wave-functions. It will not necessarily be

true that the y's are the same for the different types.

To see more clearly that (1478) is the proper form when dissociation is

going on we may go back for the moment to the classical enumeration for

this assembly. We then assigned to the specified statistical state for a

single example of the assembly

Ml N\ P!
n,(a,!)-n,(6,!)-n,(cj)

complexions, where ^tat=M, i:tbt = N, i:tCt = P. We also multiplied

this number by
X\ Y\

MINIPI'
where M + P= X, N + P= 7, for the number of such examples. Thus

the full number of complexions was

^ • -^ • (14:1^)
n,(a,!)n,(6,!)n,(c,!)' ^ ^

which apart from the trivial constant factor XI 7! is of the form (1478).



21-4] Assemblies with General Laws of Accessibility 531

We might however have proceeded directly to this form by considering

the complete permutations of the systems among all their possible states,

without reference to particular examples of the assembly and without

distinguishing between the bound and free states of the systems. We can

now see that we can do the same thing in the new mechanics. If we

enumerate the wave-functions of the assembly corresponding to the

{at,bi, Cf) specification as in § 21-2, it is unnecessary to distinguish between

states that are bound or free, and we shall again arrive at (1479). When
however w^e consider the symmetry properties of the two sets of systems

A and B we find just as before that the wave-functions break up into non-

combining groups, there being in particular just as before the groups A and

S. If we may assume that the wave-functions of the systems A and B
belong to one or other of these two groups, then the wave-functions of the

set^-S must also belong to one of these groups, and the form (1478) for

the number of wave-functions or complexions is correct.

The arguments are obviously quite general and apply to any dis-

sociating assembly such as those discussed in § 5-4. We shall not trouble

to repeat the general formulae in this chapter. We need only comment on

the question of the symmetry numbers which occiu* in the general classical

discussion. In the new mechanics all questions of molecular symmetry

automatically adjust themselves, if the accessible states of the molecule

or other system containing numbers of similar parts are correctly

enumerated. Of course the considerations which govern the accessibility

of complexions of assemblies of similar systems equally apply to the pos-

sible intercombinations between the states of an atom or molecule. For

example the accessible states of H^ must be antisymmetrical in the two

protons. The number of its accessible states is thereby halved (as we have

seen in Chapter iii), which is the analogue of the effect of the classical

symmetry number ct = 2. In the same way the states of an atom must be

antisymmetrical in all its n electrons, when account is taken of their spin.

For this reason its possible states are reduced in number by the similarity

of the electrons by the factor n ! , representing a classical symmetry number

of this value as we saw in Chapter xiv.

To find the total number of complexions C we have to sum (1478) for

all Of, bf, Cf subject to the conditions

2,6, + 2,c, = Y,

which can obviously be done by the method of § 5-3. The required number
of complexions is the coefficient of x-^y^z^ in

S {[n,y(a,)] x^-^-tz^t-t^t} {[Uty' {b,)] y^-th z'-th^t) {[n,y" (c,)] {xyy-t<^tz^-t<^tit)

,

(1480)

34-2
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summed over unrestricted positive and zero values of at, b^, Ct for all t.

This series can be partially summed. We write
00

n=0
00

giyz^^t) = E y' {n)y''z'''^t,

00

h {xyz^t) == S y" {n) {xyY 2"^«.

The new functions so defined may be called the generating functions of the

systems. Then the series (1480) reduces to

njixz^t) n.gr [yz^t) Yiji (xyz^t), (1482)

and the total number of complexions is

^=
(2^3///^yi'^..

n-/(»-^") n.6r(!/2") TiM'^y^'')- -(wss)

The forms of the generating functions with which we shall have to deal are

:

Classical ;/ (ic^^O = exp (xz^t), (1484)

Wave-functions of group S;f{xz't) = Y.^x^'z^H = 1/(1 - xz't), (1485)

Wave-functions of group A
; / {xz^t) = 1 + xz^t. ( 1486)

It will now be sufficient to summarize the rest of the development of

the revised equilibrium theory and its thermodynamical connections which

are strictly parallel to Chapters v and vi. The fundamental first step is the

construction of an integral for (To^ similar to (1483), where «^ is the average

number of systems of type A in their rth state. The required number is

the coefficient of x^y^z^ in a series differing only from (1480) by the extra

factor a^. This series sums to a result like (1482) except that the single

factor / {xz'r) is different, being replaced by
00 g
H ny {n) x'^z'^^r = x^ f {xz^r).

ca. = 4^3 If] ,..t,tt..i4 ^"g^ ("^^-) "*^(""') n^^ ^y^''^

Thus

''

{2TTif]]]x^+'^y
X Y[ih{xyzit) (1487)

The other integrals required can be similarly constructed, and can all be

evaluated by the method of steepest descents. If we write

Z = log {nJ {xz^t) n, g (yz^t) n, h (xyzit)},

= S, log/ (xz't) + S, log g (yz^t) + S< log h {xyz^t), ...(1488)

1. = Z - E\ogz- X\ogx- Ylogy, (1489)

so that E is the logarithm of the integrand of C, then the saddle-point of

the integrand is given by the unique real positive root A, ju, 0^ of the equations

??=??:= ?? =
dx dy dz
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Theorem 5-5 applies here, and we find as in Chapter v that M M,N and MN
are the average numbers of free systems of types A, B, and AB,

^=A^log/(A^^.), (1490)

M= S,a;= A^^S,log/(A^^.), (1491)
dX

d_
E^ = S,a,., ^^~ S,log/(A^^r). (1492)

Similarly c, = A/x ^-^ log h (A/^^f.), (1493)

MN = S,c; = A/x^-^, X, log h (A/x^fr), (1494)
d (A/x)

¥;;; = 2,^^, = ^ ^ ^^ log n (A/x^^o. (1495)

It is obvious that the method is quite general. If there are no molecules

possible of type AB, then it is only necessary to omit all terms in h {xyz^r).

If other types of molecules are present such as A2B (chemical notation),

then we have only to insert the corresponding additional factors

n j (x^yz^r)

r=l

and terms derived from them, j being constructed for the new systems as h

was for the old.

§ 21-41. External reactions, entropy and absolute temperature. External

forces acting on the assembly can be discussed in the revised theory just

as in the old. The e^ depend on parameters a which define the external

fields of force, and

da

is the reversible work done by the system in the rth state on the external

body as a increases from a to a + 8a. This is only a definition conserving

energy and is still valid in the new mechanics*. If A is the corresponding

average reaction of the whole assembly

A = .,a-;(-|)..A(-^,^) + .,^(-|

We observe next that the intensive parameters, A, /x, ^, which specify

the equilibrium state have still exactly those properties which we expect

of the partial potentials and the temperature in thermodynamics. To prove

* For the nature of adiabatic (i.e. slow reversible) variations in the new mechanics see Born,

Zeit.fur Phys. vol. xl, p. 167 (1926).
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that these assemblies are thermodynamic systems we have to show that

there still exist functions T and 8 of the state of the assembly such that

T is a function of ^ only and

dQ = dE + HAda = TdS.

It is easily verified that these functions exist and have the forms

^=e-i'^2', S-So^kH, (1497)

where S is defined by (1489). We can verify also that, omitting trivial

S - So^ klogC. (1498)

The natural convention is always to take Sq = 0, and there are now no

awkward factorials to be omitted from C before we may assert in all cases

that
S = kl.^ klogC. (1499)

It will be seen at once that the contributions of the various sets of systems

to 8 are strictly additive and that the characteristic function T is simpler

than 8. The typical contribution to T from the free systems of the first

type is

00

"V = k[- M log X+ "E log f{X^'r)] (1500)

§ 21-42. Degenerate systems. We can now remove the restriction of

non-degeneracy. The equilibrium properties of systems of given type

depend only on the function

Jlrlog f{X^-r),

in which we have supposed that the e,, are all distinct, with one wave-

function apiece. If the systems are naturally degenerate we may now
remove the necessary perturbations, and the e^ then become equal in

groups of number w,. . The logarithm of the generating function is then

i:,mr log fiX^^r). (1501)

If A is sufficiently small the logarithm can be expanded and the function

(1501) cast into the form used by Einstein*,

S «(i)A^"(S,m,^^-^r). (1502)

If Schrodinger's equation separates into distinct parts so that e^ = Cp + e^

and Wf. = c7pC7r we shall find for (1502)

i a ij) X^ (SpTOp^^'^p) (2,ro,&^-^0. (1503)

In classical mechanics (1502) reduces to

XE.wA'r = Xf {^),

* Einstein, Bed. SUz. (1924) p. 261; (1925) p. 3.
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where / {^) is the old partition function. For wave-functions of group S
we have

- ZrWr log (1 - X^'r) = 2 ^ (S.CJ.^'^r), (1504)

and for wave-functions of group A

S,m,log(l + Aa^r)= i: ^~K^^' (llr^.^'r) (1505)
3 = 1 J

§ 21-43. Moving mass-points in a volume V. If our systems are atoms,

molecules, ions or electrons free to move in a volume V, we can discuss

their translatory motion apart from their internal motions, since Schro-

dinger's equation separates into two parts for the two motions. If V has

the form of a rectangular box of edges a, b, c, the determination of the e,.

is simple. The separated part of Schrodinger's equation reduces to

VV +^ {E - W)
<A
= 0, (1506)

where W is the potential energy of the system in the local boundary field.

A sufficiently representative form for W is to assume that IF = inside

the box* and W -^ oo rapidly as we pass the walls. Then to be a possible

wave-function must be one-valued and bounded in V and vanish over the

wallsf . The possible forms of T are obviously

,
. STTX . t-ny . UTTZ /imrrx

0- = sm sm -j-^ sm
,

(1507)

where s, t, u are positive integers (not zero), corresponding to the charac-

teristic

^-^'-m€^ + F^ + 7^
<'^««'

There is only the one ifj^ for each characteristic. Any weight factors other

than unity enter only in virtue of the internal structure of the systems.

On referring back to (1502) we see that the important series to be

summed is

which on using (1508) breaks up into the product of three series of which

is tjrpical. This series is practically a ^-function and its value when

jh^l{8ma^kT) is small, as it is for aU the important terms in (1502) in all

* For ions or electrons we thus ignore the effects of their charges. If the assembly as a whole

is a neutral mixture this is probably a valid but rough first approximation and is in common use.

f The boundary condition on the walls can be established thus : consider the waU x = 0, near

which as F-^oo ijj" ~Vifi. By well-known methods [e.g. Jeffreys, Proc. Lond. Math. Soc. vol. xxrn,

p. 428 (1924)] it foUows that log i^~±J^F-t?a;. We must suppose that for a local boundary field

the integral does not converge as x -> 0. Hence either </r -> or i/r -> oo . The latter is impossible

if i/r is to be bounded or even if only j \ 6 \^ dx is to exist. Hence i/r -^ on the boundary.
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ordinary applications, can be obtained as accurately as may be required

from the transformation theory. We have in fact*

^z{v,t)= I + 2 S e'^"*' cos 2s7TV,
s=l

y I \ ^ _:ii(i,+^)
2 e-^^^'+^y, (1510)

n= — oo

Putting V = 0, and r/i = jh^KSirma^kT) we find from (1510), with great

accuracy for small values of r/i,

which is sufficiently nearly equal for all ordinary values of a and T and
early values of j to

{27TmkT)i a

h
J

.(1511)

Thus ^^e-^v..^(2^^f)^F ^^^^^^

For structureless mass-points and sufficiently small values of A

S,log/(A».) = '^^^Vfj-fx' (1513)

If the internal motions are included this becomes

S,log/(A^S) = i!!I!^^ V S ^^ A^(S.t^,e-^-^W^r). ...(1514)
n j=\ ji

The conditions under which the foregoing formulae hold are first that

A shall be sufficiently small for the expansion of the logarithms; on this

condition we shall defer further comment. The other condition is that

h^j{87r?na^kT) shall be very small even when multiplied by any integer j
which yields a significant term in the j-expansion. This condition is fulfilled

for all ordinary enclosures and ordinary temperatures, for if a = 1 cm.,

T = r K., the value of this ratio is 1-4 x lO-^i. We shall not discuss (1514)

in detail. A single example will be sufficient to illustrate the relationship

to the classical formulae of §§ 2-6, 5-3. Let us assume that the moving
systems are rigid symmetrical rotators without axial spin. Then as before

in § 2-62

^r = T (r + 1) g^, m. = 2t + 1 (t = 0, 1, 2, ...).

It was shown in § 3-3 that

S^(2.-fl)exp|-^^^.(r+l)}^.-^^

* Tannery and Molk, Elliptic Functions, vol. ii, pp. 252, 264.
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when the rotations are practically classical, that is when jh^jSir^AkT is

small. Under these conditions (1514) reduces to

2,,og/(ArO = '^-""*
'^';f'

'^^'- '^ i ^-^X' (1515)

In all these formulae we have for systems whose wave-functions are of

the group 8
« (i) = i/i-

This is called the Einstein-Bose statistics. For systems whose wave-

functions are of group A we have

This is called the Fermi-Dirac statistics.

§ 21-44. The value of X and the approximation to classical statistics. The

value of the foregoing expansions depends on the size of A which must now
be examined. By equations (1491) and (1513), ignoring internal structure,

the molecular density v is given by

^^M (2.mmi^a(l)^,
V h^ y=i ji

It follows at once that A is small if

vh^ V— . or 5-2 X 10-21—-^,
{27TmkT)i (TM*)^

is small, where M* is the molecular weight on the (chemical) oxygen scale.

Thus even for molecular hydrogen at 1° K. and normal concentration,

V = 2-7 X 10^^ A is still less than O-I and the series in (1516) reduces

practically to its first term. A fortiori for heavier molecules and greater

temperatures A is still smaller, or as small up to higher concentrations. Thus

in all applications to actual gases we may assume that A is small and that

(1516) and similar series reduce to their first terms. The only exception

will be electron gases at the concentrations at which one would expect to

find free electrons in metals, about one per atom, v = 10^2. Such assemblies

are still non-classical up to temperatures greater than 2000° K. The expan-

sions are then valueless.

When A is small the assembly is indistinguishable from a classical one,

according to any statistics for which « (1) = 1. For (1516) reduces to

^^(2.mkT)i
h^

and the distribution law (1490) to

^= Ae-^r/^^. (1518)

These equations are equivalent to those of § 5-3. The contribution of these

systems to the characteristic function is then

-ITT r „ -. rr. , -,
(27Tmk)i

, ,

Jf l^flogT-logi. + log'^-p-^ + 1 (1519)
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which is classical, including the value of the constant. Thus all oiu* formulae

for the chemical constants are unaffected.

We have shown that in general gaseous assemblies are practically

classical in spite of the change of statistics either to type A or 8. It is now
easy to see the reason, which is that the phase space has so many cells of

extension h^ or the assembly so many corresponding wave-functions that

it is extremely improbable that any pair of systems will attempt to occupy

the same cell or possess the same wave-function. It does not then matter

how those events are enumerated in which two or more systems occupy
the same cell.

From (1514) we can derive the result that

V-lE^iJV. (1520)

For in (1503) only the ep and not the e^ depend on the mass motion of the

systems, so that to find their mean kinetic energy we have to operate with

d-d/d^ or kT^d/dT on the ^^p terms only and not on the ^^t. These terms give

rise to the external T^ factor in (1514). Therefore

^^^ 3^y(277m|T)t^
i "^P X^ (Z^WrB-^^rncT) (1521)

fl j=i ji

On the assumption that the e,. are independent of V,

^ kT (?!I^^* 1: ^) A^- (S,t<7.e-^-^r/^-2'), (1522)

which yields (1520). This classical result therefore holds in the new
statistics so long as (151 1) is a legitimate approximation—that is practically

always—whatever be the value of A.*

The equations, of dissociative equilibrium can be obtained at once from

equations (1491) and (1494) by eliminating A and [jl from these equations

and the analogue of (1491) for the other free systems. We have only to

solve these equations for A, /a and A/x in terms of T and M/V, N/V and

MNjV respectively. The functions so obtained are proportional to the

concentrations in the classical limit when A and ju, are small, and are equi-

valent to the activities of modern thermodynamics.

§ 21-45. Sface distributions of mass-points in external fields of force. The

distribution laws which we have given are primarily concerned only with

distributions over the characteristics, that is with energy distributions.

At the same time these must imply some means of deriving the average

number of systems "present" in some sense in a given volume element of

ordinary space.

The means required are provided by the properties of the wave-

* That (1520) is true for all values of A can be more simply proved by using the integrals of

the following sections instead of the expansion (1503).
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functions themselves. We interpret these wave-functions so that
| j/^^ |^ fZF

is the probability that a given system with this normalized wave-function

will be found in the volume element dV at any time. The average number n
of molecules "present" in the volume element dV is therefore given by

njdV = vi:,dr\4>r\\ (1523)

= A^S,log/(Ar.)|</r,|^. (1524)

We must now study the approximate forms of these wave-functions

when the systems move in a field of force in which they possess the potential

energy W* We must restrict ourselves to wave equations for ip which

separate in the variables x, y, z, so that W = Wj {x) + w^ (y) + w^ {z).

Actually this restriction proves not to be serious since with a more general

W we can always limit the assembly to physically small portions of the

gas in which W is sensibly of this form. The equation for the x-factor in i/r,.

namely

~^' + K^ [e, - w, (x)] ifj{x) = (k^ = --p-j , ...(1525)

is then typical of all three factors. It must be solved with the boundary

conditions j/f (0) = (a) = 0. For convenience we shall assume that

ii\ (0) = and that dw^^ {x)ldx > 0, but these conditions are inessential.

Since k is very large we can apply the analysis developed by Jeffreys! for

such problems. He has shown that if

r^ d^ 1 dr
><> ^A^s - Wi {x)T^ —

1, (1526)

then the two solutions of (1525) approximate very closely to

[e, - w-^ {x)]-i exp \±k\ [Wj^ (x) - eJ* dx^r ( 1 527)

Since k is large the condition (1526) is satisfied for all but a very few of

the possible e^ except near a zero of e, — iv^ (x), where there is a range very

small compared with the total range 0, a in which the condition fails.

We now choose that solution vanishing at x = or a: = a which can also

be made to vanish at a: = a or a; = 0. There are two cases. If e^ — ir^ (x) >
everywhere in the range the required solution is

[e, - w^ {x)]-i sin L f [e, - il\ {x)f dxl (1528)

The €s are then those values for which

r« 1

K
\ \€g — u\ (x)]^ dx = nn,
Jo

* Mott, Proc. Carrib. Phil. Soc. vol. xxiv, p. 76 (1928).

t Jeffreys, Proc. Lond. Math. Soc. vol. xxm, p. 428 (1924). An independent discussion has

been more recently given by Kramers, Zeit. fur Phys. vol. xxxix, p. 828 (1926), with results

which agree with those of Jeffreys to the order required here, though they do not seem to agree

completely.
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where n is an integer, li e^ — w-^ {x) = s^i x = x^ in the range we may take

that solution which, when e^ — w^ {x) < 0, approximates to

[w;i (x) - e,]-i exp
j
-

KJ [w^ (x) - €,]i dxl

,

for this solution decreases very rapidly as x increases and may be taken

to be zero for x> Xq, and so at x = a. When x <Xq this solution has been

shown by Jeffreys to approximate to

[cg — Wi {x)]~i sin 1^277- + «
I [^s — ^^1 (^)]* <^^\-

These values of e^ are determined by

j^yTT + K
\

[eg — W;^ i^)]^ dx = n'lT,

where n' is an integer. Since the period of the oscillating function is very

short compared with the distances of appreciable variation in w^ {x) the

normalizing divisor for this wave-function is

Ns= \\ bs- ^1 (^)] * dx,
Jo

and for the other type the same with Xq replaced by a. The interval between
two characteristics is given by

'^ [^s+i ~ '^1 (^)]^ dx — K
\

[eg — w-^ (a;)]* dx = TT,

Jo Jo

so that approximately, if de^ = e^+i — e^

,

KNgdCg = 77.

Thus the normalized characteristic functions are approximately

= C"^^')^ ^--i sin O {e, > IV, {x)l

= {e, < 2^1 [x)),

where sin G oscillates very rapidly when either e^ or x varies. There are

similar factors in y and z.

We now insert these values in the series in (1524), and average over a

small volume element dV {= dxdydz) so that factors such as sin^ G may be

replaced by |. We find for this series

(2m)t^
^^

de^detde^

h' ^^'^S^^^' ' ^[{es-w,ix)}{e,-w,{y)}{eu-Wsim^
(e, = e, + e, + 6j, (1529)

summed over all r such that

€, > w, (x), €t > w.;, (y), e„ > ic^ (z).

Using the substitutions 6^ = w^i (x) + | mu^, etc., and obvious approxima-

tions this sum can be replaced by the integral

/2my
ffpiQgJ

(^g-iTF+j,n(«2+t'2+<<^2)}/fc2') dudvdw. ...(1530)
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Therefore

n_ ^ l^_:^\\^^jjr log f (Xe-^^^+i-'^^'+^'+^'mT) dudvdw. ...(1531)

The u, V, w are the exact analogues of the velocity components of the

classical particle. Thus (1531) gi\'es us the space distribution law in its

form integrated over the velocities. By returning to (1529) and taking only

those terms which correspond to specified velocity ranges we obtain the

complete velocity-space distribution law in the form*

n {u, V, w, X, y, z) dudvdwdV

- (!)
\~logf ^Xe-^w+irrHu2+vHw2))ikT^ dudvdwdV, (1532)

w.hich is the new form of the Maxwell-Boltzmann distribution law. When
A is small the log reduces in all statistics to

On carrying through the integrations in (1531) we then obtain

,3 'dV ¥
which, A being constant, is the classical result.

It may be useful to express (1532) in terms of the resultant velocity or

total kinetic energy and the direction of motion. We can then put

u^ + v'^ + w^ = c^, dudvdw = cHcdm,

where dco is an element of solid angle, so that

~= (jY X^logf {Xe-^'''+^^<''^l^'^) cHcdco (1533)

On integrating over all directions, we find an expression for n (c) dc, the

average number of systems per unit volume moving with velocities between

c and c + dc,

n (c) dc = ^^ X ^ log/ (Xe-(w+imomicT>^ chic (1534)

Expressed in terms of energies {\mc^ = e) this reduces for the range e,

e + rfe to

n {e) de = ^^'^^^ ^ ^ ^°g/ (Ae-^^^+^V^^) eUe (1535)

§ 21-46. Distribution of mass-points between different phases or enclosures.

The foregoing result can be obtained under more general conditions by a

somewhat different method of treatment which does not contemplate in

one survey the whole space V accessible to the systems, but starts instead

by breaking it up into parts and treating each part as if it were a

* A factor 8 drops out from (1532) because only positive values of u, v, w were contemplated

in (1531), while the actual u, v, w may have either sign independently of each other.
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practically independent enclosure. We know that such a procedure leads to

correct results in the classical statistical mechanics, and there is no reason

to question its validity here.

Consider for simplicity an assembly of two slightly connected enclosures

in each of which the potential energy of the systems is constant. In one

enclosure it may be taken to have the value zero, but in the other a different

constant value W, which may of course be of either sign. In the former

the characteristics have the values already given in (1508) with the corre-

sponding spacing. We thus find, using the same groupings and transforma-

tions that lead to (1535),

2,log/(A^^.) = ^^]^' V riog/(Ae-^/^^) eHe (1536)
h J

In the latter enclosure the wave equation is

VV + K^{E - W)if;= 0,

and the characteristics are given by

^ _ TF = - f- + - + -8m \a^ b^ c^

S,log/(A^V) = ?!L^^ V' riog/(Ae-("^+^V^^) e^de. ...(1537)
n Jo

We therefore find instead of (1536)

277 (2m)t

Jo

If we construct the usual expression for the number of complexions of

this two-enclosure assembly we have

and the average numbers of systems in the two enclosures will be given by

]^=A^S,log/(A^^O, ir = A^E,log/(A&V).

On using (1536) and (1537) we see that these expressions are equivalent to

(1531) which we obtained by discussion of the whole assembly with a simple

form for W.

We may note in conclusion that the dependence on T of (1536) and

(1537) can be shown in a simple form by the substitution ejkT = x. We
then find

S, log/ (A^V) = ^'L^^^ZLK'I'iog/ (Ae-'^/^J^ e-^) xUx, (1538)

which when W = depends on T only through the outside factor.

Whether or not the systems are practically classical in either of the

enclosures will depend on the value of Ae-'^/^^. It may happen that A is

small (classical statistics) while Xe-'^l^^ is very large (tight-packed systems).

This happens in applications to thermionics.
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§ 21-5. Applications to the electron theory of metals. For assemblies in

which A is not small, we require fresh means of evaluating the integrals of

the last sections. Series expansions are now useless. As we have already

stated such assemblies in practice are only assemblies of electrons so that

we may confine attention to the generating function proper to the Fermi-

Dirac statistics. All the formulae can be converted when required to the

Einstein-Bose statistics by simple changes of sign. We must also remember
that the electron has a spin with two orientations, so that in the absence

of external magnetic fields it is a degenerate system of weight 2 whatever

its translational motion.

Before applying our theorems to assemblies of electrons we must recall

that our assemblies have to be composed of practically independent systems,

while electrons act on each other with long range fields. It is not possible

that these long range fields should be entirely without effect on the charac-

teristics of the assembly, but if the charges of the electrons are neutralized

in each volume element by the charges of suitable associated positive

systems, as in fact they are, it does seem reasonable to assume that the

charges of the electrons can be neglected in constructing a valid approxi-

mation of zero order to the wave-function of the assembly. If we make this

approximation we smooth out as it were the atomic structure of the

charges, so that their only remaining effect from the point of view of the

electrons is to create a region of uniform negative potential energy in

which the electrons move almost freely. This is the model which (following

Sommerfeld) we can apply to explain the leading features of metallic con-

ductors* and perhaps the interiors of ultra-white-dwarf stars.

For an assembly of electrons so treated we find on adapting (1538) that

= 2
^

^^"^^P^
^
^J\Mog (1 + Xe-^l^'^-) dx. ...(1539)

li W ^ for free space, then W <0 for the interior of a metal. We shall

write W = — xo^^ conform to our previous notation and shorten the algebra

by writing
Ix^XexolkT^ (1540)

We can remove the logarithm if desired by integration by parts, so that

^^2 <"'^'^^r.^M S^/7TJo 1 + e^/jM
^ ''

For this group of electrons

^ _ aZ _ {2nmkTlV^ r ^^x

E = ^T2 i^^ = kT^
'dZ_ dZdji^

dT ^
dfi dT

= ikTZ-Mxo (1543)

* Sommerfeld, Zeit.filr Phys. vol. XLvn, p. 1 (1928); Naturwiss. vol. xv, p. 825 (1927).
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Since all the equilibrium results can be derived from Z, it is strictly

only necessary here to evaluate Z itself in a form suitable for use when jLt

is large. Sommerfeld* however has given a somewhat more general result

—an asymptotic expansion for the function

1 + 2
^'^P+ ^)^^2

_j_
(/> + l)p(/)-l)(p-2)c4

^

The result is

(log /x)^+i

""^ r(p + 2)r ' "1 (iog^)2 ' (logi^}

(1545)

where c, = 1 - ^^ + ^ --+... = fl - 2^1)
(l + 2"v + 3- + •••)•

An elementary proof of the first two terms of the formula for p = |

(i.e. for Z) is easily given. Consider the integral factor in Z in the form

I ^ -j-\ x^log (1 + e^-^) dx {B = log Lt).

By breaking the range at x = ^ this reduces to

ly^Tr/ -
f x* (j8 - a;) ^x + f (j8 - ^)2 log (1 + e-^) cZ?/

f°° 1

+ (^+ ^)^log(l + e-y)dy.
J

In either of these integrals the logarithms can be expanded and the result-

ing series integrated term by term. Thus we get

1 VttI = y%i3t + S^ -- e-v (^ _ y)^ dy+Y, ^-f- e-^ (iS + y)^ dy.
o J Q e> JQ

This is exact. When ^ is large the square roots in these integrals can both

be replaced by s/^ to give the dominant terms. The range of the first series

of integrals can then be extended to 00 without sensible error. Thus

W^i = j%fi + 2^i s i::!^' fe-- dy,
s Jo

The method can easily be extendedf to show that the error term is (j8~^).

We find therefore that

Z = 2 "^

j^
—

|^%
(log /x)- + J (log /x)^ + (log /x) t|.

(1546)

* Sommerfeld, loc. cit. p. 11. This more general result is needed for the discussion of transport

phenomena.

f And extended without very much difficulty to give Sommerfeld's complete result.
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Beyond this we require only the distribution laws of §§ 21-45, 21-46. The

most important are the special forms of (1532) and (1535), namely

. T T T TXT n f'mX^ dVdudvdw
n {u, V, w, X, ij, z) dudvdwdV = 2

\^jj ^ _^ ^iw+imu^+v^+w^mTix '

/my dVdudvdw
(iF{d.i\^

\'k) 1 _)_ Qlm(u'^+vi^wi)lkTI'
(1547)

n{e)d.dV=
j^, 1 + e'l.Ti^

(15«)

Before applying these formulae we must examine whether it is reason-

able that log fx should be large for metals when M/V is of the order of one

electron per atom. We shall use Uq for this electron density inside the

metal. It follows from (1546) that

_ {2TTmkT)i 2
'^ |i (log /x)* + Y2

(i«s ^y^] (1^^^)-0 -
;^3

We can solve this equation of log /x in terms of Uq and obtain

The first approximation to log 11 is

For copper whose density is 8-9 and atomic weight 63 the number of atoms

per cc. and therefore tIq is about 8-5 x lO^^. Thus

log /x = 8 X lOV^.

This is still 80 at 1000° K. and 40 at 2000° K., amply large enough for the

use of the foregoing approximations. For metallic caesium, in which the

atomic density has the lowest value known for a metal, n^ is less by a factor

of 10 and log /x by a factor of 5, but log fx is still large enough for the

application of these formulae at any temperatures below the melting point

of caesium.

§ 21-51. Specific heats of metals. In Chapter iv we were able to give a

generally satisfying account of the specific heats of metals, in which we
entirely neglected any contribution that might be made by the condensed

gas of free electrons which we now explicitly assume a metal to contain.

This contribution to the energy per unit volume is, by (1543) and (1550),

It is natural to start the development of the theory on the assumption

that no is constant and to retain a variable rio to account if possible for

special features in particular examples. For the simpler univalent and

F 35



546 The New Statistical Mechanics [21-51

bivalent atoms, for which there is a large energy step between the first or

first two and the following ionization potentials of the free atom, variations

of the number of free electrons per atom certainly seem likely to be small

and of secondary importance. Variations of tiq , which is a number per unit

volume, and also of
;!^o

can also be produced by variations of V, but we
shall not consider such effects here. This being so, the only variable part

of the electronic energy contribution is the third term in (1551). The first

two terms give the zero-point energy of the condensed electron gas. The

main contribution C/ of the electrons to the specific heat per unit volume

is therefore

3 h TT

which may be compared with the equipartition value ^njc given by

classical statistics for freely moving particles. The ratio of these quantities

is only 4-1 x 10"^ T for copper and therefore quite insensible. The fact of

primary importance is that the old difficulties of Drude's electronic theory

of metals have now been entirely overcome. Properly treated the electron

gas is found not to contribute sensibly to the specific heat of the metal.

We are free to apply the idea of this gas to thermionic, photo-electric,

thermo-electric and conductivity problems without upsetting our earlier

conclusions based on the theory of crystals.

The electron pressure may be noted here for reference. According to

(1520) it must be

TT h^ (^^qY 4-77^m /SwoA^

§ 21-52. Thermionic and pJioto-electric ernission. Let us consider an

assembly of two enclosures of which one is in free space and the other

within the metal. In the former the average electron density % is very

low and If = so that A is very small, and we may write

n,^2 ^'";P\ . (1554)

The value of A must be the same for both enclosures, so that

It follows from (1550) that

-"ere ,.,„_ ^^ (?=..)«. (1556)

On combining these equations we find to a first approximation

2 (27TmkT)^ ,.^ i^rxn\
nf = ^—=^ L e-x/fcr (1557)

h^
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in agreement with (789). Thus the x of (1556) is the ordinary thermionic

work function. The small extra term in A corresponds as we shall see in

§ 21-53 to Richardson's terms in a. Since the number of electrons emitted

by the metal per cm.^ must be equal in equilibrium to the number returning

to the metal from free space, the saturated thermionic current —/is given by

I^lcn,e{l-r), c=2(-^j (1558)

The mean velocity c outside the metal will have its Maxwellian value. The

fraction r is the average coefficient of reflection of the returning electrons.

We thus find

where A = ^HI^ {\ - r) = 120 (1 - r),

when we measure currents in amperes per cm.^ This result is in agreement

with the best measurements of / and r, as we have already pointed out in

Chapter xi.

The revised theory provides an entirely satisfactory explanation of the

accepted relation x = ''^^o
between the thermionic work function and

the photo-electric threshold frequency Vq . At ordinary temperatures the

metallic free electrons are almost completely condensed and practically in

the same average state as at the absolute zero. For it follows from (1548)

and (1550) that when /a is large

. . 477 (2m)^ e^ /lKKO\

where €* = ^f^f. (1560)
8m \ TT J

Thus when ^ ->

_ 477 (2m)t r \

^y^)-
;^3 ^

y^<^ h\ (1561)

= (e > € *^

and the greatest kinetic energy normally possessed by any electron is e*.

Now if light of frequency v shines on the metal and a quantum is picked

up by an e-electron, the energy of this electron rises to e + hv, and it has

a chance of escaping from the metal if

hv + e > xo •

The least possible value of hv satisfying this inequality is

hv = hvo = xo- ^* = X

which is the equivalence required.

f

The theory demands a fairly definite average negative potential energy

f Prof. Wentzel informs me by letter that the theory can be successfully carried much further

and yields photo-electric efficiency coefficients of the right order of magnitude and varying roughly

in the right way with polarization, angle of incidence and frequency—a most striking success.

35-2
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Xq for an electron inside a metal as compared with the outside. For we

have Xo = X + ^*- The observed values of x ^re of the order of 5 electron

volts, and the values of e* can be calculated from (1560). For copper with

one electron per atom the value of e* is 7 electron volts so that Xa must be

about 12 volts. For two electrons per atom at the same atomic density

e* would be 7 X 2^ or 11 volts, and Xo 16 volts. For three electrons per

atom e* would be 14| volts and Xo about 19| volts. Direct evidence of

such energy steps is desirable and is perhaps provided by the analysis of

Davison and Germer's experiments! on the diffraction of electron beams

by nickel crystals. If it is assumed that the velocity and therefore the

wave length of the beams in the metal are the same as that of the beam in

free space, no exact agreement can be found between the observed diffracted

peaks and those calculated from the crystal spacing. If however it is

assumed that the beam is accelerated on entry by 18 voltswe obtain excellent

agreement. This is shown in the following table prepared for me by

Dr Hartree from the latest experimental results.

Table 57.

The refraction coefficient for electron ivaves incident on nickel, chosen to make

the observed reflections fit the lattice structure and the free wave lengths

of the incident electrons.

Fq volts.
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from statistical theory to give this work in detail. He finds theoretical

values for the reflection coefficients in excellent agreement with the

observed values both for clean tungsten surfaces and for tungsten surfaces

coated with monatomic films of thorium or other atoms for which the

values both of x ^^^ of -^ ^re very much reduced. It has also been found

possible! to calculate the rate of emission of electrons by cold metals in

intense electric fields on the same model. The formula for the current per

unit area is then

27Th
(^ + e*) X^

F^e-'<xhF L2 ^ ^^\ (1562)

where F is the field strength. This formula seems to be in good agreement

with the latest work of MillikanJ.

§ 21-53. Thermo-electric effects. We must now recall the formulae of

Chapter xi, particularly (786) for k (t>) in terms of a and (799) for the

contact potential difference of two metals. These were established in a

purely formal way so far as the internal structure of the metal was con-

cerned, and are therefore still formally valid here when we use Sommerfeld's

model. The new considerations do not alter the distribution laws outside

the metals. It follows that the equilibrium treatment which we have given

of Sommerfeld's model makes explicit evaluations of a, V^^ ^^^ njg by

equation (803). From the thermo-electric standpoint we saw that — cr/e

is Thomson's specific heat of electricity a^, and Yl^^ is the Peltier heat.

The evaluation of o- follows at once by comparing (786) or (787) with

(1550) or (1555). We find

4772 m k^T ._„^>

^^^^(s^V^f ^''''\

It will be recalled further (§ 21-41) that A is equivalent to the partial

potential of the electrons in the assembly and in fact is identical with a

f of § 6-5. It follows from § 6-5 and the laws of thermodynamics that we

should have
dCJ
duo

.(1564)

a relation which can be verified at once from (1552). It follows at once

that according to this theory §

47r2 m k^T
"^=""3-^(3^;;^' (1^^^)

t Fowler and Nordheim, Proc. Roy. Soc. A, vol. cxix, p. 173 (1928).

X Millikan and Eyring, Phys. Rev. vol. xxvn, p. 51 (1926); Millikan and Lauritsen, Proc. Nat.

Ac. Sci. vol. XIV, p. 45 (1928).

§ Sommerfeld, Zeit.fiir Phys., loc. cit., gives these formulae but with e (or rather e) for the charge

on the electron. There is however a real discrepancy to be recorded between (1565), (1566) and
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It is not fair to expect Sommerfeld's theory as so far developed to yield

values of at exactly comparable with observation. The theory is qualita-

tively not unsuccessful, for it gives values of o-^. of the right order of magni-

tude and depending in about the correct manner on the temperature T.

The calculated values for the series of metals, copper, silver, gold, fall also

into the proper sequence. Abnormally large values such as are found for

bismuth or negative values such as are found for iron and lead naturally

lie outside the simplest form of the theory.

Since by the thermodynamic equations (800) and (803) the Peltier heats

depend only on the temperature variable part of Fjg which is completely

determined by o-^, a successful theory of o-^ is exactly as successful for Ilia,

and also of course for the resulting electromotive forces in thermocouples.

The theory gives Peltier heats for pairs of simple metals in general of the

right sign. The variation with temperature like T^ is also in reasonable

accordance with observation.

Table 58.

Comparison of observed and calculated values of the specific

heat of electricity.

Metal
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calculations we find that for a metallic electron gas there is a residual

paramagnetism independent of the temperature and of the order of

ordinary diamagnetic effects. This can be very simply explained, for in

the condensed gas the N electrons occupy the N states of lowest energy,

but under the influence of the magnetic field these N states are not divided

into equal halves with the electrons pointing in opposite directions, but
a majority of the electrons point along the field, taking advantage of the

smaller total energy when so orientated.

In general let us suppose that the constituents of our gas have 2; + 1

orientations in a magnetic field H and that the magnetic energy terms are

e,= ~sgfXoH {-j<s<j), (1567)

where /jlq [= e^/(47rmc)] is Bohr's magneton and g is Lande's splitting

factor. The rest of the energy of the various systems is kinetic and the

same as in the preceding sections. We can therefore apply § 21-46 and
equation (1542) without the weight factor 2 to each set of systems, so that

We have also the condition

i:M=no (1569)

and the equation

jm = -'l.^M.e, (1570)
s=-j

for the total magnetization J^l of the gas.f We can now use the approxi-

mation (1549) for Mg, and expand on the basis that eJkT is small compared

with log A. Thus

h^ V^l^ ^^ 12 (log A)^ kTC^^ 24(logA)tJ_*

On inserting these values in (1569) we see that log A is unaffected (to the

first order in e^) since S^es = 0. On carrjong through the calculations for

log A and for J/H we find

xU-^( 5M- (1571)
1 3 \h^[3nol47T{2j+ 1)]V J

The temperature-dependent term is negligible at all ordinary temperatures.

For an electron gas for which j =- ^,g=2we find from the main term that

the paramagnetic susceptibility k is

K = VH h^ \7T
(1572)

t t//^can of course be derived by constructing the complete ^ and using -^M — - {d'^IdH)^^^ f^ y
as in Chapter xn.
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The agreement between theory and experiment for the alkalis is shown in

Table 59. The order of magnitude is correctly given. The small observed

value for rubidium and the negative value for caesium are doubtless due
to the diamagnetic susceptibility of these large ions, which we have of

course omitted from the calculations.

Table 59.

Paramagnetic susceptibilities of the alkali inetals.
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statistics its high density can be achieved in one way only, in virtue of a

correspondingly great energy content. But this energy can no more be

expended in radiation than the energy of a normal atom or molecule. The

only difference between black dwarf matter and a normal molecule is that

the molecule can exist in a free state while black dwarf matter can only

so exist under very high external pressure.

§ 21-7. Tlie statistics of light quanta. For the sake of completeness and

its historical interest we shall now show how Planck's law of temperature

radiation may be derived when an extreme light-quanta view of radiation

is adopted, provided we apply the Einstein-Bose statistics of the new
mechanics to a collection of suitable particles of indefinite number.

In order to determine the equilibrium properties of any type of particle

it is only necessary to construct the corresponding factor in Z in (1488).

Since the assembly contains a number of these particles which is un-

restricted, no selector variable such as x is here required. Since the particles

obey the Einstein-Bose statistics / (-«*) = 1/(1 — u). Hence

Z=-S,log(l- ^^0.

There is now a choice of developments. In order to stress the particle

analogy to the utmost we shall here follow through the argument (without

fields of force) which leads to (1532) in terms of the component velocities

of the particle. For particles with this statistics and given velocity com-

ponents we should have therefore

Z= - 2ljy Flog(l -^')dudvdw (1573)

The factor 2 remains as for electrons to allow for the two states of polar-

ization of the light-particle. This however is non-relativistic, and to apply

in the limit to light-quanta we must replace it by its relativistic form. The

arguments of § 17-72 and § 19-4 show that the relativistic form is*

Z= - p Flog(l - ^^)dp,dp,dp„ (1574)

where Pi , P2 > Ps ^re the exact components of momentum of the particle, and

e = moC^
I ^^ — 1

u^ + v^ + w"'

We can now proceed to the limit in which u^ -\- v^ -^ w^ -> c^, m^ -^ 0,

€ -> liv, 2?i
-> hv^\c, etc., where v-^,v^, v^ are the frequencies resolved along

the coordinate axes. In terms of the frequency v and the direction of

motion of the particle we find of course

dv-^dv<y^dv^ = v^dvdoj,

* For a complete account of the new statistics of particles in relativistic form see Jiittner,

ZeiLfiir Phys. vol. xlvii, p. 542 (1928).
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where oj is an element of solid angle. Thus

c

Integrating over all directions we find for the Z of v-radiation

-5— log (1 - ^'^O.Z.= ,(1575)

The energy content of these particles per unit volume follows at once in

the usual way, namely
^"'''*

^ ,(1576)
C3 QhvjTcT _ 1

'

which is Planck's law. The average number of light-quanta of this fre-

quency, obtained by dividing by hv, is

SttvHv 1

C3 QhvjkT _ I
1577)

§21-8. Fluctuations. The calculus of fluctuations developed in Chapter xx
can be applied to the revised statistics of this chapter just as to classical

statistics. In fact in certain instances the applications are even easier than

before.

The first step is to revise the integrals of Chapter xx for CaJ' and CE^.
Equation (1487) for Ca^ can be written in the form

^"-Uv^
dxdydz

X w- J [xz^ n/f{xz^t)
_

x^+i 2/^+1 2^+1 1^ dx-

X ntg{yz^t)n,h{xyzit), (1578)

where the prime on 11^ denotes that the single factor / (xz^r) is omitted.

On following through the argument leading to (1487) it is easily seen that

Ca
\27TiJ

dxdydz
X+lyY+l^JS+l (x^JfixZ^r) U/f{xz^t)

X U,g{yz^t)Uth{xyz^t) (1579)

Similarly

dxdydz
(^l)"n'/(XZ^t)

X n,g{yz^t)U,h{xyzit) (1580)

The special device of Chapter xx for Ca/^ is not here required. The forma-

tion of these mean values (and others) is obviously quite general and

straightforward and applies to any assembly.

In order to evaluate the fluctuations we make the substitutions

a; = e", y = e", z = e^,

fixz't) =f{e^+^t^') = expF {u + etw), (1581)
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etc. These and similar equations (1581) define F, G, H. We then find, as

in Chapter xx, that

G {E^ - E^)^ = (^] III
dudvdw exp [- Xu - Yv - [E - Ej) w

+ i:tG{v + Tjtw) +I.iH {U + V+ C,iv)]Q^ exp [E, F{u + e^w) - E^w],

(1582)

C {a^ — d^)" = \K~-) dudvdw exp [— {X - a^) u — Yv — Ew

+ I./F (u + €tiv) + llfG Iv + Tjtw) + 2,^ (w + V + Ctw)]

/ 3 \«
X f^j exip [F {u + e,w) - a^u] (1583)

Having thus shown how to write down exact integral expressions for any-

desired fluctuation, which can be evaluated as in Chapter xx, it will be

sufficient illustration of the nature of the results as modified by the new
mechanics to carry through the calculations for {a^ — dr)^ in a non-dis-

sociating gaseous assembly of two types of system. We put ?^ = 0, 2 in

(1583) and omit the terms H. It will be convenient however to allow the

systems to be degenerate. Equations (1582) and (1583) then stand, but in

place of (1581) we have

F {u+ €tw) = Wi log/ (xz't). (1584)

The formal working repeats that of Chapter xx and need not be given.

Remembering that

a, = m,X
1^

log/ (A^^O =^^ F (log A + e, log ^) = F' (r) (1585)

say, we find ultimately

(a,-a,)^=i^"(r)
{F"{r)V

F" (t)
V

2.,{e,Ji {t) + rj,G it)}
- -^-jjrj^

S^G^" (^)

The various terms are easily interpreted. From (1585) and similar equations

we find at once that

r'(r)=^f, I.,F'{f) = X^-^, S,e'{() = ^, ...(1587)

S,..J'"W = A|f = »||, S«,G"(«) = m| = »||, ...(1588)

S, {e,W (0 + Vt'O" it)} = S-^ (1589)

In all these differentiations the functions operated on are to be regarded
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as functions of A, fx and ^, and the other pair are to be kept constant. It

is further easily verified that the denominator of the last term in (1586) is

(^8^L,
Inserting all these results we find that

da, (Xda.ldX)^ r XdXldX\ \ dX
(a.-^.)^ = A^^-i^^^-i 7-m\ '-^''''^

Classically F = exp, F" = F' = dr, so that equation (1590) then agrees

with (1396) for v = 1 as it should. For any other statistics we can evaluate

(1590) by inserting the proper values of a^, X, and E-^^ from equations such

as (1490). Under bath conditions, when E is very large compared with

any quantity connected with systems of the first type, (1590) reduces to

{a, - a,,)2,= A ^^'"
Xda^jdX

XdX/dX

The result commonly given* (though not in this general form) is

(1591)

da«
(a,. _ a,)2 = A ^^ (1592)

which is valid as we now see under bath conditions if also a, is small

compared with X. For the Fermi-Dirac statistics

_ Wr
e'r/kTjX + 1

'

{a, — a^Y = ^r — (ar)V^r- (1593)

This result was first given by Pauli. The fluctuation vanishes when T -^ 0,

since the assembly is then tight packed. For the Einstein-Bose statistics

_ TO,
^'^

e^rlJcTIX - 1
'

(a, — a^Y = ttr + {(IrYl'^r- (1594)

The last result has been shown by Einstein to yield the correct fluctuation

of radiation when applied to the light-quantum theory.

§ 21-9. Mechanisms of interaction. Boltzmann's H-theorem. The modi-

fications required in Chapters xvii and xix, especially the former, when
the laws of the new quantum mechanics are taken into account, have been

discussed by various authorsf from the point of view adopted in this

monograph. More recently this type of discussion has been completed by

* See, for example, Einstein, Berl. Sitz. (1924) p. 261; (1925) p. 3; Pauli, Zeit. fiir Phys.

vol. XLi, p. 81 (1927).

t Jordan, Zeit.fiir Phys. vol. xli, p. 711 (1927) ; Ornstein and Kramers, Zeit.fiir Phys. vol. XLii,

p. 481 (1927); Bothe, Zeit. fur Phys. vol. XLVi, p. 327 (1928).
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Nordheiml. We shall follow his exposition fairly closely in this chapter,

and shall confine ourselves to the reformulation of the laws of gas collisions

leading up to Boltzmann's ^-theorem. The similar reformulation of the

other sections of Chapter xvii will present no difficulty to the reader.

Great elaboration at the level proposed hardly seems justifiable at present,

since the work of Dirac, Jordan, Pauli and WignerJ on the emission and

absorption of radiation and the quantum mechanics of radiation fields and

fields satisfying Pauli's principle has obviously opened up the possibility

of a much deeper formulation.

In the classical statistics of Chapters xvii and xix it is always possible

to express the frequency of any given atomic event in terms of certain

target areas or probability coefficients and the distribution laws for the

systems engaged prior to the given event. The distribution laws for the

systems emerging from the event are irrelevant. In the new statistics this

is no longer true. For example, in the Fermi-Dirac statistics an event can-

not occur at all if it has to produce a system in a state of which the assembly

already possesses as many as possible. Again in the Einstein-Bose statistics

the presence of other systems in the assembly in the state produced by

a given event makes that event correspondingly mo7'e probable. This is the

natural interpretation in light-quantum statistics of Einstein's coefficient

of stimulated emission.

Let us now define a collision process in a way which is agreeable to the

new mechanics with Heisenberg's principle of imcertainty. We consider

a volume element dV
,
physically small but large compared with atomic

dimensions. Through that element two different wave groups or wave

packets are supposed to be proceeding, representing particles with velocity

components between u,u + du, v, v + dv, w,w+ dw and u^, u^ + du^

,

Vi, Vi + dv^, Wj^,Wi + dw^. We assume that dudvdwdV {= dodV) is large

compared with h^/m^ so that we do not get entangled with the principle

of uncertainty. If there are no other particles in the assembly, the sequence

of events can be calculated when the interaction energy of the two particles

is given. This sequence can be described in terms of a calculable probability

coefficient §

which is such that

(f)
{u, %; u^, %*) do*doi*

is the probability that the interaction results in the production of wave

groups representing particles with velocity components in the ranges w*,

t Nordheim, Proc. Roy. Soc. A, vol. cxix, p. 689 (1928).

X Dirac, Proc. Roy. Soc. A, vol. cxiv, p. 243 (1927); Jordan, Zeit.fiir Phys. vol. XLiv, p. 473

(1927); Jordan and Pauli, Zeit.fur Phys. vol. xlvii, p. 151 (1928); Jordan and Wigner, Zeit.fur

Phys. vol. xlvii, p. 631 (1928).

§ For shortness we shall show only one of each set of velocity components as an argument of

<f>.
Of course they are all equally concerned.
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w* + du"^, V*, V* + (iv*, w"^, w* + dw* and Wj*, %* + du^*, v^*, v^* + dv^*,

Wj^*, Wj* + cZwi*. The new velocity components have to satisfy the energy

and momentum relations so that only two of them are really independent.

We can therefore write this probability

(f)
{u, Uil CT*) da*,

where da* is an element of two-dimensional extension on the energy-

momentum hyper-surface in the velocity space.

So far we have scarcely diverged from the classical formulation. We
have now to enumerate the total number of such events in dlF in an assembly

in which there are a number of systems similar to the interacting pair. If

SiS usual f {x, y, z,u, v,w) dodV is the number of particles in dV with

velocity components in the specified ranges, the classical number of

collisions of the specified type isf

fdVfidV(f> {u, u^; C7*) dodo^da*. (1595)

In either of the new statistics however the corresponding expression must

contain factors depending on/* and/j*. The simplest possible assumptions

which fulfil all requirements are as follows. In the Fermi-Dirac statistics

the number of events must vanish when /* do* dV is equal to the number

of available cells of extension li^ of the phase space in the given velocity

ranges. We shall write this number Ado*dV . If the systems we are discuss-

ing are degenerate freely moving systems of weight w, then the available

phase space is wm^do*dV and A = wm^/Ji^. The simplest possible extra

factor in (1595) is therefore

(1-/*M).
There is a similar factor for the second system. The number of the specified

events becomes therefore

fdVf^dV (l - t)(i -
'^-t^^ ^ {u, u^; a*) dodo^da* (1596)

It may be necessary to distinguish between the ^'s for the two systems;

for their masses may be different.

The number of reverse events can be similarly specified. The prob-

ability that a single pair originally moving in d^F with velocities u*, v*, w*

and Uj*, Vj*, w^* should be scattered into the ranges u,u + du, ...w-i^,Wi+ div^

is

(f)
{u*, Wi*; u, u^) dodoi, or ^ {u*, %*; a) da,

and the number of such events

f*dVf^*dV (l - 4)
(l - x) *^ (^*' ^1*' ""^ do*doy*da. ...(1597)

We can make one further general assertion—that

<f)
{u, %; a*) dodo^da* =

(J)
{u*, u^*; a) do*dOi*da (1598)

I We write as usual/ for / (x, y, z, u, v, w) and/^ for / (x, y, z, u^, i\, Wj), etc.
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These probabilities are calculated as the squares of the moduli of the com-

ponents of a certain interaction matrix, and the two probabilities in

question belong to the {n, m) and {m,n) terms of that matrix. All such

matrices are Hermitian so that the (n, m) and (m, n) terms are conjugate

complex numbers of equal moduli.

In the Einstein-Bose statistics the simplest possible assumption which

allows for the stimulating effect of the systems already present in the final

states is to insert factors such as

(1+/*M)
with positive signs wherever there is a negative sign in (1596) and (1597).

This may be regarded as a change of sign of ^, so that it is sufficient to

carry through the modifications for one of the new statistics only. The
calculations also cover collisions between systems one of which obeys the

Fermi-Dirac and the other the Einstein-Bose statistics.

The various investigations of Chapter xvii can easily be repeated with

these or similar modifications.

We observe first that on the hypothesis of detailed balancing we must

equate (1596) and (1597) so that

/a(i -^j) (i -Q -/*A* (i -i) {'-!-) -C^^^)

fOn writmg
T^^llA

^ ^'

we see that gg^ ^ g*gi*. (1600)

Therefore as in § 17-3 g has Maxwell's form, which when there is no mass

motion may be taken to be

q = B' e^'
("*+^^+«'^)

B' and C being independent of the velocities. It follows that

which is the usual distribution law.

We observe next that there is still an equation for/in the new statistics

of the same form as Boltzmann's integro-differential equation (1192). This

follows from the considerations of Darwinl who has shown that the wave
packet representing a particle undisturbed by collisions moves in uniform

or nearly uniform external fields just as a classical particle. The distribu-

tion function / therefore satisfies the equation

w
dt

9/ T.9/ T.9/ ^9/ 9/ 9/ Sf

ot ou ov ow ox oy oz
...(1602)

J coll

The revised form of the collision terms can now be written down. We shall

t Darwin, Proc. Roy. Soc. A, vol. cxvii, p. 258 (1927). See also Kennard, Zeit. fiir Phys.

vol. XLiv, p. 326 (1927).
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be content to consider an assembly of one set of particles only. The revised

form is

X (/. {u, n^; CT*) f^Oi^CT* (1603)

This pair of equations should be used in place of (1192) and (1193) in

investigations of transport phenomena in condensed electron gases and
similar assemblies, and has been so used by Nordheimf in developing

Sommerfeld's electron theory of metals.

We conclude by showing that the distribution law (1601) can be derived

from the more restricted hypothesis of preservation, confining attention

to the element dV oi a. simple assembly of one type of system, without

space variations in/ or external fields of force. To do this we have only to

construct a modified i7-function, J

H = j[flogf+ {A - f )\og {A -f)]do (1604)

Then ^ = j[log/-log(^-/)]|^o, (1605)

and in the example considered df/dt is given completely by (1603). Therefore

"^^ = - ^^ ///
logj^ UA (^4 - /*) (.4, - /,*) - /*/,* {A - f) {A, - /,)]

X i-^^^^^^^^ dodo.da'^ ^jg^g^

By the familiar argument of exchanging the roles of various types of

variable we find

^ = - ldVJjj[\og {fU [A - /*) (.4, - A*)} - log{/*A* {A -/) {A -A)}]

X Uh {A - /*) {A, - /,*) - /*/,* [A - f) {A - A)]
'^^'^^'^1^*^ dodo,du^.

(1607)

Therefore dH/dt <0 and can only vanish when (1599) is satisfied, which

is what we wished to prove.

With this inadequate account of the more recent developments we end

this monograph. The new mechanics is perhaps just emerging from what

one may call its Newtonian stage. Great developments in the exposition

of the new mechanics itself may be expected. Such developments are

desirable and perhaps even necessary before a satisfying account can be

given of its statistical side.§

f Nordheim, loc. cit.

J If ^ is negative we replace the second log by log {A +/).

§ The correct basis for the statistical mechanics of quantum-mechanical assemblies (or at

least a great step towards such a basis) seems to be provided by the work of v. Neumann, Gott.

Nach. (1927), pp. 245, 273.
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istic function], 129
Planck's law of Radiation, 76
Poisson's equation. Use of Boltzmann's and,

188-194
for Strong Electrolytes, 314-316

Polarizability of Atoms and Ions, 258-261
from Dielectric constants, 260-261
from Rydberg-Ritz formula, 259-260

Polarization of a Gas by an Electric field, 287
Polya's theorem, 511-512
Polymerization of Water, 326
Positive Ions, Emission of, by Metals, 279-282

Effect on Atmosphere over Metal, 282-283
Potential, Thermodynamic Partial, 130-132

of Electrons in a Metal, 543-545
Potential Energy of a Gas, Partition function

for, 165-168
Preservation of Equilibrium by Collisions,

419, 443
of Maxwell's law by line Emissions and

Absorptions, 486-492
Protons, Antisymmetrical Wave-functions of

sets of, 526
Pyro-electric effect, 96, 97

569

Quantized systems. Distribution laws for, 30
Partition functions for, 30
Weights of, 17-21

Quantum-mechanics, 519
Statistical mechanics as modified by [for

details see separate subjects], 519-560
Quantum numbers of Atomic Ions, 335-336
Quantum theory. Logical position of, 2-3

Radiation, Partition function of, 75-76
Planck's law of, 76
Stefan-Boltzmann law of, 75-76, 136-137
Temperature, 72

Radiative processes, 473-^96
Emission and Absorption of a continuous

range of frequencies, 477-479
Emission and Absorption of lines by fixed
Atoms, 473-477

General theory of, 480^86
Independence of Collisions of, 420, 473

Ramsauer effect, 446
Reaction, Heat of, 148
Reaction Isobar, 148-149
Reaction Isochore, 106
Standard forms, 107

Reactions in Gases
Bimolecular, 458, 460-462
Heats of Activation of, 459
Photochemical, 494-4:96

Unimolecular, 458, 465-470
Velocity constants of, 459

Recombination [see Dissociation and Recom-
bination]

Reflection coefficient of Electrons by Metals,
267-269

Refractivity, 258
of Atoms and Ions, 237-238
Classical theory of, for a Gas, 288

Residual rays {Rcststrahlen), 78, 87
Rosseland's theorem on Stellar Interiors, 409-

410
Rotations of H2 , Partition functions for, 56-57
Rotator, Partition functions for Classical, 43-44

Partition functions for Rigid, 32-34

Saturation currents of Electrons, 266-267
Scattering of Light by Liquids and Gases, 514-

518
Schrodinger's Wave equation, 521

Characteristic functions of, 522
Characteristics of, 522

Selector variables, 105
Sensitization of photographic plates, 438
Short range forces in Imperfect Gases, 168-180
Smoothing, 191-192
Solutions of ideal simple Solutes, 307-308

of Molecules of finite size, 310-311
of non-Electrolytes, Specific Heats, 311-312
of Strong Electrolytes, 312-327
Theory of dilute, 307-327
Vapour pressure over, 308-309

Space charge effects, in Electron Atmospheres
[q.v.], 270-286

of Electrons and Ions near Metals, 282-283
Special problems, 272-283

Specific Heat of

Ammonia gas, 62
Carbon dioxide, 64—66
Crystals on Debye's theory, 81-86



570 Index of Subjects

Specific Heat of {cont.)

Crystals at ordinary temperatures, 82
Crystals, derived from Elastic constants,84-85
Crystals, Forsterling's calculation of, 86—87
Crystals, law of Corresponding states for,

82-84
Crystals, T^-law for, 82-83
Definition of, 50
Diatomic Gases, 52-53
Diatomic Gases, Vibrational Energy, 58-61
Electricity, 265-266
Electricity, Quantum-mechanical theory of,

549-550
Hydrogen at high temperatures, 60
Hydrogen at low temperatures, 53-57
Metals, Electron contribution to, 545-546
Methane, 62-64
Monatomic Gases, 51
Polyatomic Gases, 61-66
Solutions of Non-Electrolytes, 311-312
Solutions of Strong Electrolytes, 325-327
Water, pressure effect on, 326
Water Vapour, 66

Stark effect. Absence of linear, for HCl, 294
Statistical Mechanics, The Equilibrium theory

of, 8
Fundamental assumptions, 7

Generality of, 4
Modified by Quantum-mechanics, 519-560
Relationship to Thermodynamics, 125

Statistics, Einstein-Bose, 537
Fermi-Dirac, 537

Steepest descents, 27-29
for Multiple integrals, 112-115

Stefan-Boltzmann law, 75-76, 136-137
Stellar Absorption Spectra [see Absorption

Spectra], 366-387
Stellar Atmospheres, of Ionized media, 359-366
Stellar Interiors, Rosseland's theorem on, 409-

410
Stellar material, 410-416

Great Density of, 415-416, 552-553
Mean molecular weight of, 410-415

Stellar Temperature Scale, 383
Stresses, Internal, 119-121

for Imperfect Gases, 214-216
Structure of Atoms and Atomic Ions, 334-345
Surface effects. Imperfect Gases, 214-216
Surface Energy of Crystals, 253
Surface forces outside a Crystal, 261-263
Surface layer, Dissociative Equilibrium in, 286
Nature of, in Electron Atmospheres, 274r-278

Susceptibility, Paramagnetic, 300
Sutherland's formula for the Viscosity of a Gas,

229-231
Symmetrical Wave-functions, 525-527
Symmetry number, 16, 102

of Atomic Ions, 341
in Quantum-mechanics, 531

Target area
for Dissociation and Recombination of

Atoms, 451--453

for Ionization and Recombination of Atoms
and Electrons, 443-445

Temperature, Absolute, Existence of, 126-127
Defined by the theorem of Equipartition,

26-27
Empirical, Definition of, 125-126

Thermionic Emission, Quantum-mechanical
theory of, 546-547

Thermionics, 264-286
Data for various Metals. 268
Phenomena as Surface effects, 278
Saturation currents, 266-267

Thermodynamic Probability and Entropy, 137-
142

Thermod5Tiamics, Potentials, partial, 130-132
Relationship of, to Statistical Mechanics, 125
Third law of, 149-150

Thermo-electric effects. Quantum-mechanical
theory of, 549-550

Thomson-Joule effect, 205-206
Top, Partition functions for Rigid, 34r-37

Transferable Energy in Collisions, 462-465
Transference of Excitation, 437^38

Uncertainty, Heisenberg's principle of, 520,

557

van der Waals' formula [see also Equations of

State, Imperfect Gases], 172
Attraction, 218-219

van 't Hoff's equation, 148
van 't Hoff's theory of Solutions, 308-311
Vapour pressure equation, 115-1 IQ, 144-

145
for a partial constituent, 123-124, 148

Vapour pressure over a Solution, 308-309
Virial coefiicients, Definition of, 220

Forces derived from Second, 226-228
of Gaseous mixtures, 228-229
Method of comparing theory and experiment,

223-225
Observed values of Second, 225-228
Theoretical values of Second, 221-222

Virial of Clausius, 211-213
Viscosity of a Gas, experimental, 231-232

Sutheriand's formula, 229-231
theoretical formulae, 229-231

Walls, Reflection of Electrons from, 267-269
Interaction of Molecules with, 455-456

Water, Polymerization of, 326
Specific Heat of, affected by pressure, 326

Wave equation, Schrodinger's, 521
Wave-functions

Antisymmetrical, 525-527
for Atomic Ions, 527
Definition of, 522
for Electrons (Antisymmetrical), 526
for Light Quanta (Symmetrical), 527
Non-combining groups of, 524-525
for Protons (Ajitisymmetrical), 526
Symmetrical, 525-527

Weight, 9
Classical, 12-16
derived from Specific Heats, 134-137
of Hydrogen-nucleus, 58
Invariance of, 132-134
Nuclear, 333
of Quantized systems, 17-21
of States of Atomic Ions, 340
of Unclosed Atomic groups, 342

Work function, 96
Thermionic, for Electrons, 268

Zero-point Energy [see Energy]
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